1
|
Borzykh AA, Zhedyaev RY, Ponomarev II, Vepkhvadze TF, Zgoda VG, Orlova MA, Vavilov NE, Shishkin NV, Lednev EM, Makhnovskii PA, Sharlo KA, Babkova AR, Vassilieva GY, Gimadiev RR, Shenkman BS, Rukavishnikov IV, Orlov OI, Tomilovskaya ES, Popov DV. Multidirectional effect of low-intensity neuromuscular electrical stimulation on gene expression and phenotype in thigh and calf muscles after one week of disuse. Eur J Appl Physiol 2025:10.1007/s00421-025-05761-x. [PMID: 40172600 DOI: 10.1007/s00421-025-05761-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 03/17/2025] [Indexed: 04/04/2025]
Abstract
PURPOSE This study investigated the effects of a one-week disuse, both with and without low-intensity neuromuscular electrical stimulation-a safe (non-traumatic) approach to prevent the loss of muscle mass, on the functional capacities and gene expression in thigh and calf muscles. METHODS This study assessed the efficiency of low-intensity (~ 10% of maximal voluntary contraction) electrical stimulation in preventing the negative effects of 7-day disuse (dry immersion without and with daily stimulation) on the strength and aerobic performance of the ankle plantar flexors and knee extensors, mitochondrial function in permeabilized muscle fibers, and the proteomic (quantitative mass spectrometry-based analysis) and transcriptomic (RNA-sequencing) profiles of the soleus muscle and vastus lateralis muscle. RESULTS Application of electrical stimulation during dry immersion prevented a decrease in the maximal strength and a slight reduction in aerobic performance of the knee extensors, as well as a decrease in maximal (intrinsic) ADP-stimulated mitochondrial respiration and changes in the expression of genes encoding mitochondrial, extracellular matrix, and membrane proteins in the vastus lateralis muscle. In contrast, for the ankle plantar flexors/soleus muscle, electrical stimulation had a positive effect only on maximal mitochondrial respiration, but slightly accelerated the decline in the maximal strength and muscle fiber cross-sectional area, which appears to be related to the activation of inflammatory genes. CONCLUSION The data obtained open up broad prospects for the use of low-intensity electrical stimulation to prevent the negative effects of disuse for "mixed" muscles, meanwhile, the optimization of the stimulation protocol is required for "slow" muscles.
Collapse
Affiliation(s)
- Anna A Borzykh
- Institute of Biomedical Problems of the Russian Academy of Sciences, Moscow, Russia
| | - Roman Y Zhedyaev
- Institute of Biomedical Problems of the Russian Academy of Sciences, Moscow, Russia
| | - Ivan I Ponomarev
- Institute of Biomedical Problems of the Russian Academy of Sciences, Moscow, Russia
| | - Tatiana F Vepkhvadze
- Institute of Biomedical Problems of the Russian Academy of Sciences, Moscow, Russia
| | - Viktor G Zgoda
- V. N. Orekhovich Research Institute of Biomedical Chemistry, Moscow, Russia
| | - Mira A Orlova
- Institute of Biomedical Problems of the Russian Academy of Sciences, Moscow, Russia
| | - Nikita E Vavilov
- V. N. Orekhovich Research Institute of Biomedical Chemistry, Moscow, Russia
| | - Nikita V Shishkin
- Institute of Biomedical Problems of the Russian Academy of Sciences, Moscow, Russia
| | - Egor M Lednev
- Institute of Biomedical Problems of the Russian Academy of Sciences, Moscow, Russia
| | - Pavel A Makhnovskii
- Institute of Biomedical Problems of the Russian Academy of Sciences, Moscow, Russia
| | - Kristina A Sharlo
- Institute of Biomedical Problems of the Russian Academy of Sciences, Moscow, Russia
| | - Anastasia R Babkova
- Institute of Biomedical Problems of the Russian Academy of Sciences, Moscow, Russia
| | - Galina Yu Vassilieva
- Institute of Biomedical Problems of the Russian Academy of Sciences, Moscow, Russia
| | - Rinat R Gimadiev
- Institute of Biomedical Problems of the Russian Academy of Sciences, Moscow, Russia
- Peoples' Friendship University of Russia Named After Patrice Lumumba, Moscow, Russia
| | - Boris S Shenkman
- Institute of Biomedical Problems of the Russian Academy of Sciences, Moscow, Russia
| | - Ilya V Rukavishnikov
- Institute of Biomedical Problems of the Russian Academy of Sciences, Moscow, Russia
| | - Oleg I Orlov
- Institute of Biomedical Problems of the Russian Academy of Sciences, Moscow, Russia
| | - Elena S Tomilovskaya
- Institute of Biomedical Problems of the Russian Academy of Sciences, Moscow, Russia.
| | - Daniil V Popov
- Institute of Biomedical Problems of the Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
2
|
Lee MC, Ho CS, Hsu YJ, Wu MF, Huang CC. Effect of 8-week frequency-specific electrical muscle stimulation combined with resistance exercise training on muscle mass, strength, and body composition in men and women: a feasibility and safety study. PeerJ 2023; 11:e16303. [PMID: 37868059 PMCID: PMC10586320 DOI: 10.7717/peerj.16303] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 09/26/2023] [Indexed: 10/24/2023] Open
Abstract
In recent years, electrical muscle stimulation (EMS) devices have been developed as a complementary training technique that is novel, attractive, and time-saving for physical fitness and rehabilitation. While it is known that EMS training can improve muscle mass and strength, most studies have focused on the elderly or specific patient populations. The aim of this study was to investigate the effects of frequency-specific EMS combined with resistance exercise training for 8 weeks on muscle mass, strength, power, body composition, and parameters related to exercise fatigue. Additionally, we aimed to evaluate the feasibility and safety of EMS as an exercise aid to improve body composition. We recruited 14 male and 14 female subjects who were randomly assigned to two groups with gender parity (seven male and seven female/group): (1) no EMS group (age: 21.6 ± 1.7; height: 168.8 ± 11.8 cm; weight: 64.2 ± 14.4 kg) and (2) daily EMS group (age: 21.8 ± 2.0; height: 167.8 ± 9.9 cm; weight: 68.5 ± 15.5 kg). The two groups of subjects were very similar with no significant difference. Blood biochemical routine analysis was performed every 4 weeks from pre-intervention to post-intervention, and body composition, muscle strength, and explosive power were evaluated 8 weeks before and after the intervention. We also performed an exercise challenge analysis of fatigue biochemical indicators after 8 weeks of intervention. Our results showed that resistance exercise training combined with daily EMS significantly improved muscle mass (p = 0.002) and strength (left, p = 0.007; right, p = 0.002) and significantly reduced body fat (p < 0.001) than the no EMS group. However, there was no significant advantage for biochemical parameters of fatigue and lower body power. In summary, our study demonstrates that 8 weeks of continuous resistance training combined with daily upper body, lower body, and abdominal EMS training can significantly improve muscle mass and upper body muscle strength performance, as well as significantly reduce body fat percentage in healthy subjects.
Collapse
Affiliation(s)
- Mon-Chien Lee
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan, Taiwan
- Center for General Education, Taipei Medical University, Taipei, Taiwan
| | - Chin-Shan Ho
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan, Taiwan
| | - Yi-Ju Hsu
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan, Taiwan
| | - Ming-Fang Wu
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan, Taiwan
| | - Chi-Chang Huang
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan, Taiwan
- Tajen University, Pingtung, Taiwan
| |
Collapse
|
3
|
Siemes LJ, van der Worp MP, Nieuwenhuijzen PHJ, Stolwijk NM, Pelgrim T, Staal JB. The effect of movement representation techniques on ankle function and performance in persons with or without a lateral ankle sprain: a systematic review and meta-analysis. BMC Musculoskelet Disord 2023; 24:786. [PMID: 37794344 PMCID: PMC10548724 DOI: 10.1186/s12891-023-06906-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 09/22/2023] [Indexed: 10/06/2023] Open
Abstract
BACKGROUND Lateral ankle sprains are highly prevalent and result in tissue damage, impairments of muscle strength, instability, and muscle activation. Up to 74% will experience ongoing symptoms after a lateral ankle sprain. In healthy subjects, motor imagery might induce neural changes in the somatosensory and motor areas of the brain, yielding favourable enhancements in muscular force. However, during motor imagery, difficulties in building a motor image, no somatosensory feedback, and the absence of structural changes at the level of the muscle might explain the differences found between motor imagery and physical practice. In rehabilitation, motor imagery might be supportive in rebuilding motor networks or creating new networks to restore impairments in muscle activation and movement patterns. This systematic review was undertaken to summarize the current body of evidence about the effect on motor imagery, or action observation, on lower leg strength, muscle performance, ankle range of motion, balance, and edema in persons with, and without, a lateral ankle sprain compared to usual care, a placebo intervention, or no intervention. METHODS A systematic review with meta-analysis of randomized controlled trials was conducted in healthy participants and participants with a lateral ankle sprain. Motor imagery or action observation in isolation, or in combination with usual care were compared to a placebo intervention, or no intervention. An electronic search of MEDLINE, EMBASE, Cinahl, Psychinfo, Sportdiscus, Web of Science, Cochrane and Google Scholar was conducted, and articles published up to 7th June 2023 were included. Two reviewers individually screened titles and abstracts for relevancy using the inclusion criteria. Variables related to muscle strength, muscle function, range of motion, balance, return to sports tests, or questionnaires on self-reported function or activities were extracted. A risk of bias assessment was done using the Cochrane Risk-of-Bias tool II by two reviewers. Meta-analysis using a random effects model was performed when two or more studies reported the same outcome measures. The Standardized Mean Difference (SMD) was calculated over the change from baseline scores. Review manager 5.4 was used to perform analysis of subgroup differences and test for statistically significant differences. Confidence intervals were visually checked for overlap between subgroups. RESULTS Nine studies, six examining healthy participants and three examining participants with an acute lateral ankle sprain, were included. All studies were rated with moderate to high risk of bias overall. Quality of the motor imagery interventions differed largely between studies. Meta-analysis showed a large and significant effect of motor imagery on lower leg strength (SMD 1.47, 95% CI 0.44 to 2.50); however, the evidence was downgraded to very low certainty due to substantial heterogeneity (I2 = 73%), limitations in the studies (some concerns in risk of bias in all studies), and imprecision (n = < 300). Evidence showed no association with ankle range of motion (SMD 0.25, 95% CI -0.43 to 0.93), edema (SMD -1.11, 95% CI -1.60 to 3.81), the anterior reach direction of the Star Excursion Balance Test (SEBT) (SMD 0.73, 95% CI -0.62 to 2.08), the posterolateral direction (SMD 0.32, 95% CI -0.94 to 1.57), and the posteromedial direction (SMD 0.52, 95% CI -0.07 to 1.10). The certainty of evidence for the different comparisons was very low. CONCLUSIONS There is a low certainty, significant, positive effect for motor imagery being able to improve lower leg muscle strength in healthy participants. The effect on balance, range of motion and edema was uncertain and of very low certainty. SYSTEMATIC REVIEW REGISTRATION PROSPERO CRD42021243258.
Collapse
Affiliation(s)
- Luuk J.F. Siemes
- School of Sport and Exercise, HAN University of Applied Sciences, Nijmegen, the Netherlands
| | | | | | - Niki M. Stolwijk
- School of Allied Health, HAN University of Applied Sciences, Nijmegen, the Netherlands
| | - Thomas Pelgrim
- HAN Study Centres, HAN University of Applied Sciences, Nijmegen, the Netherlands
| | - J. Bart Staal
- School of Allied Health, HAN University of Applied Sciences and IQ Healthcare, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
4
|
Alenezi MM, Hayes A, Lawrence GP, Kubis HP. Influence of motor imagery training on hip abductor muscle strength and bilateral transfer effect. Front Physiol 2023; 14:1188658. [PMID: 37745234 PMCID: PMC10512955 DOI: 10.3389/fphys.2023.1188658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 08/22/2023] [Indexed: 09/26/2023] Open
Abstract
Motor imagery training could be an important treatment of reduced muscle function in patients and injured athletes. In this study, we investigated the efficacy of imagery training on maximal force production in a larger muscle group (hip abductors) and potential bilateral transfer effects. Healthy participants (n = 77) took part in two experimental studies using two imagery protocols (∼30 min/day, 5 days/week for 2 weeks) compared either with no practice (study 1), or with isometric exercise training (study 2). Maximal hip abduction isometric torque, electromyography amplitudes (trained and untrained limbs), handgrip strength, right shoulder abduction (strength and electromyography), and imagery capability were measured before and after the intervention. Post intervention, motor imagery groups of both studies exhibited significant increase in hip abductors strength (∼8%, trained side) and improved imagery capability. Further results showed that imagery training induced bilateral transfer effects on muscle strength and electromyography amplitude of hip abductors. Motor imagery training was effective in creating functional improvements in limb muscles of trained and untrained sides.
Collapse
Affiliation(s)
- Majid Manawer Alenezi
- Department of Sport and Exercise Sciences, School of Human and Behavioural Sciences, Bangor University, Bangor, United Kingdom
- Northern Border Health Cluster, Academic Affairs and Training, Arar, Saudi Arabia
| | - Amy Hayes
- Department of Sport and Exercise Sciences, School of Human and Behavioural Sciences, Bangor University, Bangor, United Kingdom
| | - Gavin P. Lawrence
- Department of Sport and Exercise Sciences, School of Human and Behavioural Sciences, Bangor University, Bangor, United Kingdom
| | - Hans-Peter Kubis
- Department of Sport and Exercise Sciences, School of Human and Behavioural Sciences, Bangor University, Bangor, United Kingdom
| |
Collapse
|
5
|
Piveteau E, Di Rienzo F, Bolliet O, Guillot A. Inter-task transfer of force gains is facilitated by motor imagery. Front Neurosci 2023; 17:1228062. [PMID: 37645373 PMCID: PMC10461095 DOI: 10.3389/fnins.2023.1228062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/26/2023] [Indexed: 08/31/2023] Open
Abstract
Introduction There is compelling evidence that motor imagery (MI) contributes to improve muscle strength. While strong effects have been observed for finger muscles, only few experiments with moderate benefits were conducted within applied settings targeting large upper or lower limb muscles. The aim of the present study was therefore to extend the investigation of embedded MI practice designed to improve maximal voluntary strength on a multi-joint dynamic exercise involving the lower limbs. Additionally, we tested whether targeting the content of MI on another movement than that physically performed and involving the same body parts might promote inter-task transfer of strength gains. Methods A total of 75 participants were randomly assigned into three groups who underwent a physical training on back squat. During inter-trial recovery periods, a first MI group (n = 25) mentally rehearsed the back squat, while a second MI group (n = 25) performed MI of a different movement involving the lower limbs (deadlift). Participants from the control group (n = 25) completed a neutral cognitive task during equivalent time. Strength and power gains were assessed ecologically using a velocity transducer device at 4 different time periods. Results Data first revealed that participants who engaged in MI of the back squat improved their back squat performance (p < 0.03 and p < 0.01, respectively), more than the control group (p < 0.05), hence supporting the positive effects of MI on strength. Data further supported the inter-task transfer of strength gains when MI targeted a movement that was not physically trained (p = 0.05). Discussion These findings provide experimental support for the use of MI during physical training sessions to improve and transfer force development.
Collapse
Affiliation(s)
| | | | | | - Aymeric Guillot
- Inter-University Laboratory of Human Movement Biology-EA 7424, University of Lyon, University Claude Bernard Lyon 1, Villeurbanne, France
| |
Collapse
|
6
|
Spiering BA, Clark BC, Schoenfeld BJ, Foulis SA, Pasiakos SM. Maximizing Strength: The Stimuli and Mediators of Strength Gains and Their Application to Training and Rehabilitation. J Strength Cond Res 2023; 37:919-929. [PMID: 36580280 DOI: 10.1519/jsc.0000000000004390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
ABSTRACT Spiering, BA, Clark, BC, Schoenfeld, BJ, Foulis, SA, and Pasiakos, SM. Maximizing strength: the stimuli and mediators of strength gains and their application to training and rehabilitation. J Strength Cond Res 37(4): 919-929, 2023-Traditional heavy resistance exercise (RE) training increases maximal strength, a valuable adaptation in many situations. That stated, some populations seek new opportunities for pushing the upper limits of strength gains (e.g., athletes and military personnel). Alternatively, other populations strive to increase or maintain strength but cannot perform heavy RE (e.g., during at-home exercise, during deployment, or after injury or illness). Therefore, the purpose of this narrative review is to (a) identify the known stimuli that trigger gains in strength; (b) identify the known factors that mediate the long-term effectiveness of these stimuli; (c) discuss (and in some cases, speculate on) potential opportunities for maximizing strength gains beyond current limits; and (d) discuss practical applications for increasing or maintaining strength when traditional heavy RE cannot be performed. First, by conceptually deconstructing traditional heavy RE, we identify that strength gains are stimulated through a sequence of events, namely: giving maximal mental effort, leading to maximal neural activation of muscle to produce forceful contractions, involving lifting and lowering movements, training through a full range of motion, and (potentially) inducing muscular metabolic stress. Second, we identify factors that mediate the long-term effectiveness of these RE stimuli, namely: optimizing the dose of RE within a session, beginning each set of RE in a minimally fatigued state, optimizing recovery between training sessions, and (potentially) periodizing the training stimulus over time. Equipped with these insights, we identify potential opportunities for further maximizing strength gains. Finally, we identify opportunities for increasing or maintaining strength when traditional heavy RE cannot be performed.
Collapse
Affiliation(s)
- Barry A Spiering
- Military Performance Division, U.S. Army Research Institute of Environmental Medicine, Natick, Massachusetts
| | - Brian C Clark
- Ohio Musculoskeletal and Neurological Institute, Ohio University, Athens, Ohio
- Department of Biomedical Sciences, Ohio University, Athens, Ohio; and
| | | | - Stephen A Foulis
- Military Performance Division, U.S. Army Research Institute of Environmental Medicine, Natick, Massachusetts
| | - Stefan M Pasiakos
- Military Performance Division, U.S. Army Research Institute of Environmental Medicine, Natick, Massachusetts
| |
Collapse
|
7
|
Ni L, Yao Z, Zhao Y, Zhang T, Wang J, Li S, Chen Z. Electrical stimulation therapy for peripheral nerve injury. Front Neurol 2023; 14:1081458. [PMID: 36908597 PMCID: PMC9998520 DOI: 10.3389/fneur.2023.1081458] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 02/06/2023] [Indexed: 03/14/2023] Open
Abstract
Peripheral nerve injury is common and frequently occurs in extremity trauma patients. The motor and sensory impairment caused by the injury will affect patients' daily life and social work. Surgical therapeutic approaches don't assure functional recovery, which may lead to neuronal atrophy and hinder accelerated regeneration. Rehabilitation is a necessary stage for patients to recover better. A meaningful role in non-pharmacological intervention is played by rehabilitation, through individualized electrical stimulation therapy. Clinical studies have shown that electrical stimulation enhances axon growth during nerve repair and accelerates sensorimotor recovery. According to different effects and parameters, electrical stimulation can be divided into neuromuscular, transcutaneous, and functional electrical stimulation. The therapeutic mechanism of electrical stimulation may be to reduce muscle atrophy and promote muscle reinnervation by increasing the expression of structural protective proteins and neurotrophic factors. Meanwhile, it can modulate sensory feedback and reduce neuralgia by inhibiting the descending pathway. However, there are not many summary clinical application parameters of electrical stimulation, and the long-term effectiveness and safety also need to be further explored. This article aims to explore application methodologies for effective electrical stimulation in the rehabilitation of peripheral nerve injury, with simultaneous consideration for fundamental principles of electrical stimulation and the latest technology. The highlight of this paper is to identify the most appropriate stimulation parameters (frequency, intensity, duration) to achieve efficacious electrical stimulation in the rehabilitation of peripheral nerve injury.
Collapse
Affiliation(s)
- Lingmei Ni
- Infection Prevention and Control Department, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhao Yao
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Yifan Zhao
- Department of Rehabilitation Medicine, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Tianfang Zhang
- Department of Rehabilitation Medicine, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jie Wang
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Siyue Li
- Department of Rehabilitation Medicine, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zuobing Chen
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
- Department of Rehabilitation Medicine, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
8
|
Papavasileiou A, Xenofondos A, Baudry S, Lapole T, Amiridis IG, Metaxiotis D, Tsatalas T, Patikas DA. Protocols Targeting Afferent Pathways via Neuromuscular Electrical Stimulation for the Plantar Flexors: A Systematic Review. SENSORS (BASEL, SWITZERLAND) 2023; 23:2347. [PMID: 36850945 PMCID: PMC9967278 DOI: 10.3390/s23042347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/02/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
This systematic review documents the protocol characteristics of studies that used neuromuscular electrical stimulation protocols (NMES) on the plantar flexors [through triceps surae (TS) or tibial nerve (TN) stimulation] to stimulate afferent pathways. The review was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) statement, was registered to PROSPERO (ID: CRD42022345194) and was funded by the Greek General Secretariat for Research and Technology (ERA-NET NEURON JTC 2020). Included were original research articles on healthy adults, with NMES interventions applied on TN or TS or both. Four databases (Cochrane Library, PubMed, Scopus, and Web of Science) were systematically searched, in addition to a manual search using the citations of included studies. Quality assessment was conducted on 32 eligible studies by estimating the risk of bias with the checklist of the Effective Public Health Practice Project Quality Assessment Tool. Eighty-seven protocols were analyzed, with descriptive statistics. Compared to TS, TN stimulation has been reported in a wider range of frequencies (5-100, vs. 20-200 Hz) and normalization methods for the contraction intensity. The pulse duration ranged from 0.2 to 1 ms for both TS and TN protocols. It is concluded that with increasing popularity of NMES protocols in intervention and rehabilitation, future studies may use a wider range of stimulation attributes, to stimulate motor neurons via afferent pathways, but, on the other hand, additional studies may explore new protocols, targeting for more optimal effectiveness. Furthermore, future studies should consider methodological issues, such as stimulation efficacy (e.g., positioning over the motor point) and reporting of level of discomfort during the application of NMES protocols to reduce the inherent variability of the results.
Collapse
Affiliation(s)
- Anastasia Papavasileiou
- Laboratory of Neuromechanics, School of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, 62110 Serres, Greece
| | - Anthi Xenofondos
- Physical Education and Sports Sciences, Frederick University, 1036 Nicosia, Cyprus
| | - Stéphane Baudry
- Laboratory of Applied Biology, Research Unit in Applied Neurophysiology (LABNeuro), Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Thomas Lapole
- Université Jean Monnet Saint-Etienne, Lyon 1, Université Savoie Mont-Blanc, Laboratoire Interuniversitaire de Biologie de la Motricité, F-42023 Saint-Etienne, France
| | - Ioannis G. Amiridis
- Laboratory of Neuromechanics, School of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, 62110 Serres, Greece
| | | | - Themistoklis Tsatalas
- Department of Physical Education and Sport Science, University of Thessaly, 42100 Trikala, Greece
| | - Dimitrios A. Patikas
- Laboratory of Neuromechanics, School of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, 62110 Serres, Greece
| |
Collapse
|
9
|
Can motor imagery balance the acute fatigue induced by neuromuscular electrical stimulation? Eur J Appl Physiol 2023; 123:1003-1014. [PMID: 36622447 DOI: 10.1007/s00421-022-05129-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 12/26/2022] [Indexed: 01/10/2023]
Abstract
PURPOSE The combination of motor imagery (MI) and neuromuscular electrical stimulation (NMES) can increase the corticospinal excitability suggesting that such association could be efficient in motor performance improvement. However, differential effect has been reported at spinal level after MI and NMES alone. The purpose of this study was to investigate the acute effect on motor performance and spinal excitability following MI, NMES and combining MI and NMES. METHODS Ten participants were enrolled in three experimental sessions of MI, NMES and MI + NMES targeting plantar flexor muscles. Each session underwent 60 imagined, evoked (20% MVC) or imagined and evoked contractions simultaneously. Before, immediately after and 10 min after each session, maximal M-wave and H-reflex were evoked by electrical nerve stimulation applied at rest and during maximal voluntary contraction (MVC). RESULTS The MVC decreased significantly between PRE-POST (- 12.14 ± 6.12%) and PRE-POST 10 (- 8.1 ± 6.35%) for NMES session, while this decrease was significant only between PRE-POST 10 (- 7.16 ± 11.25%) for the MI + NMES session. No significant modulation of the MVC was observed after MI session. The ratio Hmax/Mmax was reduced immediately after NMES session only. CONCLUSION The combination of MI to NMES seems to delay the onset of neuromuscular fatigue compared to NMES alone. This delay onset of neuromuscular fatigue was associated with specific modulation of the spinal excitability. These results suggested that MI could compensate the neuromuscular fatigue induced acutely by NMES until 10 min after the combination of both modalities.
Collapse
|
10
|
Liu XJ, Ge S, Cordova A, Yaghi Z, Jiang BY, Yue GH, Yao WX. Elderly may benefit more from motor imagery training in gaining muscle strength than young adults: A systematic review and meta-analysis. Front Psychol 2023; 13:1052826. [PMID: 36687842 PMCID: PMC9845905 DOI: 10.3389/fpsyg.2022.1052826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 12/05/2022] [Indexed: 01/05/2023] Open
Abstract
Objective The current review was aimed to determine the effectiveness of mental imagery training (MIT) on the enhancement of maximum voluntary muscle contraction (MVC) force for healthy young and old adults. Data sources Six electronic databases were searched from July 2021 to March 2022. Search terms included: "motor imagery training," "motor imagery practice," "mental practice," "mental training," "movement imagery," "cognitive training," "strength," "force," "muscle strength," "performance," "enhancement," "improvement," "development," and "healthy adults." Study selection and data extraction Randomized controlled trials of MIT in enhancing muscle strength with healthy adults were selected. The decision on whether a study met the inclusion criteria of the review was made by two reviewers independently. Any disagreements between the two reviewers were first resolved by discussion between the two reviewers. If consensus could not be reached, then it would be arbitrated by a third reviewer. Data synthesis Twenty-five studies including both internal MIT and external MIT were included in meta-analysis for determining the efficacy of MIT on enhancing muscle strength and 22 internal MIT were used for subgroup analysis for examining dose-response relationship of MIT on MVC. Results MIT demonstrated significant benefit on enhancing muscle strength when compared with no exercise, Effect Size (ES), 1.10, 95% confidence interval (CI), 0.89-1.30, favoring MIT, but was inferior to physical training (PT), ES, 0.38, 95% CI, 0.15-0.62, favoring PT. Subgroup analysis demonstrated that MIT was more effective for older adults (ES, 2.17, 95% CI, 1.57-2.76) than young adults (ES, 0.95, 95% CI, 0.74-1.17), p = 0.0002, and for small finger muscles (ES, 1.64, 95% CI, 1.06-2.22) than large upper extremity muscles (ES, 0.86, 95% CI, 0.56-1.16), p = 0.02. No significant difference was found in the comparison of small finger muscles and large lower extremity muscles, p = 0.19 although the ES of the former (ES, 1.64, 95% CI, 1.06-2.22) was greater than that of the later (ES, 1.20, 95%, 0.88-1.52). Conclusion This review demonstrates that MIT has better estimated effects on enhancing MVC force compared to no exercise, but is inferior to PT. The combination of MIT and PT is equivalent to PT alone in enhancing muscle strength. The subgroup group analysis further suggests that older adults and small finger muscles may benefit more from MIT than young adults and larger muscles.
Collapse
Affiliation(s)
- Xiao J. Liu
- College of Art, Beijing Sport University, Beijing, China
| | - Sha Ge
- College of Sports Science, Tianjin Normal University, Tianjin, China
| | - Alberto Cordova
- Department of Kinesiology, College for Health, Community, and Policy, The University of Texas at San Antonio, San Antonio, TX, United States
| | - Zayd Yaghi
- Department of Kinesiology, College for Health, Community, and Policy, The University of Texas at San Antonio, San Antonio, TX, United States
| | - Bo Y. Jiang
- School of Public Health, Jilin Medical University, Jilin, China
| | - Guang H. Yue
- Center for Mobility and Rehabilitation Engineering Research, Kessler Foundation, West Orange, NJ, United States
- Rutgers New Jersey Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
| | - Wan X. Yao
- Department of Kinesiology, College for Health, Community, and Policy, The University of Texas at San Antonio, San Antonio, TX, United States
| |
Collapse
|
11
|
Wieland B, Behringer M, Zentgraf K. Effects of motor imagery training on skeletal muscle contractile properties in sports science students. PeerJ 2022; 10:e14412. [PMID: 36447512 PMCID: PMC9701499 DOI: 10.7717/peerj.14412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 10/27/2022] [Indexed: 11/25/2022] Open
Abstract
Background Studies on motor imagery (MI) practice based on different designs and training protocols have reported changes in maximal voluntary contraction (MVC) strength. However, to date, there is a lack of information on the effects of MI training on contractile properties of the trained muscle. Methods Forty-five physically active sport science students (21 female) were investigated who trained three times per week over a 4-week period in one of three groups: An MI group conducted MI practice of maximal isometric contraction of the biceps brachii; a physical exercise (PE) group physically practiced maximal isometric contractions of the biceps brachii in a biceps curling machine; and a visual imagery (VI) group performed VI training of a landscape. A MVC test of the arm flexors was performed in a biceps curling machine before and after 4 weeks of training. The muscular properties of the biceps brachii were also tested with tensiomyography measurements (TMG). Results Results showed an interaction effect between time and group for MVC (p = 0.027, η 2 = 0.17), with a higher MVC value in the PE group (Δ5.9%) compared to the VI group (Δ -1.3%) (p = 0.013). MVC did not change significantly in the MI group (Δ2.1%). Analysis of muscle contractility via TMG did not show any interaction effects neither for maximal radial displacement (p = 0.394, η 2 = 0.05), delay time (p = 0.79, η 2 = 0.01) nor contraction velocity (p = 0.71, η 2 = 0.02). Conclusion In spite of MVC-related changes in the PE group due to the interventions, TMG measurements were not sensitive enough to detect concomitant neuronal changes related to contractile properties.
Collapse
Affiliation(s)
- Björn Wieland
- Goethe University Frankfurt, Department of Sports Sciences, Movement and Exercise Science in Sports Unit, Germany
| | - Michael Behringer
- Goethe University Frankfurt, Department of Sports Sciences, Sports Medicine and Exercise Physiology Unit, Germany
| | - Karen Zentgraf
- Goethe University Frankfurt, Department of Sports Sciences, Movement and Exercise Science in Sports Unit, Germany
| |
Collapse
|
12
|
Hasan S, Kandasamy G, Alyahya D, Alonazi A, Jamal A, Iqbal A, Unnikrishnan R, Muthusamy H. Effect of plyometric training and neuromuscular electrical stimulation assisted strength training on muscular, sprint, and functional performances in collegiate male football players. PeerJ 2022; 10:e13588. [PMID: 35782092 PMCID: PMC9245565 DOI: 10.7717/peerj.13588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 05/24/2022] [Indexed: 01/17/2023] Open
Abstract
Background The study's objective was to analyze the influence of an 8-week neuromuscular electrical stimulation (NMES) with a plyometric (PT) and strength training (ST) program on muscular, sprint, and functional performances in collegiate male football players. Methods Sixty collegiate male football players participated in this randomized controlled trial single-blind study. All the participants were randomly divided into two groups: (1) NMES group (Experimental, n = 30) who received NMES assisted ST and (2) sham NMES group (Control, n = 30) who received sham NMES assisted ST. In addition, participants from both groups received a PT program; both groups received intervention on three days a week for 8-weeks. The study's outcomes, such as muscular, sprint, and functional performances, were assessed using a strength test (STN) for quadriceps muscle, sprint test (ST), and single-leg triple hop test (SLTHT), respectively, at baseline pre-intervention and 8-week post-intervention. The interaction between group and time was identified using a mixed design (2 × 2) ANOVA. Results Significant difference found across the two time points for the scores of STN: F (1.58) = 5,479.70, p < 0.05; SLTHT: F (1.58) = 118.17, p < 0.05; and ST: F (1.58) = 201.63, p < 0.05. Similarly, the significant differences were found between groups averaged across time for the scores of STN: F (1.58) = 759.62, p < 0.05 and ST: F (1.58) = 10.08, p < 0.05. In addition, after 8-week of training, Cohen's d observed between two groups a large to medium treatment's effect size for the outcome STN (d = 10.84) and ST (d = 1.31). However, a small effect size was observed only for the SLTHT (d = 0.613). Conclusions Findings suggest that the effect of PT and ST with either NMES or sham NMES are equally capable of enhancing muscular, sprint, and functional performances in collegiate male football players. However, PT and ST with NMES have shown an advantage over PT and ST with sham NMES in improving muscular performance and sprint performance among the same participants.
Collapse
Affiliation(s)
- Shahnaz Hasan
- Physical Therapy Department, College of Applied Medical Sciences, Majmaah University, Al Majmaah, Saudi Arabia
| | | | - Danah Alyahya
- Physical Therapy Department, College of Applied Medical Sciences, Majmaah University, Al Majmaah, Saudi Arabia
| | - Asma Alonazi
- Physical Therapy Department, College of Applied Medical Sciences, Majmaah University, Al Majmaah, Saudi Arabia
| | - Azfar Jamal
- Department of Biology, College of Science, Al-Zulfi-, Majmaah University, Al Majmaah, Riyadh Region, Saudi Arabia,Health and Basic Science Research Centre, Majmaah University, Al Majmaah, Saudi Arabia
| | - Amir Iqbal
- Rehabilitation Research Chair, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Radhakrishnan Unnikrishnan
- Physical Therapy Department, College of Applied Medical Sciences, Majmaah University, Al Majmaah, Saudi Arabia
| | - Hariraja Muthusamy
- Physical Therapy Department, College of Applied Medical Sciences, Majmaah University, Al Majmaah, Saudi Arabia
| |
Collapse
|
13
|
Effectiveness of Contralaterally Controlled Functional Electrical Stimulation versus Neuromuscular Electrical Stimulation on Upper Limb Motor Functional Recovery in Subacute Stroke Patients: A Randomized Controlled Trial. Neural Plast 2022; 2021:1987662. [PMID: 34976049 PMCID: PMC8716238 DOI: 10.1155/2021/1987662] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 12/06/2021] [Indexed: 11/24/2022] Open
Abstract
Purpose To compare the effectiveness of contralaterally controlled functional electrical stimulation (CCFES) versus neuromuscular electrical stimulation (NMES) on motor recovery of the upper limb in subacute stroke patients. Materials and Methods Fifty patients within six months poststroke were randomly assigned to the CCFES group (n = 25) and the NMES group (n = 25). Both groups underwent routine rehabilitation plus 20-minute stimulation on wrist extensors per day, five days a week, for 3 weeks. Fugl-Meyer Assessment of upper extremity (FMA-UE), action research arm test (ARAT), Barthel Index (BI), and surface electromyography (sEMG) were assessed at baseline and end of intervention. Results After a 3-week intervention, FMA-UE and BI increased in both groups (p < 0.05). ARAT increased significantly only in the CCFES group (p < 0.05). The changes of FMA-UE, ARAT, and BI in the CCFES group were not greater than those in the NMES group. The improvement in sEMG response of extensor carpi radialis by CCFES was greater than that by NMES (p = 0.026). The cocontraction ratio (CCR) of flexor carpi radialis did not decrease in both groups. Conclusions CCFES improved upper limb motor function, but did not show better treatment effect than NMES. CCFES significantly enhanced the sEMG response of paretic extensor carpi radialis compared with NMES, but did not decrease the cocontraction of antagonist.
Collapse
|
14
|
Does partial activation of the neuromuscular system induce cross-education training effect? Case of a pilot study on motor imagery and neuromuscular electrical stimulation. Eur J Appl Physiol 2021; 121:2337-2348. [PMID: 33997913 DOI: 10.1007/s00421-021-04710-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 05/05/2021] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Cross education defines the gains observed in the contralateral limb following unilateral strength training of the other limb. The present study questioned the neural mechanisms associated with cross education following training by motor imagery (MI) or submaximal neuromuscular electrical stimulation (NMES), both representing a partial activation of the motor system as compared to conventional strength training. METHODS Twenty-seven participants were distributed in three groups: MI, NMES and control. Training groups underwent a training program of ten sessions in two weeks targeting plantar flexor muscles of one limb. In both legs, neuromuscular plasticity was assessed through maximal voluntary isometric contraction (MViC) and triceps surae electrophysiological responses evoked by electrical nerve stimulation (H-reflexes and V-waves). RESULTS NMES and MI training improved MViC torque of the trained limb by 11.3% (P < 0.001) and 13.8% (P < 0.001), respectively. MViC of the untrained limb increased by 10.3% (P < 0.003) in the MI group only, accompanied with increases in V-waves on both sides. In the NMES group, V-waves only increased in the trained limb. In the MI group, rest H-reflexes increased in both the trained and the untrained triceps suraes. CONCLUSION MI seems to be effective to induce cross education, probably because of the activation of cortical motor regions that impact the corticospinal neural drive of both trained and untrained sides. Conversely, submaximal NMES did not lead to cross education. The present results emphasize that cross education does not necessarily require muscle activity of the trained limb.
Collapse
|