1
|
Gong Y, Song P, Du X, Zhai Y, Xu H, Ye H, Bao X, Huang Q, Tu Z, Chen P, Zhao X, Pérez-González D, Malmierca MS, Yu X. Neural correlates of novelty detection in the primary auditory cortex of behaving monkeys. Cell Rep 2024; 43:113864. [PMID: 38421870 DOI: 10.1016/j.celrep.2024.113864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/11/2024] [Accepted: 02/08/2024] [Indexed: 03/02/2024] Open
Abstract
The neural mechanisms underlying novelty detection are not well understood, especially in relation to behavior. Here, we present single-unit responses from the primary auditory cortex (A1) from two monkeys trained to detect deviant tones amid repetitive ones. Results show that monkeys can detect deviant sounds, and there is a strong correlation between late neuronal responses (250-350 ms after deviant onset) and the monkeys' perceptual decisions. The magnitude and timing of both neuronal and behavioral responses are increased by larger frequency differences between the deviant and standard tones and by increasing the number of standard tones preceding the deviant. This suggests that A1 neurons encode novelty detection in behaving monkeys, influenced by stimulus relevance and expectations. This study provides evidence supporting aspects of predictive coding in the sensory cortex.
Collapse
Affiliation(s)
- Yumei Gong
- Department of Anesthesiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, Shanghai, China; Department of Anesthesia, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Hangzhou Extremely Weak Magnetic Field Major Science and Technology, Infrastructure Research Institute, Hangzhou 310000, China; Interdisciplinary Institute of Neuroscience and Technology, College of Biomedical, Engineering, and Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Peirun Song
- Department of Anesthesia, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xinyu Du
- Department of Anesthesia, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yuying Zhai
- Department of Anesthesia, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Haoxuan Xu
- Interdisciplinary Institute of Neuroscience and Technology, College of Biomedical, Engineering, and Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hangting Ye
- Department of Anesthesia, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xuehui Bao
- Interdisciplinary Institute of Neuroscience and Technology, College of Biomedical, Engineering, and Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Qianyue Huang
- Interdisciplinary Institute of Neuroscience and Technology, College of Biomedical, Engineering, and Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhiyi Tu
- Department of Anesthesiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, Shanghai, China
| | - Pei Chen
- Department of Anesthesiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, Shanghai, China
| | - Xuan Zhao
- Department of Anesthesiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, Shanghai, China
| | - David Pérez-González
- Cognitive and Auditory Neuroscience Laboratory (Lab 1), Institute of Neuroscience of Castilla y León (INCYL), University of Salamanca, Salamanca, Spain; Institute for Biomedical Research of Salamanca (IBSAL), Salamanca, Spain; Department of Basic Psychology, Psychobiology, and Methodology of Behavioral Sciences, Faculty of Psychology, University of Salamanca, Salamanca, Spain
| | - Manuel S Malmierca
- Cognitive and Auditory Neuroscience Laboratory (Lab 1), Institute of Neuroscience of Castilla y León (INCYL), University of Salamanca, Salamanca, Spain; Institute for Biomedical Research of Salamanca (IBSAL), Salamanca, Spain; Department of Cell Biology and Pathology, Faculty of Medicine, University of Salamanca, Salamanca, Spain.
| | - Xiongjie Yu
- Department of Anesthesiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, Shanghai, China; Department of Anesthesia, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
2
|
Wang J, Rao X, Huang S, Wang Z, Niu X, Zhu M, Wang S, Shi L. Detection of a temporal salient object benefits from visual stimulus-specific adaptation in avian midbrain inhibitory nucleus. Integr Zool 2024; 19:288-306. [PMID: 36893724 DOI: 10.1111/1749-4877.12715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Food and predators are the most noteworthy objects for the basic survival of wild animals, and both are often deviant in both spatial and temporal domains and quickly attract an animal's attention. Although stimulus-specific adaptation (SSA) is considered a potential neural basis of salient sound detection in the temporal domain, related research on visual SSA is limited and its relationship with temporal saliency is uncertain. The avian nucleus isthmi pars magnocellularis (Imc), which is central to midbrain selective attention network, is an ideal site to investigate the neural correlate of visual SSA and detection of a salient object in the time domain. Here, the constant order paradigm was applied to explore the visual SSA in the Imc of pigeons. The results showed that the firing rates of Imc neurons gradually decrease with repetitions of motion in the same direction, but recover when a motion in a deviant direction is presented, implying visual SSA to the direction of a moving object. Furthermore, enhanced response for an object moving in other directions that were not presented ever in the paradigm is also observed. To verify the neural mechanism underlying these phenomena, we introduced a neural computation model involving a recoverable synaptic change with a "center-surround" pattern to reproduce the visual SSA and temporal saliency for the moving object. These results suggest that the Imc produces visual SSA to motion direction, allowing temporal salient object detection, which may facilitate the detection of the sudden appearance of a predator.
Collapse
Affiliation(s)
- Jiangtao Wang
- Department of Automation, Zhengzhou University School of Electrical Engineering, Zhengzhou, China
| | - Xiaoping Rao
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China
| | - Shuman Huang
- Department of Automation, Zhengzhou University School of Electrical Engineering, Zhengzhou, China
| | - Zhizhong Wang
- Department of Automation, Zhengzhou University School of Electrical Engineering, Zhengzhou, China
| | - Xiaoke Niu
- Department of Automation, Zhengzhou University School of Electrical Engineering, Zhengzhou, China
| | - Minjie Zhu
- Department of Automation, Zhengzhou University School of Electrical Engineering, Zhengzhou, China
| | - Songwei Wang
- Department of Automation, Zhengzhou University School of Electrical Engineering, Zhengzhou, China
| | - Li Shi
- Department of Automation, Zhengzhou University School of Electrical Engineering, Zhengzhou, China
- Department of Automation, Tsinghua University, Beijing, China
| |
Collapse
|
3
|
Quintela-Vega L, Morado-Díaz CJ, Terreros G, Sánchez JS, Pérez-González D, Malmierca MS. Novelty detection in an auditory oddball task on freely moving rats. Commun Biol 2023; 6:1063. [PMID: 37857812 PMCID: PMC10587131 DOI: 10.1038/s42003-023-05403-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/02/2023] [Indexed: 10/21/2023] Open
Abstract
The relative importance or saliency of sensory inputs depend on the animal's environmental context and the behavioural responses to these same inputs can vary over time. Here we show how freely moving rats, trained to discriminate between deviant tones embedded in a regular pattern of repeating stimuli and different variations of the classic oddball paradigm, can detect deviant tones, and this discriminability resembles the properties that are typical of neuronal adaptation described in previous studies. Moreover, the auditory brainstem response (ABR) latency decreases after training, a finding consistent with the notion that animals develop a type of plasticity to auditory stimuli. Our study suggests the existence of a form of long-term memory that may modulate the level of neuronal adaptation according to its behavioural relevance, and sets the ground for future experiments that will help to disentangle the functional mechanisms that govern behavioural habituation and its relation to neuronal adaptation.
Collapse
Affiliation(s)
- Laura Quintela-Vega
- Cognitive and Auditory Neuroscience Laboratory, Institute of Neuroscience of Castilla y León, Calle Pintor Fernando Gallego 1, 37007, Salamanca, Spain
- The Salamanca Institute for Biomedical Research (IBSAL), 37007, Salamanca, Spain
| | - Camilo J Morado-Díaz
- Cognitive and Auditory Neuroscience Laboratory, Institute of Neuroscience of Castilla y León, Calle Pintor Fernando Gallego 1, 37007, Salamanca, Spain
- The Salamanca Institute for Biomedical Research (IBSAL), 37007, Salamanca, Spain
| | - Gonzalo Terreros
- Cognitive and Auditory Neuroscience Laboratory, Institute of Neuroscience of Castilla y León, Calle Pintor Fernando Gallego 1, 37007, Salamanca, Spain
- Instituto de Ciencias de la Salud. Universidad de O´Higgins, Rancagua, Chile
| | - Jazmín S Sánchez
- Cognitive and Auditory Neuroscience Laboratory, Institute of Neuroscience of Castilla y León, Calle Pintor Fernando Gallego 1, 37007, Salamanca, Spain
- The Salamanca Institute for Biomedical Research (IBSAL), 37007, Salamanca, Spain
- Department of Biology and Pathology, Faculty of Medicine, Campus Miguel de Unamuno, University of Salamanca, 37007, Salamanca, Spain
| | - David Pérez-González
- Cognitive and Auditory Neuroscience Laboratory, Institute of Neuroscience of Castilla y León, Calle Pintor Fernando Gallego 1, 37007, Salamanca, Spain
- The Salamanca Institute for Biomedical Research (IBSAL), 37007, Salamanca, Spain
- Department of Basic Psychology, Psychobiology and Methodology of Behavioural Sciences. Faculty of Psychology, University of Salamanca, 37005, Salamanca, Spain
| | - Manuel S Malmierca
- Cognitive and Auditory Neuroscience Laboratory, Institute of Neuroscience of Castilla y León, Calle Pintor Fernando Gallego 1, 37007, Salamanca, Spain.
- The Salamanca Institute for Biomedical Research (IBSAL), 37007, Salamanca, Spain.
- Department of Biology and Pathology, Faculty of Medicine, Campus Miguel de Unamuno, University of Salamanca, 37007, Salamanca, Spain.
| |
Collapse
|
4
|
Lev-Ari T, Beeri H, Gutfreund Y. The Ecological View of Selective Attention. Front Integr Neurosci 2022; 16:856207. [PMID: 35391754 PMCID: PMC8979825 DOI: 10.3389/fnint.2022.856207] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 02/24/2022] [Indexed: 11/16/2022] Open
Abstract
Accumulating evidence is supporting the hypothesis that our selective attention is a manifestation of mechanisms that evolved early in evolution and are shared by many organisms from different taxa. This surge of new data calls for the re-examination of our notions about attention, which have been dominated mostly by human psychology. Here, we present an hypothesis that challenges, based on evolutionary grounds, a common view of attention as a means to manage limited brain resources. We begin by arguing that evolutionary considerations do not favor the basic proposition of the limited brain resources view of attention, namely, that the capacity of the sensory organs to provide information exceeds the capacity of the brain to process this information. Moreover, physiological studies in animals and humans show that mechanisms of selective attention are highly demanding of brain resources, making it paradoxical to see attention as a means to release brain resources. Next, we build on the above arguments to address the question why attention evolved in evolution. We hypothesize that, to a certain extent, limiting sensory processing is adaptive irrespective of brain capacity. We call this hypothesis the ecological view of attention (EVA) because it is centered on interactions of an animal with its environment rather than on internal brain resources. In its essence is the notion that inherently noisy and degraded sensory inputs serve the animal's adaptive, dynamic interactions with its environment. Attention primarily functions to resolve behavioral conflicts and false distractions. Hence, we evolved to focus on a particular target at the expense of others, not because of internal limitations, but to ensure that behavior is properly oriented and committed to its goals. Here, we expand on this notion and review evidence supporting it. We show how common results in human psychophysics and physiology can be reconciled with an EVA and discuss possible implications of the notion for interpreting current results and guiding future research.
Collapse
Affiliation(s)
| | | | - Yoram Gutfreund
- The Ruth and Bruce Rappaport Faculty of Medicine and Research Institute, The Technion, Haifa, Israel
| |
Collapse
|
5
|
Cross-Modal Interaction and Integration Through Stimulus-Specific Adaptation in the Thalamic Reticular Nucleus of Rats. Neurosci Bull 2022; 38:785-795. [PMID: 35212974 DOI: 10.1007/s12264-022-00827-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 11/11/2021] [Indexed: 10/19/2022] Open
Abstract
Stimulus-specific adaptation (SSA), defined as a decrease in responses to a common stimulus that only partially generalizes to other rare stimuli, is a widespread phenomenon in the brain that is believed to be related to novelty detection. Although cross-modal sensory processing is also a widespread phenomenon, the interaction between the two phenomena is not well understood. In this study, the thalamic reticular nucleus (TRN), which is regarded as a hub of the attentional system that contains multi-modal neurons, was investigated. The results showed that SSA existed in an interactive oddball stimulation, which mimics stimulation changes from one modality to another. In the bimodal integration, SSA to bimodal stimulation was stronger than to visual stimulation alone but similar to auditory stimulation alone, which indicated a limited integrative effect. Collectively, the present results provide evidence for independent cross-modal processing in bimodal TRN neurons.
Collapse
|
6
|
Tafreshiha A, van der Burg SA, Smits K, Blömer LA, Heimel JA. Visual stimulus-specific habituation of innate defensive behaviour in mice. J Exp Biol 2021; 224:jeb.230433. [PMID: 33568444 DOI: 10.1242/jeb.230433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 01/30/2021] [Indexed: 11/20/2022]
Abstract
Innate defensive responses such as freezing or escape are essential for animal survival. Mice show defensive behaviour to stimuli sweeping overhead, like a bird cruising the sky. Here, we tested this in young male mice and found that mice reduced their defensive freezing after sessions with a stimulus passing overhead repeatedly. This habituation is stimulus specific, as mice freeze again to a novel shape. Habituation occurs regardless of the visual field location of the repeated stimulus. The mice generalized over a range of sizes and shapes, but distinguished objects when they differed in both size and shape. Innate visual defensive responses are thus strongly influenced by previous experience as mice learn to ignore specific stimuli.
Collapse
Affiliation(s)
- Azadeh Tafreshiha
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, 1105 BA Amsterdam, The Netherlands
| | - Sven A van der Burg
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, 1105 BA Amsterdam, The Netherlands
| | - Kato Smits
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, 1105 BA Amsterdam, The Netherlands
| | - Laila A Blömer
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, 1105 BA Amsterdam, The Netherlands
| | - J Alexander Heimel
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, 1105 BA Amsterdam, The Netherlands
| |
Collapse
|
7
|
Yaron A, Jankowski MM, Badrieh R, Nelken I. Stimulus-specific adaptation to behaviorally-relevant sounds in awake rats. PLoS One 2020; 15:e0221541. [PMID: 32210448 PMCID: PMC7094827 DOI: 10.1371/journal.pone.0221541] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 02/02/2020] [Indexed: 11/30/2022] Open
Abstract
Stimulus-specific adaptation (SSA) is the reduction in responses to a common stimulus that does not generalize, or only partially generalizes, to other stimuli. SSA has been studied mainly with sounds that bear no behavioral meaning. We hypothesized that the acquisition of behavioral meaning by a sound should modify the amount of SSA evoked by that sound. To test this hypothesis, we used fear conditioning in rats, using two word-like stimuli, derived from the English words "danger" and "safety", as well as pure tones. One stimulus (CS+) was associated with a foot shock whereas the other stimulus (CS-) was presented without a concomitant foot shock. We recorded neural responses to the auditory stimuli telemetrically, using chronically implanted multi-electrode arrays in freely moving animals before and after conditioning. Consistent with our hypothesis, SSA changed in a way that depended on the behavioral role of the sound: the contrast between standard and deviant responses remained the same or decreased for CS+ stimuli but increased for CS- stimuli, showing that SSA is shaped by experience. In most cases the sensory responses underlying these changes in SSA increased following conditioning. Unexpectedly, the responses to CS+ word-like stimuli showed a specific, large decrease, which we interpret as evidence for substantial inhibitory plasticity.
Collapse
Affiliation(s)
- Amit Yaron
- Department of Neurobiology, Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
- The Edmond and Lily Safra Center for Brain Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Maciej M. Jankowski
- The Edmond and Lily Safra Center for Brain Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ruan Badrieh
- Department of Neurobiology, Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Israel Nelken
- Department of Neurobiology, Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
- The Edmond and Lily Safra Center for Brain Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
8
|
Shen G, Meltzoff AN, Marshall PJ. Body representations as indexed by oscillatory EEG activities in the context of tactile novelty processing. Neuropsychologia 2019; 132:107144. [PMID: 31319120 DOI: 10.1016/j.neuropsychologia.2019.107144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 05/07/2019] [Accepted: 07/12/2019] [Indexed: 11/16/2022]
Abstract
Neural oscillatory activities in different frequency bands are known to reflect different cognitive functions. The current study investigates neural oscillations involved in tactile novelty processing, in particular how physically different digits of the hand may be categorized as being more or less similar to one another. Time-frequency analyses were conducted on EEG responses recorded from a somatosensory mismatch protocol involving stimulation of the 1st, 3rd, and 5th digits. The pattern of tactile stimulation leveraged a functional category boundary between the 1st digit (thumb) and the other fingers. This functional category has been hypothesized to derive, in part, from the way that the hand is used to grasp and haptically explore objects. EEG responses to standard stimuli (the 3rd digit, probability of 80%) and two deviant stimuli (1st digit as across-boundary deviant and 5th digit as within-boundary deviant, probability of 10% each) were examined. Analyses of EEG responses examined changes in power as well as phase information. Deviant tactile stimuli evoked significantly greater theta event-related synchronization and greater phase-locking values compared to the corresponding control stimuli. The increase in theta power evoked by the contrast of the 3rd digit and the 1st digit was significantly larger than for the contrast between the 3rd and 5th digits. Desynchronization in the alpha and beta bands was greater for deviant than control stimuli, which may reflect increased local cortical excitation to novel stimuli, modulated by top-down feedback processes as part of a hierarchical novelty detection mechanism. The results are discussed in the context of the growing literature on neural processes involved in the generation and maintenance of body representations.
Collapse
Affiliation(s)
- Guannan Shen
- Department of Psychology, Temple University, 1701 N. 13th Street, Philadelphia, PA, 19122, USA.
| | - Andrew N Meltzoff
- Institute for Learning & Brain Sciences, University of Washington, USA
| | - Peter J Marshall
- Department of Psychology, Temple University, 1701 N. 13th Street, Philadelphia, PA, 19122, USA
| |
Collapse
|
9
|
McColgan T, Kuokkanen PT, Carr CE, Kempter R. Dynamics of synaptic extracellular field potentials in the nucleus laminaris of the barn owl. J Neurophysiol 2019; 121:1034-1047. [PMID: 30575430 DOI: 10.1152/jn.00648.2017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Synaptic currents are frequently assumed to make a major contribution to the extracellular field potential (EFP). However, in any neuronal population, the explicit separation of synaptic sources from other contributions such as postsynaptic spikes remains a challenge. Here we take advantage of the simple organization of the barn owl nucleus laminaris (NL) in the auditory brain stem to isolate synaptic currents through the iontophoretic application of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-receptor antagonist 1,2,3,4-tetrahydro-6-nitro-2,3-dioxo-benzo[ f]quinoxaline-7-sulfonamide (NBQX). Responses to auditory stimulation show that the temporal dynamics of the evoked synaptic contributions to the EFP are consistent with synaptic short-term depression (STD). The estimated time constants of an STD model fitted to the data are similar to the fast time constants reported from in vitro experiments in the chick. Overall, the putative synaptic EFPs in the barn owl NL are significant but small (<1% change of the variance by NBQX). This result supports the hypothesis that the EFP in NL is generated mainly by axonal spikes, in contrast to most other neuronal systems. NEW & NOTEWORTHY Synaptic currents are assumed to make a major contribution to the extracellular field potential in the brain, but it is hard to directly isolate these synaptic components. Here we take advantage of the simple organization of the barn owl nucleus laminaris in the auditory brain stem to isolate synaptic currents through the iontophoretic application of a synaptic blocker. We show that the responses are consistent with a simple model of short-term synaptic depression.
Collapse
Affiliation(s)
- Thomas McColgan
- Bernstein Center for Computational Neuroscience , Berlin , Germany.,Institute for Theoretical Biology, Department of Biology, Humboldt-Universität zu Berlin, Berlin , Germany
| | - Paula T Kuokkanen
- Bernstein Center for Computational Neuroscience , Berlin , Germany.,Institute for Theoretical Biology, Department of Biology, Humboldt-Universität zu Berlin, Berlin , Germany.,Department of Biology, University of Maryland , College Park, Maryland
| | - Catherine E Carr
- Department of Biology, University of Maryland , College Park, Maryland
| | - Richard Kempter
- Bernstein Center for Computational Neuroscience , Berlin , Germany.,Institute for Theoretical Biology, Department of Biology, Humboldt-Universität zu Berlin, Berlin , Germany.,Einstein Center for Neurosciences , Berlin , Germany
| |
Collapse
|
10
|
Behavioral Evidence and Neural Correlates of Perceptual Grouping by Motion in the Barn Owl. J Neurosci 2018; 38:6653-6664. [PMID: 29967005 DOI: 10.1523/jneurosci.0174-18.2018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 06/07/2018] [Accepted: 06/11/2018] [Indexed: 11/21/2022] Open
Abstract
Perceiving an object as salient from its surround often requires a preceding process of grouping the object and background elements as perceptual wholes. In humans, motion homogeneity provides a strong cue for grouping, yet it is unknown to what extent this occurs in nonprimate species. To explore this question, we studied the effects of visual motion homogeneity in barn owls of both genders, at the behavioral as well as the neural level. Our data show that the coherency of the background motion modulates the perceived saliency of the target object. An object moving in an odd direction relative to other objects attracted more attention when the other objects moved homogeneously compared with when moved in a variety of directions. A possible neural correlate of this effect may arise in the population activity of the intermediate/deep layers of the optic tectum. In these layers, the neural responses to a moving element in the receptive field were suppressed when additional elements moved in the surround. However, when the surrounding elements all moved in one direction (homogeneously moving), they induced less suppression of the response compared with nonhomogeneously moving elements. Moreover, neural responses were more sensitive to the homogeneity of the background motion than to motion-direction contrasts between the receptive field and the surround. The findings suggest similar principles of saliency-by-motion in an avian species as in humans and show a locus in the optic tectum where the underlying neural circuitry may exist.SIGNIFICANCE STATEMENT A critical task of the visual system is to arrange incoming visual information to a meaningful scene of objects and background. In humans, elements that move homogeneously are grouped perceptually to form a categorical whole object. We discovered a similar principle in the barn owl's visual system, whereby the homogeneity of the motion of elements in the scene allows perceptually distinguishing an object from its surround. The novel findings of these visual effects in an avian species, which lacks neocortical structure, suggest that our basic visual perception shares more universal principles across species than presently thought, and shed light on possible brain mechanisms for perceptual grouping.
Collapse
|
11
|
Musall S, Haiss F, Weber B, von der Behrens W. Deviant Processing in the Primary Somatosensory Cortex. Cereb Cortex 2018; 27:863-876. [PMID: 26628563 DOI: 10.1093/cercor/bhv283] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Stimulus-specific adaptation (SSA) to repetitive stimulation has been proposed to separate behaviorally relevant features from a stream of continuous sensory information. However, the exact mechanisms giving rise to SSA and cortical deviance detection are not well understood. We therefore used an oddball paradigm and multicontact electrodes to characterize single-neuron and local field potential responses to various deviant stimuli across the rat somatosensory cortex. Changing different single-whisker stimulus features evoked robust SSA in individual cortical neurons over a wide range of stimulus repetition rates (0.25-80 Hz). Notably, SSA was weakest in the granular input layer and significantly stronger in the supra- and infragranular layers, suggesting that a major part of SSA is generated within cortex. Moreover, we found a small subset of neurons in the granular layer with a deviant-specific late response, occurring roughly 200 ms after stimulus offset. This late deviant response exhibited true-deviance detection properties that were not explained by depression of sensory inputs. Our results show that deviant responses are actively amplified within cortex and contain an additional late component that is sensitive for context-specific sensory deviations. This strongly implicates deviance detection as a feature of intracortical stimulus processing beyond simple sensory input depression.
Collapse
Affiliation(s)
- Simon Musall
- Brain Research Institute.,Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland.,Neuroscience Center Zurich
| | - Florent Haiss
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland.,Institute of Neuropathology.,Department of Ophthalmology, RWTH Aachen University, Aachen, Germany
| | - Bruno Weber
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland.,Neuroscience Center Zurich
| | - Wolfger von der Behrens
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland.,Institute of Neuroinformatics, University of Zurich and ETH Zurich, Zurich, Switzerland
| |
Collapse
|
12
|
Interactions between top-down and bottom-up attention in barn owls (Tyto alba). Anim Cogn 2017; 21:197-205. [PMID: 29214438 DOI: 10.1007/s10071-017-1150-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 11/26/2017] [Accepted: 12/02/2017] [Indexed: 10/18/2022]
Abstract
Selective attention, the prioritization of behaviorally relevant stimuli for behavioral control, is commonly divided into two processes: bottom-up, stimulus-driven selection and top-down, task-driven selection. Here, we tested two barn owls in a visual search task that examines attentional capture of the top-down task by bottom-up mechanisms. We trained barn owls to search for a vertical Gabor patch embedded in a circular array of differently oriented Gabor distractors (top-down guided search). To track the point of gaze, a lightweight wireless video camera was mounted on the owl's head. Three experiments were conducted in which the owls were tested in the following conditions: (1) five distractors; (2) nine distractors; (3) five distractors with one distractor surrounded by a red circle; or (4) five distractors with a brief sound at the initiation of the stimulus. Search times and number of head saccades to reach the target were measured and compared between the different conditions. It was found that search time and number of saccades to the target increased when the number of distractors was larger (condition 2) and when an additional irrelevant salient stimulus, auditory or visual, was added to the scene (conditions 3 and 4). These results demonstrate that in barn owls, bottom-up attention interacts with top-down attention to shape behavior in ways similar to human attentional capture. The findings suggest similar attentional principles in taxa that have been evolutionarily separated for 300 million years.
Collapse
|
13
|
Connectional Modularity of Top-Down and Bottom-Up Multimodal Inputs to the Lateral Cortex of the Mouse Inferior Colliculus. J Neurosci 2017; 36:11037-11050. [PMID: 27798184 DOI: 10.1523/jneurosci.4134-15.2016] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 09/04/2016] [Indexed: 12/14/2022] Open
Abstract
The lateral cortex of the inferior colliculus receives information from both auditory and somatosensory structures and is thought to play a role in multisensory integration. Previous studies in the rat have shown that this nucleus contains a series of distinct anatomical modules that stain for GAD-67 as well as other neurochemical markers. In the present study, we sought to better characterize these modules in the mouse inferior colliculus and determine whether the connectivity of other neural structures with the lateral cortex is spatially related to the distribution of these neurochemical modules. Staining for GAD-67 and other markers revealed a single modular network throughout the rostrocaudal extent of the mouse lateral cortex. Somatosensory inputs from the somatosensory cortex and dorsal column nuclei were found to terminate almost exclusively within these modular zones. However, projections from the auditory cortex and central nucleus of the inferior colliculus formed patches that interdigitate with the GAD-67-positive modules. These results suggest that the lateral cortex of the mouse inferior colliculus exhibits connectional as well as neurochemical modularity and may contain multiple segregated processing streams. This finding is discussed in the context of other brain structures in which neuroanatomical and connectional modularity have functional consequences. SIGNIFICANCE STATEMENT Many brain regions contain subnuclear microarchitectures, such as the matrix-striosome organization of the basal ganglia or the patch-interpatch organization of the visual cortex, that shed light on circuit complexities. In the present study, we demonstrate the presence of one such micro-organization in the rodent inferior colliculus. While this structure is typically viewed as an auditory integration center, its lateral cortex appears to be involved in multisensory operations and receives input from somatosensory brain regions. We show here that the lateral cortex can be further subdivided into multiple processing streams: modular regions, which are targeted by somatosensory inputs, and extramodular zones that receive auditory information.
Collapse
|
14
|
Bockhorst T, Homberg U. Interaction of compass sensing and object-motion detection in the locust central complex. J Neurophysiol 2017; 118:496-506. [PMID: 28404828 DOI: 10.1152/jn.00927.2016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 02/21/2017] [Accepted: 03/11/2017] [Indexed: 01/08/2023] Open
Abstract
Goal-directed behavior is often complicated by unpredictable events, such as the appearance of a predator during directed locomotion. This situation requires adaptive responses like evasive maneuvers followed by subsequent reorientation and course correction. Here we study the possible neural underpinnings of such a situation in an insect, the desert locust. As in other insects, its sense of spatial orientation strongly relies on the central complex, a group of midline brain neuropils. The central complex houses sky compass cells that signal the polarization plane of skylight and thus indicate the animal's steering direction relative to the sun. Most of these cells additionally respond to small moving objects that drive fast sensory-motor circuits for escape. Here we investigate how the presentation of a moving object influences activity of the neurons during compass signaling. Cells responded in one of two ways: in some neurons, responses to the moving object were simply added to the compass response that had adapted during continuous stimulation by stationary polarized light. By contrast, other neurons disadapted, i.e., regained their full compass response to polarized light, when a moving object was presented. We propose that the latter case could help to prepare for reorientation of the animal after escape. A neuronal network based on central-complex architecture can explain both responses by slight changes in the dynamics and amplitudes of adaptation to polarized light in CL columnar input neurons of the system.NEW & NOTEWORTHY Neurons of the central complex in several insects signal compass directions through sensitivity to the sky polarization pattern. In locusts, these neurons also respond to moving objects. We show here that during polarized-light presentation, responses to moving objects override their compass signaling or restore adapted inhibitory as well as excitatory compass responses. A network model is presented to explain the variations of these responses that likely serve to redirect flight or walking following evasive maneuvers.
Collapse
Affiliation(s)
- Tobias Bockhorst
- Animal Physiology, Department of Biology, Philipps University, Marburg, Germany
| | - Uwe Homberg
- Animal Physiology, Department of Biology, Philipps University, Marburg, Germany
| |
Collapse
|
15
|
Wasmuht DF, Pena JL, Gutfreund Y. Stimulus-specific adaptation to visual but not auditory motion direction in the barn owl's optic tectum. Eur J Neurosci 2016; 45:610-621. [PMID: 27987375 DOI: 10.1111/ejn.13505] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 12/11/2016] [Accepted: 12/12/2016] [Indexed: 12/01/2022]
Abstract
Whether the auditory and visual systems use a similar coding strategy to represent motion direction is an open question. We investigated this question in the barn owl's optic tectum (OT) testing stimulus-specific adaptation (SSA) to the direction of motion. SSA, the reduction of the response to a repetitive stimulus that does not generalize to other stimuli, has been well established in OT neurons. SSA suggests a separate representation of the adapted stimulus in upstream pathways. So far, only SSA to static stimuli has been studied in the OT. Here, we examined adaptation to moving auditory and visual stimuli. SSA to motion direction was examined using repeated presentations of moving stimuli, occasionally switching motion to the opposite direction. Acoustic motion was either mimicked by varying binaural spatial cues or implemented in free field using a speaker array. While OT neurons displayed SSA to motion direction in visual space, neither stimulation paradigms elicited significant SSA to auditory motion direction. These findings show a qualitative difference in how auditory and visual motion is processed in the OT and support the existence of dedicated circuitry for representing motion direction in the early stages of visual but not the auditory system.
Collapse
Affiliation(s)
- Dante F Wasmuht
- Department of Neuroscience, The Ruth and Bruce Rappaport Faculty of Medicine and Research Institute, The Technion, Bat-Galim, Haifa, 31096, Israel
| | - Jose L Pena
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Yoram Gutfreund
- Department of Neuroscience, The Ruth and Bruce Rappaport Faculty of Medicine and Research Institute, The Technion, Bat-Galim, Haifa, 31096, Israel
| |
Collapse
|
16
|
Herrmann B, Henry MJ, Johnsrude IS, Obleser J. Altered temporal dynamics of neural adaptation in the aging human auditory cortex. Neurobiol Aging 2016; 45:10-22. [DOI: 10.1016/j.neurobiolaging.2016.05.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 04/11/2016] [Accepted: 05/07/2016] [Indexed: 12/19/2022]
|
17
|
Niederleitner B, Gutierrez-Ibanez C, Krabichler Q, Weigel S, Luksch H. A novel relay nucleus between the inferior colliculus and the optic tectum in the chicken (Gallus gallus). J Comp Neurol 2016; 525:513-534. [PMID: 27434677 DOI: 10.1002/cne.24082] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 07/13/2016] [Accepted: 07/17/2016] [Indexed: 11/08/2022]
Abstract
Processing multimodal sensory information is vital for behaving animals in many contexts. The barn owl, an auditory specialist, is a classic model for studying multisensory integration. In the barn owl, spatial auditory information is conveyed to the optic tectum (TeO) by a direct projection from the external nucleus of the inferior colliculus (ICX). In contrast, evidence of an integration of visual and auditory information in auditory generalist avian species is completely lacking. In particular, it is not known whether in auditory generalist species the ICX projects to the TeO at all. Here we use various retrograde and anterograde tracing techniques both in vivo and in vitro, intracellular fillings of neurons in vitro, and whole-cell patch recordings to characterize the connectivity between ICX and TeO in the chicken. We found that there is a direct projection from ICX to the TeO in the chicken, although this is small and only to the deeper layers (layers 13-15) of the TeO. However, we found a relay area interposed among the IC, the TeO, and the isthmic complex that receives strong synaptic input from the ICX and projects broadly upon the intermediate and deep layers of the TeO. This area is an external portion of the formatio reticularis lateralis (FRLx). In addition to the projection to the TeO, cells in FRLx send, via collaterals, descending projections through tectopontine-tectoreticular pathways. This newly described connection from the inferior colliculus to the TeO provides a solid basis for visual-auditory integration in an auditory generalist bird. J. Comp. Neurol. 525:513-534, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Bertram Niederleitner
- Lehrstuhl für Zoologie, Technische Universität München, 85354, Freising-Weihenstephan, Germany
| | | | - Quirin Krabichler
- Lehrstuhl für Zoologie, Technische Universität München, 85354, Freising-Weihenstephan, Germany
| | - Stefan Weigel
- Lehrstuhl für Zoologie, Technische Universität München, 85354, Freising-Weihenstephan, Germany
| | - Harald Luksch
- Lehrstuhl für Zoologie, Technische Universität München, 85354, Freising-Weihenstephan, Germany
| |
Collapse
|
18
|
Kleinschmidt DF, Jaeger TF. Re-examining selective adaptation: Fatiguing feature detectors, or distributional learning? Psychon Bull Rev 2016; 23:678-91. [PMID: 26438255 PMCID: PMC4821823 DOI: 10.3758/s13423-015-0943-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
When a listener hears many good examples of a /b/ in a row, they are less likely to classify other sounds on, e.g., a /b/-to-/d/ continuum as /b/. This phenomenon is known as selective adaptation and is a well-studied property of speech perception. Traditionally, selective adaptation is seen as a mechanistic property of the speech perception system, and attributed to fatigue in acoustic-phonetic feature detectors. However, recent developments in our understanding of non-linguistic sensory adaptation and higher-level adaptive plasticity in speech perception and language comprehension suggest that it is time to re-visit the phenomenon of selective adaptation. We argue that selective adaptation is better thought of as a computational property of the speech perception system. Drawing on a common thread in recent work on both non-linguistic sensory adaptation and plasticity in language comprehension, we furthermore propose that selective adaptation can be seen as a consequence of distributional learning across multiple levels of representation. This proposal opens up new questions for research on selective adaptation itself, and also suggests that selective adaptation can be an important bridge between work on adaptation in low-level sensory systems and the complicated plasticity of the adult language comprehension system.
Collapse
Affiliation(s)
- Dave F Kleinschmidt
- Department of Brain and Cognitive Sciences, University of Rochester, Rochester, NY, USA.
| | - T Florian Jaeger
- Departments of Brain and Cognitive Sciences, Computer Science, and Linguistics, University of Rochester, Rochester, NY, USA
| |
Collapse
|
19
|
Duque D, Wang X, Nieto-Diego J, Krumbholz K, Malmierca MS. Neurons in the inferior colliculus of the rat show stimulus-specific adaptation for frequency, but not for intensity. Sci Rep 2016; 6:24114. [PMID: 27066835 PMCID: PMC4828641 DOI: 10.1038/srep24114] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 03/21/2016] [Indexed: 11/09/2022] Open
Abstract
Electrophysiological and psychophysical responses to a low-intensity probe sound tend to be suppressed by a preceding high-intensity adaptor sound. Nevertheless, rare low-intensity deviant sounds presented among frequent high-intensity standard sounds in an intensity oddball paradigm can elicit an electroencephalographic mismatch negativity (MMN) response. This has been taken to suggest that the MMN is a correlate of true change or “deviance” detection. A key question is where in the ascending auditory pathway true deviance sensitivity first emerges. Here, we addressed this question by measuring low-intensity deviant responses from single units in the inferior colliculus (IC) of anesthetized rats. If the IC exhibits true deviance sensitivity to intensity, IC neurons should show enhanced responses to low-intensity deviant sounds presented among high-intensity standards. Contrary to this prediction, deviant responses were only enhanced when the standards and deviants differed in frequency. The results could be explained with a model assuming that IC neurons integrate over multiple frequency-tuned channels and that adaptation occurs within each channel independently. We used an adaptation paradigm with multiple repeated adaptors to measure the tuning widths of these adaption channels in relation to the neurons’ overall tuning widths.
Collapse
Affiliation(s)
- Daniel Duque
- Auditory Neuroscience Laboratory, Institute of Neuroscience of Castilla y León (INCYL), University of Salamanca, Salamanca 37007, Spain
| | - Xin Wang
- Auditory Neuroscience Laboratory, Institute of Neuroscience of Castilla y León (INCYL), University of Salamanca, Salamanca 37007, Spain
| | - Javier Nieto-Diego
- Auditory Neuroscience Laboratory, Institute of Neuroscience of Castilla y León (INCYL), University of Salamanca, Salamanca 37007, Spain
| | - Katrin Krumbholz
- MRC Institute of Hearing Research, University Park, Nottingham, NG7 2RD, UK
| | - Manuel S Malmierca
- Auditory Neuroscience Laboratory, Institute of Neuroscience of Castilla y León (INCYL), University of Salamanca, Salamanca 37007, Spain.,Department of Cell Biology and Pathology, Faculty of Medicine, University of Salamanca, Campus Miguel de Unamuno, 37007, Salamanca, Spain.,Salamanca Institute for Biomedical Research (IBSAL), Salamanca, Spain
| |
Collapse
|
20
|
Early indices of deviance detection in humans and animal models. Biol Psychol 2016; 116:23-7. [DOI: 10.1016/j.biopsycho.2015.11.017] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 11/30/2015] [Accepted: 11/30/2015] [Indexed: 11/23/2022]
|
21
|
Compass Cells in the Brain of an Insect Are Sensitive to Novel Events in the Visual World. PLoS One 2015; 10:e0144501. [PMID: 26636334 PMCID: PMC4670205 DOI: 10.1371/journal.pone.0144501] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 11/19/2015] [Indexed: 11/29/2022] Open
Abstract
The central complex of the insect brain comprises a group of neuropils involved in spatial orientation and memory. In fruit flies it mediates place learning based on visual landmarks and houses neurons that encode the orientation for goal-directed locomotion, based on landmarks and self-motion cues for angular path-integration. In desert locusts, the central complex holds a compass-like representation of head directions, based on the polarization pattern of skylight. Through intracellular recordings from immobilized locusts, we investigated whether sky compass neurons of the central complex also represent the position or any salient feature of possible landmarks, in analogy to the observations in flies. Neurons showed strongest responses to the novel appearance of a small moving square, but we found no evidence for a topographic representation of object positions. Responses to an individual square were independent of direction of motion and trajectory, but showed rapid adaptation to successive stimulation, unaffected by changing the direction of motion. Responses reappeared, however, if the moving object changed its trajectory or if it suddenly reversed moving direction against the movement of similar objects that make up a coherent background-flow as induced by ego-motion. Response amplitudes co-varied with the precedent state of dynamic background activity, a phenomenon that has been related to attention-dependent saliency coding in neurons of the mammalian primary visual cortex. The data show that neurons of the central complex of the locust brain are visually bimodal, signaling sky compass direction and the novelty character of moving objects. These response properties might serve to attune compass-aided locomotor control to unexpected events in the environment. The difference to data obtained in fruit flies might relate to differences in the lifestyle of landmark learners (fly) and compass navigators (locust), point to the existence of parallel networks for the two orientation strategies, or reflect differences in experimental conditions.
Collapse
|
22
|
Detecting the unexpected. Curr Opin Neurobiol 2015; 35:142-7. [DOI: 10.1016/j.conb.2015.08.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 07/01/2015] [Accepted: 08/04/2015] [Indexed: 11/21/2022]
|
23
|
Hollmann V, Lucks V, Kurtz R, Engelmann J. Adaptation-induced modification of motion selectivity tuning in visual tectal neurons of adult zebrafish. J Neurophysiol 2015; 114:2893-902. [PMID: 26378206 DOI: 10.1152/jn.00568.2015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 09/15/2015] [Indexed: 11/22/2022] Open
Abstract
In the developing brain, training-induced emergence of direction selectivity and plasticity of orientation tuning appear to be widespread phenomena. These are found in the visual pathway across different classes of vertebrates. Moreover, short-term plasticity of orientation tuning in the adult brain has been demonstrated in several species of mammals. However, it is unclear whether neuronal orientation and direction selectivity in nonmammalian species remains modifiable through short-term plasticity in the fully developed brain. To address this question, we analyzed motion tuning of neurons in the optic tectum of adult zebrafish by calcium imaging. In total, orientation and direction selectivity was enhanced by adaptation, responses of previously orientation-selective neurons were sharpened, and even adaptation-induced emergence of selectivity in previously nonselective neurons was observed in some cases. The different observed effects are mainly based on the relative distance between the previously preferred and the adaptation direction. In those neurons in which a shift of the preferred orientation or direction was induced by adaptation, repulsive shifts (i.e., away from the adapter) were more prevalent than attractive shifts. A further novel finding for visually induced adaptation that emerged from our study was that repulsive and attractive shifts can occur within one brain area, even with uniform stimuli. The type of shift being induced also depends on the difference between the adapting and the initially preferred stimulus direction. Our data indicate that, even within the fully developed optic tectum, short-term plasticity might have an important role in adjusting neuronal tuning functions to current stimulus conditions.
Collapse
Affiliation(s)
- Vanessa Hollmann
- Active Sensing and Center of Excellence Cognitive Interaction Technology, Bielefeld University, Bielefeld, Germany; and
| | - Valerie Lucks
- Active Sensing and Center of Excellence Cognitive Interaction Technology, Bielefeld University, Bielefeld, Germany; and
| | - Rafael Kurtz
- Department of Neurobiology, Bielefeld University, Bielefeld, Germany
| | - Jacob Engelmann
- Active Sensing and Center of Excellence Cognitive Interaction Technology, Bielefeld University, Bielefeld, Germany; and
| |
Collapse
|
24
|
Herrmann B, Parthasarathy A, Han EX, Obleser J, Bartlett EL. Sensitivity of rat inferior colliculus neurons to frequency distributions. J Neurophysiol 2015; 114:2941-54. [PMID: 26354316 DOI: 10.1152/jn.00555.2015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 09/09/2015] [Indexed: 11/22/2022] Open
Abstract
Stimulus-specific adaptation refers to a neural response reduction to a repeated stimulus that does not generalize to other stimuli. However, stimulus-specific adaptation appears to be influenced by additional factors. For example, the statistical distribution of tone frequencies has recently been shown to dynamically alter stimulus-specific adaptation in human auditory cortex. The present study investigated whether statistical stimulus distributions also affect stimulus-specific adaptation at an earlier stage of the auditory hierarchy. Neural spiking activity and local field potentials were recorded from inferior colliculus neurons of rats while tones were presented in oddball sequences that formed two different statistical contexts. Each sequence consisted of a repeatedly presented tone (standard) and three rare deviants of different magnitudes (small, moderate, large spectral change). The critical manipulation was the relative probability with which large spectral changes occurred. In one context the probability was high (relative to all deviants), while it was low in the other context. We observed larger responses for deviants compared with standards, confirming previous reports of increased response adaptation for frequently presented tones. Importantly, the statistical context in which tones were presented strongly modulated stimulus-specific adaptation. Physically and probabilistically identical stimuli (moderate deviants) in the two statistical contexts elicited different response magnitudes consistent with neural gain changes and thus neural sensitivity adjustments induced by the spectral range of a stimulus distribution. The data show that already at the level of the inferior colliculus stimulus-specific adaptation is dynamically altered by the statistical context in which stimuli occur.
Collapse
Affiliation(s)
- Björn Herrmann
- Max Planck Research Group "Auditory Cognition," Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany;
| | - Aravindakshan Parthasarathy
- Departments of Biological Sciences and Biomedical Engineering, Purdue University, West Lafayette, Indiana; and
| | - Emily X Han
- Departments of Biological Sciences and Biomedical Engineering, Purdue University, West Lafayette, Indiana; and
| | - Jonas Obleser
- Max Planck Research Group "Auditory Cognition," Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Department of Psychology, University of Lübeck, Lübeck, Germany
| | - Edward L Bartlett
- Departments of Biological Sciences and Biomedical Engineering, Purdue University, West Lafayette, Indiana; and
| |
Collapse
|
25
|
Ayala YA, Udeh A, Dutta K, Bishop D, Malmierca MS, Oliver DL. Differences in the strength of cortical and brainstem inputs to SSA and non-SSA neurons in the inferior colliculus. Sci Rep 2015; 5:10383. [PMID: 25993334 PMCID: PMC4438612 DOI: 10.1038/srep10383] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 04/10/2015] [Indexed: 11/12/2022] Open
Abstract
In an ever changing auditory scene, change detection is an ongoing task performed by the auditory brain. Neurons in the midbrain and auditory cortex that exhibit stimulus-specific adaptation (SSA) may contribute to this process. Those neurons adapt to frequent sounds while retaining their excitability to rare sounds. Here, we test whether neurons exhibiting SSA and those without are part of the same networks in the inferior colliculus (IC). We recorded the responses to frequent and rare sounds and then marked the sites of these neurons with a retrograde tracer to correlate the source of projections with the physiological response. SSA neurons were confined to the non-lemniscal subdivisions and exhibited broad receptive fields, while the non-SSA were confined to the central nucleus and displayed narrow receptive fields. SSA neurons receive strong inputs from auditory cortical areas and very poor or even absent projections from the brainstem nuclei. On the contrary, the major sources of inputs to the neurons that lacked SSA were from the brainstem nuclei. These findings demonstrate that auditory cortical inputs are biased in favor of IC synaptic domains that are populated by SSA neurons enabling them to compare top-down signals with incoming sensory information from lower areas.
Collapse
Affiliation(s)
- Yaneri A Ayala
- Auditory Neurophysiology Laboratory. Institute of Neuroscience of Castilla Y León, University of Salamanca, C/Pintor Fernando Gallego, 1, 37007 Salamanca, Spain
| | - Adanna Udeh
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT 06030-3401, USA
| | - Kelsey Dutta
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT 06030-3401, USA
| | - Deborah Bishop
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT 06030-3401, USA
| | - Manuel S Malmierca
- 1] Auditory Neurophysiology Laboratory. Institute of Neuroscience of Castilla Y León, University of Salamanca, C/Pintor Fernando Gallego, 1, 37007 Salamanca, Spain [2] Department of Neuroscience, University of Connecticut Health Center, Farmington, CT 06030-3401, USA [3] Department of Cell Biology and Pathology, Faculty of Medicine, University of Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | - Douglas L Oliver
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT 06030-3401, USA
| |
Collapse
|
26
|
Kleinschmidt DF, Jaeger TF. Robust speech perception: recognize the familiar, generalize to the similar, and adapt to the novel. Psychol Rev 2015; 122:148-203. [PMID: 25844873 PMCID: PMC4744792 DOI: 10.1037/a0038695] [Citation(s) in RCA: 265] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Successful speech perception requires that listeners map the acoustic signal to linguistic categories. These mappings are not only probabilistic, but change depending on the situation. For example, one talker's /p/ might be physically indistinguishable from another talker's /b/ (cf. lack of invariance). We characterize the computational problem posed by such a subjectively nonstationary world and propose that the speech perception system overcomes this challenge by (a) recognizing previously encountered situations, (b) generalizing to other situations based on previous similar experience, and (c) adapting to novel situations. We formalize this proposal in the ideal adapter framework: (a) to (c) can be understood as inference under uncertainty about the appropriate generative model for the current talker, thereby facilitating robust speech perception despite the lack of invariance. We focus on 2 critical aspects of the ideal adapter. First, in situations that clearly deviate from previous experience, listeners need to adapt. We develop a distributional (belief-updating) learning model of incremental adaptation. The model provides a good fit against known and novel phonetic adaptation data, including perceptual recalibration and selective adaptation. Second, robust speech recognition requires that listeners learn to represent the structured component of cross-situation variability in the speech signal. We discuss how these 2 aspects of the ideal adapter provide a unifying explanation for adaptation, talker-specificity, and generalization across talkers and groups of talkers (e.g., accents and dialects). The ideal adapter provides a guiding framework for future investigations into speech perception and adaptation, and more broadly language comprehension.
Collapse
Affiliation(s)
| | - T Florian Jaeger
- Departments of Brain and Cognitive Sciences, Computer Science, and Linguistics, University of Rochester
| |
Collapse
|
27
|
Hazan Y, Kra Y, Yarin I, Wagner H, Gutfreund Y. Visual-auditory integration for visual search: a behavioral study in barn owls. Front Integr Neurosci 2015; 9:11. [PMID: 25762905 PMCID: PMC4327738 DOI: 10.3389/fnint.2015.00011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 01/28/2015] [Indexed: 12/14/2022] Open
Abstract
Barn owls are nocturnal predators that rely on both vision and hearing for survival. The optic tectum of barn owls, a midbrain structure involved in selective attention, has been used as a model for studying visual-auditory integration at the neuronal level. However, behavioral data on visual-auditory integration in barn owls are lacking. The goal of this study was to examine if the integration of visual and auditory signals contributes to the process of guiding attention toward salient stimuli. We attached miniature wireless video cameras on barn owls' heads (OwlCam) to track their target of gaze. We first provide evidence that the area centralis (a retinal area with a maximal density of photoreceptors) is used as a functional fovea in barn owls. Thus, by mapping the projection of the area centralis on the OwlCam's video frame, it is possible to extract the target of gaze. For the experiment, owls were positioned on a high perch and four food items were scattered in a large arena on the floor. In addition, a hidden loudspeaker was positioned in the arena. The positions of the food items and speaker were changed every session. Video sequences from the OwlCam were saved for offline analysis while the owls spontaneously scanned the room and the food items with abrupt gaze shifts (head saccades). From time to time during the experiment, a brief sound was emitted from the speaker. The fixation points immediately following the sounds were extracted and the distances between the gaze position and the nearest items and loudspeaker were measured. The head saccades were rarely toward the location of the sound source but to salient visual features in the room, such as the door knob or the food items. However, among the food items, the one closest to the loudspeaker had the highest probability of attracting a gaze shift. This result supports the notion that auditory signals are integrated with visual information for the selection of the next visual search target.
Collapse
Affiliation(s)
- Yael Hazan
- Department of Neuroscience, The Ruth and Bruce Rappaport Faculty of Medicine and Research Institute, Technion Haifa, Israel
| | - Yonatan Kra
- Department of Neuroscience, The Ruth and Bruce Rappaport Faculty of Medicine and Research Institute, Technion Haifa, Israel
| | - Inna Yarin
- Department of Neuroscience, The Ruth and Bruce Rappaport Faculty of Medicine and Research Institute, Technion Haifa, Israel
| | - Hermann Wagner
- Department of Zoology and Animal Physiology, Institute for Biology II, RWTH Aachen University Aachen, Germany
| | - Yoram Gutfreund
- Department of Neuroscience, The Ruth and Bruce Rappaport Faculty of Medicine and Research Institute, Technion Haifa, Israel
| |
Collapse
|
28
|
Malmierca MS, Anderson LA, Antunes FM. The cortical modulation of stimulus-specific adaptation in the auditory midbrain and thalamus: a potential neuronal correlate for predictive coding. Front Syst Neurosci 2015; 9:19. [PMID: 25805974 PMCID: PMC4353371 DOI: 10.3389/fnsys.2015.00019] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 02/03/2015] [Indexed: 02/02/2023] Open
Abstract
To follow an ever-changing auditory scene, the auditory brain is continuously creating a representation of the past to form expectations about the future. Unexpected events will produce an error in the predictions that should “trigger” the network’s response. Indeed, neurons in the auditory midbrain, thalamus and cortex, respond to rarely occurring sounds while adapting to frequently repeated ones, i.e., they exhibit stimulus specific adaptation (SSA). SSA cannot be explained solely by intrinsic membrane properties, but likely involves the participation of the network. Thus, SSA is envisaged as a high order form of adaptation that requires the influence of cortical areas. However, present research supports the hypothesis that SSA, at least in its simplest form (i.e., to frequency deviants), can be transmitted in a bottom-up manner through the auditory pathway. Here, we briefly review the underlying neuroanatomy of the corticofugal projections before discussing state of the art studies which demonstrate that SSA present in the medial geniculate body (MGB) and inferior colliculus (IC) is not inherited from the cortex but can be modulated by the cortex via the corticofugal pathways. By modulating the gain of neurons in the thalamus and midbrain, the auditory cortex (AC) would refine SSA subcortically, preventing irrelevant information from reaching the cortex.
Collapse
Affiliation(s)
- Manuel S Malmierca
- Auditory Neuroscience Laboratory, Institute of Neuroscience of Castilla y León (INCyL), University of Salamanca Salamanca, Spain ; Faculty of Medicine, Department of Cell Biology and Pathology, University of Salamanca Salamanca, Spain
| | - Lucy A Anderson
- Auditory Neuroscience Laboratory, Institute of Neuroscience of Castilla y León (INCyL), University of Salamanca Salamanca, Spain
| | - Flora M Antunes
- Auditory Neuroscience Laboratory, Institute of Neuroscience of Castilla y León (INCyL), University of Salamanca Salamanca, Spain
| |
Collapse
|
29
|
Deviance detection in auditory subcortical structures: what can we learn from neurochemistry and neural connectivity? Cell Tissue Res 2015; 361:215-32. [DOI: 10.1007/s00441-015-2134-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 01/22/2015] [Indexed: 12/18/2022]
|
30
|
Krabichler Q, Vega-Zuniga T, Morales C, Luksch H, Marín GJ. The visual system of a Palaeognathous bird: Visual field, retinal topography and retino-central connections in the Chilean Tinamou (Nothoprocta perdicaria). J Comp Neurol 2014; 523:226-50. [DOI: 10.1002/cne.23676] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 09/05/2014] [Accepted: 09/09/2014] [Indexed: 02/05/2023]
Affiliation(s)
- Quirin Krabichler
- Chair of Zoology, Technische Universität München; Freising-Weihenstephan Germany
| | - Tomas Vega-Zuniga
- Chair of Zoology, Technische Universität München; Freising-Weihenstephan Germany
| | - Cristian Morales
- Laboratorio de Neurobiología y Biología del Conocer; Departamento de Biología; Facultad de Ciencias; Universidad de Chile; Santiago de Chile Chile
| | - Harald Luksch
- Chair of Zoology, Technische Universität München; Freising-Weihenstephan Germany
| | - Gonzalo J. Marín
- Laboratorio de Neurobiología y Biología del Conocer; Departamento de Biología; Facultad de Ciencias; Universidad de Chile; Santiago de Chile Chile
- Facultad de Medicina; Universidad Finis Terrae; Santiago de Chile Chile
| |
Collapse
|
31
|
Christianson GB, Chait M, de Cheveigné A, Linden JF. Auditory evoked fields measured noninvasively with small-animal MEG reveal rapid repetition suppression in the guinea pig. J Neurophysiol 2014; 112:3053-65. [PMID: 25231619 DOI: 10.1152/jn.00189.2014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In animal models, single-neuron response properties such as stimulus-specific adaptation have been described as possible precursors to mismatch negativity, a human brain response to stimulus change. In the present study, we attempted to bridge the gap between human and animal studies by characterising responses to changes in the frequency of repeated tone series in the anesthetised guinea pig using small-animal magnetoencephalography (MEG). We showed that 1) auditory evoked fields (AEFs) qualitatively similar to those observed in human MEG studies can be detected noninvasively in rodents using small-animal MEG; 2) guinea pig AEF amplitudes reduce rapidly with tone repetition, and this AEF reduction is largely complete by the second tone in a repeated series; and 3) differences between responses to the first (deviant) and later (standard) tones after a frequency transition resemble those previously observed in awake humans using a similar stimulus paradigm.
Collapse
Affiliation(s)
| | - Maria Chait
- Ear Institute, University College London, London, United Kingdom
| | - Alain de Cheveigné
- Laboratoire des Systèmes Perceptifs, Centre National de la Recherche Scientifique and École normale supérieure, Paris, France; and
| | - Jennifer F Linden
- Ear Institute, University College London, London, United Kingdom; Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| |
Collapse
|
32
|
Abstract
The ability of organisms to seamlessly ignore familiar, inconsequential stimuli improves their selective attention and response to salient features of the environment. Here, I propose that this fundamental but unexplained phenomenon substantially derives from the ability of any pattern of neural excitation to create an enhanced inhibitory (or "negative") image of itself through target-specific scaling of inhibitory inputs onto active excitatory neurons. Familiar stimuli encounter strong negative images and are therefore less likely to be transmitted to higher brain centers. Integrating historical and recent observations, the negative-image model described here provides a mechanistic framework for understanding habituation, which is connected to ideas on dynamic predictive coding. In addition, it suggests insights for understanding autism spectrum disorders.
Collapse
|
33
|
Abstract
Stimulus-specific adaptation (SSA) is the reduction in response to a common stimulus that does not generalize, or only partially generalizes, to rare stimuli. SSA is strong and widespread in primary auditory cortex (A1) of rats, but is weak or absent in the main input station to A1, the ventral division of the medial geniculate body. To study SSA in A1, we recorded neural activity in A1 intracellularly using sharp electrodes. We studied the responses to tone pips of the same frequency in different contexts: as Standard and Deviants in Oddball sequences; in equiprobable sequences; in sequences consisting of rare tone presentations; and in sequences composed of many different frequencies, each of which was rare. SSA was found both in subthreshold membrane potential fluctuations and in spiking responses of A1 neurons. SSA for changes in frequency was large at a frequency difference of 44% between Standard and Deviant, and clearly present with tones separated by as little as 4%, near the behavioral frequency difference limen in rats. When using equivalent measures, SSA in spiking responses was generally larger than the SSA at the level of the membrane potential. This effect can be traced to the nonlinearity of the transformation between membrane potential to spikes. Using the responses to the same tone in different contexts made it possible to demonstrate that cortical SSA could not be fully explained by adaptation in narrow frequency channels, even at the level of the membrane potential. We conclude that local processing significantly contributes to the generation of cortical SSA.
Collapse
|
34
|
Netser S, Dutta A, Gutfreund Y. Ongoing activity in the optic tectum is correlated on a trial-by-trial basis with the pupil dilation response. J Neurophysiol 2014; 111:918-29. [DOI: 10.1152/jn.00527.2013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The selection of the appropriate stimulus to induce an orienting response is a basic task thought to be partly achieved by tectal circuitry. Here we addressed the relationship between neural activity in the optic tectum (OT) and orienting behavioral responses. We recorded multiunit activity in the intermediate/deep layers of the OT of the barn owl simultaneously with pupil dilation responses (PDR, a well-known orienting response common to birds and mammals). A trial-by-trial analysis of the responses revealed that the PDR generally did not correlate with the evoked neural responses but significantly correlated with the rate of ongoing neural activity measured shortly before the stimulus. Following this finding, we characterized ongoing activity in the OT and showed that in the intermediate/deep layers it tended to fluctuate spontaneously. It is characterized by short periods of high ongoing activity during which the probability of a PDR to an auditory stimulus inside the receptive field is increased. These high-ongoing activity periods were correlated with increase in the power of gamma band local field potential oscillations. Through dual recordings, we showed that the correlation coefficients of ongoing activity decreased as a function of distance between recording sites in the tectal map. Significant correlations were also found between recording sites in the OT and the forebrain entopallium. Our results suggest that an increase of ongoing activity in the OT reflects an internal state during which coupling between sensory stimulation and behavioral responses increases.
Collapse
Affiliation(s)
- Shai Netser
- Department of Physiology and Biophysics, The Ruth and Bruce Rappaport Faculty of Medicine and Research Institute, Technion, Haifa, Israel
| | - Arkadeb Dutta
- Department of Physiology and Biophysics, The Ruth and Bruce Rappaport Faculty of Medicine and Research Institute, Technion, Haifa, Israel
| | - Yoram Gutfreund
- Department of Physiology and Biophysics, The Ruth and Bruce Rappaport Faculty of Medicine and Research Institute, Technion, Haifa, Israel
| |
Collapse
|
35
|
Dutta A, Gutfreund Y. Saliency mapping in the optic tectum and its relationship to habituation. Front Integr Neurosci 2014; 8:1. [PMID: 24474908 PMCID: PMC3893637 DOI: 10.3389/fnint.2014.00001] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 01/02/2014] [Indexed: 12/02/2022] Open
Abstract
Habituation of the orienting response has long served as a model system for studying fundamental psychological phenomena such as learning, attention, decisions, and surprise. In this article, we review an emerging hypothesis that the evolutionary role of the superior colliculus (SC) in mammals or its homolog in birds, the optic tectum (OT), is to select the most salient target and send this information to the appropriate brain regions to control the body and brain orienting responses. Recent studies have begun to reveal mechanisms of how saliency is computed in the OT/SC, demonstrating a striking similarity between mammals and birds. The saliency of a target can be determined by how different it is from the surrounding objects, by how different it is from its history (that is habituation) and by how relevant it is for the task at hand. Here, we will first review evidence, mostly from primates and barn owls, that all three types of saliency computations are linked in the OT/SC. We will then focus more on neural adaptation in the OT and its possible link to temporal saliency and habituation.
Collapse
Affiliation(s)
- Arkadeb Dutta
- Rappaport Family Institute for Research in the Medical Sciences, Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology Haifa, Israel
| | - Yoram Gutfreund
- Rappaport Family Institute for Research in the Medical Sciences, Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology Haifa, Israel
| |
Collapse
|
36
|
Escera C, Malmierca MS. The auditory novelty system: An attempt to integrate human and animal research. Psychophysiology 2013; 51:111-23. [DOI: 10.1111/psyp.12156] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 08/06/2013] [Indexed: 11/30/2022]
Affiliation(s)
- Carles Escera
- Institute for Brain; Cognition and Behavior (IR3C); University of Barcelona; Catalonia Spain
- Cognitive Neuroscience Research Group; Department of Psychiatry and Clinical Psychobiology; University of Barcelona; Catalonia Spain
| | - Manuel S. Malmierca
- Auditory Neurophysiology Laboratory; The Institute of Neuroscience of Castilla y Leon (INCyL); University of Salamanca; Salamanca Spain
- Department of Cell Biology and Pathology; The Medical School; University of Salamanca; Salamanca Spain
| |
Collapse
|
37
|
Triblehorn JD, Schul J. Dendritic mechanisms contribute to stimulus-specific adaptation in an insect neuron. J Neurophysiol 2013; 110:2217-26. [PMID: 23945779 DOI: 10.1152/jn.00057.2013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Reduced neuronal activation to repetitive stimulation is a common feature of information processing in nervous systems. Such stimulus-specific adaptation (SSA) occurs in many systems, but the underlying neural mechanisms are not well understood. The Neoconocephalus (Orthoptera, Tettigoniidae) TN-1 auditory neuron exhibits an SSA-like process, characterized by reliably detecting deviant pulses after response cessation to common standard pulses. Therefore, TN-1 provides a model system to study the cellular mechanisms underlying SSA with an identified neuron. Here we test the hypothesis that dendritic mechanisms underlie TN-1 response cessation to fast-pulse rate repeated signals. Electrically stimulating TN-1 with either high-rate or continuous-current pulses resulted in a decreased ability in TN-1 to generate action potentials but failed to elicit cessation of spiking activity as observed with acoustic stimulation. BAPTA injection into TN-1 delayed the onset of response cessation to fast-pulse rate acoustic stimuli in TN-1 but did not eliminate it. These results indicate that calcium-mediated processes contribute to the fast cessation of spiking activity in TN-1 but are insufficient to cause spike cessation on its own. Replacing normal saline with low-Na(+) saline (replacing sodium chloride with either lithium chloride or choline chloride) eliminated response cessation, and TN-1 no longer responded selectively to the deviant pulses. Sodium-mediated potassium channels are the most likely candidates underlying sodium-mediated response suppression in TN-1, triggered by Na(+) influx in dendritic regions activated by acoustic stimuli. On the basis of these results, we present a model for a cellular mechanism for SSA in a single auditory neuron.
Collapse
|
38
|
Imbalance between excitation and inhibition in the somatosensory cortex produces postadaptation facilitation. J Neurosci 2013; 33:8463-71. [PMID: 23658183 DOI: 10.1523/jneurosci.4845-12.2013] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Adaptation is typically associated with attenuation of the neuronal response during sustained or repetitive sensory stimulation, followed by a gradual recovery of the response to its baseline level thereafter. Here, we examined the process of recovery from sensory adaptation in layer IV cells of the rat barrel cortex using in vivo intracellular recordings. Surprisingly, in approximately one-third of the cells, the response to a test stimulus delivered a few hundred milliseconds after the adapting stimulation was significantly facilitated. Recordings under different holding potentials revealed that the enhanced response was the result of an imbalance between excitation and inhibition, where a faster recovery of excitation compared with inhibition facilitated the response. Hence, our data provide the first mechanistic explanation of sensory facilitation after adaptation and suggest that adaptation increases the sensitivity of cortical neurons to sensory stimulation by altering the balance between excitation and inhibition.
Collapse
|
39
|
Ayala YA, Malmierca MS. Stimulus-specific adaptation and deviance detection in the inferior colliculus. Front Neural Circuits 2013; 6:89. [PMID: 23335883 PMCID: PMC3547232 DOI: 10.3389/fncir.2012.00089] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2012] [Accepted: 11/02/2012] [Indexed: 11/26/2022] Open
Abstract
Deviancy detection in the continuous flow of sensory information into the central nervous system is of vital importance for animals. The task requires neuronal mechanisms that allow for an efficient representation of the environment by removing statistically redundant signals. Recently, the neuronal principles of auditory deviance detection have been approached by studying the phenomenon of stimulus-specific adaptation (SSA). SSA is a reduction in the responsiveness of a neuron to a common or repetitive sound while the neuron remains highly sensitive to rare sounds (Ulanovsky et al., 2003). This phenomenon could enhance the saliency of unexpected, deviant stimuli against a background of repetitive signals. SSA shares many similarities with the evoked potential known as the “mismatch negativity,” (MMN) and it has been linked to cognitive process such as auditory memory and scene analysis (Winkler et al., 2009) as well as to behavioral habituation (Netser et al., 2011). Neurons exhibiting SSA can be found at several levels of the auditory pathway, from the inferior colliculus (IC) up to the auditory cortex (AC). In this review, we offer an account of the state-of-the art of SSA studies in the IC with the aim of contributing to the growing interest in the single-neuron electrophysiology of auditory deviance detection. The dependence of neuronal SSA on various stimulus features, e.g., probability of the deviant stimulus and repetition rate, and the roles of the AC and inhibition in shaping SSA at the level of the IC are addressed.
Collapse
Affiliation(s)
- Yaneri A Ayala
- Laboratory for the Neurobiology of Hearing, Auditory Neurophysiology Unit, Institute of Neuroscience of Castilla y León, University of Salamanca Salamanca, Spain
| | | |
Collapse
|
40
|
Ayala YA, Pérez-González D, Duque D, Nelken I, Malmierca MS. Frequency discrimination and stimulus deviance in the inferior colliculus and cochlear nucleus. Front Neural Circuits 2013; 6:119. [PMID: 23335885 PMCID: PMC3544151 DOI: 10.3389/fncir.2012.00119] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 12/19/2012] [Indexed: 11/17/2022] Open
Abstract
Auditory neurons that exhibit stimulus-specific adaptation (SSA) decrease their response to common tones while retaining responsiveness to rare ones. We recorded single-unit responses from the inferior colliculus (IC) where SSA is known to occur and we explored for the first time SSA in the cochlear nucleus (CN) of rats. We assessed an important functional outcome of SSA, the extent to which frequency discriminability depends on sensory context. For this purpose, pure tones were presented in an oddball sequence as standard (high probability of occurrence) or deviant (low probability of occurrence) stimuli. To study frequency discriminability under different probability contexts, we varied the probability of occurrence and the frequency separation between tones. The neuronal sensitivity was estimated in terms of spike-count probability using signal detection theory. We reproduced the finding that many neurons in the IC exhibited SSA, but we did not observe significant SSA in our CN sample. We concluded that strong SSA is not a ubiquitous phenomenon in the CN. As predicted, frequency discriminability was enhanced in IC when stimuli were presented in an oddball context, and this enhancement was correlated with the degree of SSA shown by the neurons. In contrast, frequency discrimination by CN neurons was independent of stimulus context. Our results demonstrated that SSA is not widespread along the entire auditory pathway, and suggest that SSA increases frequency discriminability of single neurons beyond that expected from their tuning curves.
Collapse
Affiliation(s)
- Yaneri A Ayala
- Auditory Neurophysiology Laboratory, Institute of Neuroscience of Castilla y León, University of Salamanca Salamanca, Spain
| | | | | | | | | |
Collapse
|
41
|
Pérez-González D, Malmierca MS. Variability of the time course of stimulus-specific adaptation in the inferior colliculus. Front Neural Circuits 2012; 6:107. [PMID: 23293586 PMCID: PMC3530767 DOI: 10.3389/fncir.2012.00107] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 12/03/2012] [Indexed: 01/25/2023] Open
Abstract
Stimulus-specific adaptation (SSA) is the ability of some neurons to respond better to rare than to frequent, repetitive stimuli. In the auditory system, SSA has been found at the level of the midbrain, thalamus, and cortex. While previous studies have used the whole overall neuronal response to characterize SSA, here we present a detailed analysis on the variations within the time course of the evoked responses. The extracellular activity of well isolated single neurons from the inferior colliculus (IC) was recorded during stimulation using an oddball paradigm, which is able to elicit SSA. At the same time, these responses were evaluated before, during, and after the microiontophoretic application of gabazine, a specific antagonist of GABA(A) receptors, to study the contribution of inhibition to the responses of these neurons. We then analyzed the difference signal (DS), which is the difference in the PSTH in response to rare and frequent stimuli. We found that, even in a sample of neurons showing strong SSA (i.e., showing larger preference for rare stimuli), the DS was variable and one third of the neurons contained portions that responded significantly better to the frequent stimuli than to the rare. This variability is not observed when averaging the responses of multiple cells. Furthermore, the blockade of GABA(A) receptors increased the number of neurons showing portions that responded better to the frequent stimuli, indicating that inhibition in the IC refines and sharpens SSA in the neural responses.
Collapse
Affiliation(s)
- David Pérez-González
- Auditory Neurophysiology Laboratory, Institute of Neuroscience of Castilla y León, University of Salamanca Salamanca, Spain
| | | |
Collapse
|