1
|
Korkian Y, Nakhla N, Pack CC. Feature selectivity of corticocortical feedback along the primate dorsal visual pathway. J Neurophysiol 2025; 133:799-814. [PMID: 39813398 DOI: 10.1152/jn.00278.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/02/2024] [Accepted: 12/02/2024] [Indexed: 01/18/2025] Open
Abstract
Anatomical studies have revealed a prominent role for feedback projections in the primate visual cortex. Theoretical models suggest that these projections support important brain functions such as attention, prediction, and learning. However, these models make different predictions about the relationship between feedback connectivity and neuronal stimulus selectivity. We have therefore performed simultaneous recordings in different regions of the primate dorsal visual pathway. Specifically, we recorded neural activity from the medial superior temporal (MST) area, and one of its main feedback targets, the middle temporal (MT) area. We estimated functional connectivity from correlations in the single-neuron spike trains and performed electrical microstimulation in MST to determine its causal influence on MT. Both methods revealed that inhibitory feedback occurred more commonly when the source and target neurons had very different stimulus preferences. At the same time, the strength of feedback suppression was greater for neurons with similar preferences. Excitatory feedback projections, in contrast, showed no consistent relationship with stimulus preferences. These results suggest that corticocortical feedback could play a role in shaping sensory responses according to behavioral or environmental context.NEW & NOTEWORTHY Here, we show that corticocortical feedback influences are often determined by the selectivity of the individual neurons. A common motif is the occurrence of inhibitory feedback among neurons with very different stimulus preferences. This results in strong suppression of responses in area MT when MST is electrically stimulated. Interestingly, this feedback shows a complex interaction with ongoing visual stimulation, being powerfully suppressive when visual inputs are strong, yet excitatory when visual inputs are weak.
Collapse
Affiliation(s)
- Yavar Korkian
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
- Quantitative Life Sciences PhD Program, McGill University, Montreal, Quebec, Canada
| | - Nardin Nakhla
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Christopher C Pack
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
2
|
Ruggiero A, Heim LR, Susman L, Hreaky D, Shapira I, Katsenelson M, Rosenblum K, Slutsky I. NMDA receptors regulate the firing rate set point of hippocampal circuits without altering single-cell dynamics. Neuron 2025; 113:244-259.e7. [PMID: 39515323 DOI: 10.1016/j.neuron.2024.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 02/05/2024] [Accepted: 10/11/2024] [Indexed: 11/16/2024]
Abstract
Understanding how neuronal circuits stabilize their activity is a fundamental yet poorly understood aspect of neuroscience. Here, we show that hippocampal network properties, such as firing rate distribution and dimensionality, are actively regulated, despite perturbations and single-cell drift. Continuous inhibition of N-methyl-D-aspartate receptors (NMDARs) ex vivo lowers the excitation/inhibition ratio and network firing rates while preserving resilience to perturbations. This establishes a new network firing rate set point via NMDAR-eEF2K signaling pathway. NMDARs' capacity to modulate and stabilize network firing is mediated by excitatory synapses and the intrinsic excitability of parvalbumin-positive neurons, respectively. In behaving mice, continuous NMDAR blockade in CA1 reduces network firing without altering single-neuron drift or triggering a compensatory response. These findings expand NMDAR function beyond their canonical role in synaptic plasticity and raise the possibility that some NMDAR-dependent behavioral effects are mediated by their unique regulation of population activity set points.
Collapse
Affiliation(s)
- Antonella Ruggiero
- Department of Physiology and Pharmacology, Faculty of Medical and Health Sciences, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Leore R Heim
- Department of Physiology and Pharmacology, Faculty of Medical and Health Sciences, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Lee Susman
- Department of Physiology and Pharmacology, Faculty of Medical and Health Sciences, Tel Aviv University, 69978 Tel Aviv, Israel; Center for the Physics of Biological Function, Princeton University, Princeton, NJ 08544, USA
| | - Dema Hreaky
- Department of Physiology and Pharmacology, Faculty of Medical and Health Sciences, Tel Aviv University, 69978 Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Ilana Shapira
- Department of Physiology and Pharmacology, Faculty of Medical and Health Sciences, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Maxim Katsenelson
- Department of Physiology and Pharmacology, Faculty of Medical and Health Sciences, Tel Aviv University, 69978 Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Kobi Rosenblum
- Sagol Department of Neurobiology, Center for Gene Manipulation in the Brain, University of Haifa, Haifa, Israel
| | - Inna Slutsky
- Department of Physiology and Pharmacology, Faculty of Medical and Health Sciences, Tel Aviv University, 69978 Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, 69978 Tel Aviv, Israel; Sieratzki Institute for Advances in Neuroscience, Tel Aviv University, 69978 Tel Aviv, Israel.
| |
Collapse
|
3
|
Alonso LM, Rue MCP, Marder E. Gating of homeostatic regulation of intrinsic excitability produces cryptic long-term storage of prior perturbations. Proc Natl Acad Sci U S A 2023; 120:e2222016120. [PMID: 37339223 PMCID: PMC10293857 DOI: 10.1073/pnas.2222016120] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 05/16/2023] [Indexed: 06/22/2023] Open
Abstract
Neurons and neuronal circuits must maintain their function throughout the life of the organism despite changing environments. Previous theoretical and experimental work suggests that neurons monitor their activity using intracellular calcium concentrations to regulate their intrinsic excitability. Models with multiple sensors can distinguish among different patterns of activity, but previous work using models with multiple sensors produced instabilities that lead the models' conductances to oscillate and then to grow without bound and diverge. We now introduce a nonlinear degradation term that explicitly prevents the maximal conductances to grow beyond a bound. We combine the sensors' signals into a master feedback signal that can be used to modulate the timescale of conductance evolution. Effectively, this means that the negative feedback can be gated on and off according to how far the neuron is from its target. The modified model recovers from multiple perturbations. Interestingly, depolarizing the models to the same membrane potential with current injection or with simulated high extracellular K+ produces different changes in conductances, arguing that caution must be used in interpreting manipulations that serve as a proxy for increased neuronal activity. Finally, these models accrue traces of prior perturbations that are not visible in their control activity after perturbation but that shape their responses to subsequent perturbations. These cryptic or hidden changes may provide insight into disorders such as posttraumatic stress disorder that only become visible in response to specific perturbations.
Collapse
Affiliation(s)
- Leandro M. Alonso
- Volen Center and Biology Department, Brandeis University, Waltham, MA02454
| | - Mara C. P. Rue
- Volen Center and Biology Department, Brandeis University, Waltham, MA02454
| | - Eve Marder
- Volen Center and Biology Department, Brandeis University, Waltham, MA02454
| |
Collapse
|
4
|
Shen J, Li M, Long C, Yang L, Jiang J. Altered Odor-Evoked Electrophysiological Responses in the Anterior Piriform Cortex of Conscious APP/PS1 Mice. J Alzheimers Dis 2022; 90:1277-1289. [DOI: 10.3233/jad-220694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: Olfactory decline is an indicator of early-stage Alzheimer’s disease (AD). Although the anterior piriform cortex (aPC) is an important brain area involved in processing olfactory input, little is known about how its neuronal activity is affected in early-stage AD. Objective: To elucidate whether odor-induced electrophysiological responses are altered in the aPC of 3-5-month-old APP/PS1 mice. Methods: Using head-fixed multi-channel recording techniques in APP/PS1 AD mouse model to uncover potential aberrance of the aPC neuronal firing and local field potential (LFP) in response to vanillin. Results: We show that the firing rate of aPC neurons evoked by vanillin is significantly reduced in conscious APP/PS1 mice. LFP analysis demonstrates reduced low- and high-gamma (γ low, γ high) oscillations during both the baseline and odor stimulation periods in APP/PS1 mice. Moreover, according to spike-field coherence (SFC) analysis, APP/PS1 mice show decreased coherence between odor-evoked spikes and γ low rhythms, while the coherence with γ high rhythms and the ΔSFC of the oscillations is unaffected. Furthermore, APP/PS1 mice show reduced phase-locking strength in the baseline period, such that there is no difference between baseline and odor-stimulation conditions. This contrasts markedly with wild type mice, where phase-locking strength decreases on stimulation. Conclusion: The abnormalities in both the neuronal and oscillatory activities of the aPC may serve as electrophysiological indicators of underlying olfactory decline in early AD.
Collapse
Affiliation(s)
- Jialun Shen
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Meng Li
- School of Life Sciences, South China Normal University, Guangzhou, China
| | - Cheng Long
- School of Life Sciences, South China Normal University, Guangzhou, China
| | - Li Yang
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Jinxiang Jiang
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou, China
| |
Collapse
|
5
|
Marder E, Kedia S, Morozova EO. New insights from small rhythmic circuits. Curr Opin Neurobiol 2022; 76:102610. [PMID: 35986971 DOI: 10.1016/j.conb.2022.102610] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/20/2022] [Accepted: 06/28/2022] [Indexed: 11/30/2022]
Abstract
Small rhythmic circuits, such as those found in invertebrates, have provided fundamental insights into how circuit dynamics depend on individual neuronal and synaptic properties. Degenerate circuits are those with different network parameters and similar behavior. New work on degenerate circuits and their modulation illustrates some of the rules that help maintain stable and robust circuit function despite environmental perturbations. Advances in neuropeptide isolation and identification provide enhanced understanding of the neuromodulation of circuits for behavior. The advent of molecular studies of mRNA expression provides new insight into animal-to-animal variability and the homeostatic regulation of excitability in neurons and networks.
Collapse
Affiliation(s)
- Eve Marder
- Volen Center and Biology Department, Brandeis University, Waltham, MA 02454, USA
| | - Sonal Kedia
- Volen Center and Biology Department, Brandeis University, Waltham, MA 02454, USA. https://twitter.com/Sonal_Kedia
| | - Ekaterina O Morozova
- Volen Center and Biology Department, Brandeis University, Waltham, MA 02454, USA.
| |
Collapse
|
6
|
Rule ME, O'Leary T. Self-healing codes: How stable neural populations can track continually reconfiguring neural representations. Proc Natl Acad Sci U S A 2022; 119:e2106692119. [PMID: 35145024 PMCID: PMC8851551 DOI: 10.1073/pnas.2106692119] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 12/29/2021] [Indexed: 12/19/2022] Open
Abstract
As an adaptive system, the brain must retain a faithful representation of the world while continuously integrating new information. Recent experiments have measured population activity in cortical and hippocampal circuits over many days and found that patterns of neural activity associated with fixed behavioral variables and percepts change dramatically over time. Such "representational drift" raises the question of how malleable population codes can interact coherently with stable long-term representations that are found in other circuits and with relatively rigid topographic mappings of peripheral sensory and motor signals. We explore how known plasticity mechanisms can allow single neurons to reliably read out an evolving population code without external error feedback. We find that interactions between Hebbian learning and single-cell homeostasis can exploit redundancy in a distributed population code to compensate for gradual changes in tuning. Recurrent feedback of partially stabilized readouts could allow a pool of readout cells to further correct inconsistencies introduced by representational drift. This shows how relatively simple, known mechanisms can stabilize neural tuning in the short term and provides a plausible explanation for how plastic neural codes remain integrated with consolidated, long-term representations.
Collapse
Affiliation(s)
- Michael E Rule
- Engineering Department, University of Cambridge, Cambridge CB2 1PZ, United Kingdom
| | - Timothy O'Leary
- Engineering Department, University of Cambridge, Cambridge CB2 1PZ, United Kingdom
| |
Collapse
|
7
|
Niemeyer N, Schleimer JH, Schreiber S. Biophysical models of intrinsic homeostasis: Firing rates and beyond. Curr Opin Neurobiol 2021; 70:81-88. [PMID: 34454303 DOI: 10.1016/j.conb.2021.07.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 06/14/2021] [Accepted: 07/14/2021] [Indexed: 12/01/2022]
Abstract
In view of ever-changing conditions both in the external world and in intrinsic brain states, maintaining the robustness of computations poses a challenge, adequate solutions to which we are only beginning to understand. At the level of cell-intrinsic properties, biophysical models of neurons permit one to identify relevant physiological substrates that can serve as regulators of neuronal excitability and to test how feedback loops can stabilize crucial variables such as long-term calcium levels and firing rates. Mathematical theory has also revealed a rich set of complementary computational properties arising from distinct cellular dynamics and even shaping processing at the network level. Here, we provide an overview over recently explored homeostatic mechanisms derived from biophysical models and hypothesize how multiple dynamical characteristics of cells, including their intrinsic neuronal excitability classes, can be stably controlled.
Collapse
Affiliation(s)
- Nelson Niemeyer
- Institute for Theoretical Biology, Humboldt-Universität zu Berlin, 10115, Berlin, Germany; Einstein Center for Neurosciences Berlin, Charitéplatz 1, 10117, Berlin, Germany; Bernstein Center for Computational Neuroscience, 10115, Berlin, Germany
| | - Jan-Hendrik Schleimer
- Institute for Theoretical Biology, Humboldt-Universität zu Berlin, 10115, Berlin, Germany; Bernstein Center for Computational Neuroscience, 10115, Berlin, Germany
| | - Susanne Schreiber
- Institute for Theoretical Biology, Humboldt-Universität zu Berlin, 10115, Berlin, Germany; Einstein Center for Neurosciences Berlin, Charitéplatz 1, 10117, Berlin, Germany; Bernstein Center for Computational Neuroscience, 10115, Berlin, Germany.
| |
Collapse
|
8
|
Thomas PJ, Olufsen M, Sepulchre R, Iglesias PA, Ijspeert A, Srinivasan M. Control theory in biology and medicine : Introduction to the special issue. BIOLOGICAL CYBERNETICS 2019; 113:1-6. [PMID: 30701314 DOI: 10.1007/s00422-018-00791-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
From September-December 2017, the Mathematical Biosciences Institute at Ohio State University hosted a series of workshops on control theory in biology and medicine, including workshops on control and modulation of neuronal and motor systems, control of cellular and molecular systems, control of disease / personalized medicine across heterogeneous populations, and sensorimotor control of animals and robots. This special issue presents tutorials and research articles by several of the participants in the MBI workshops.
Collapse
Affiliation(s)
- Peter J Thomas
- Department of Mathematics, Applied Mathematics and Statistics, Case Western Reserve University, Cleveland, Ohio, USA.
| | - Mette Olufsen
- Department of Mathematics, North Carolina State University, Raleigh, North Carolina, USA
| | | | - Pablo A Iglesias
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Auke Ijspeert
- Institute of Bioengineering, EPFL, Lausanne, Switzerland
| | - Manoj Srinivasan
- Department of Mechanical and Aerospace Engineering, Ohio State University, Columbus, Ohio, USA
| |
Collapse
|