1
|
Pang M, Yu L, Li X, Lu C, Xiao C, Liu Y. A promising anti-tumor targeting on ERMMDs mediated abnormal lipid metabolism in tumor cells. Cell Death Dis 2024; 15:562. [PMID: 39098929 PMCID: PMC11298533 DOI: 10.1038/s41419-024-06956-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/22/2024] [Accepted: 07/26/2024] [Indexed: 08/06/2024]
Abstract
The investigation of aberrations in lipid metabolism within tumor has become a burgeoning field of study that has garnered significant attention in recent years. Lipids can serve as a potent source of highly energetic fuel to support the rapid growth of neoplasia, in where the ER-mitochondrial membrane domains (ERMMDs) provide an interactive network for facilitating communication between ER and mitochondria as well as their intermembrane space and adjunctive proteins. In this review, we discuss fatty acids (FAs) anabolic and catabolic metabolism, as well as how CPT1A-VDAC-ACSL clusters on ERMMDs participate in FAs transport, with a major focus on ERMMDs mediated collaborative loop of FAO, Ca2+ transmission in TCA cycle and OXPHOS process. Here, we present a comprehensive perspective on the regulation of aberrant lipid metabolism through ERMMDs conducted tumor physiology might be a promising and potential target for tumor starvation therapy.
Collapse
Affiliation(s)
- Mingshi Pang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Liuchunyang Yu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoyu Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Cheng Lu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Cheng Xiao
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China.
| | - Yuanyan Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
2
|
A Direct Interaction between Cyclodextrins and TASK Channels Decreases the Leak Current in Cerebellar Granule Neurons. BIOLOGY 2022; 11:biology11081097. [PMID: 35892953 PMCID: PMC9331813 DOI: 10.3390/biology11081097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/14/2022] [Accepted: 07/18/2022] [Indexed: 11/17/2022]
Abstract
Simple Summary Cyclodextrins are cyclic oligosaccharides used to deplete cholesterol from cellular membranes. The effects of methyl-β-cyclodextrin (MβCD) on cellular functions originate principally from reductions in cholesterol levels. In this study, using immunocytochemistry, heterologous expression of K2P channels, and cholesterol-depleting maneuvers, we provide evidence of expression in cultured rat cerebellar granule neurons (CGNs) of TWIK-1 (K2P1), TASK-1 (K2P3), TASK-3 (K2P9), and TRESK (K2P18) channels and their association with lipid rafts using the specific lipids raft markers. In addition, we show a direct blocking with MβCD of TASK-1 and TASK-3 channels as well as for the covalently concatenated heterodimer TASK-1/TASK-3. Abstract Two pore domain potassium channels (K2P) are strongly expressed in the nervous system (CNS), where they play a central role in excitability. These channels give rise to background K+ currents, also known as IKSO (standing-outward potassium current). We detected the expression in primary cultured cerebellar granule neurons (CGNs) of TWIK-1 (K2P1), TASK-1 (K2P3), TASK-3 (K2P9), and TRESK (K2P18) channels by immunocytochemistry and their association with lipid rafts using the specific lipids raft markers flotillin-2 and caveolin-1. At the functional level, methyl-β-cyclodextrin (MβCD, 5 mM) reduced IKSO currents by ~40% in CGN cells. To dissect out this effect, we heterologously expressed the human TWIK-1, TASK-1, TASK-3, and TRESK channels in HEK-293 cells. MβCD directly blocked TASK-1 and TASK-3 channels and the covalently concatenated heterodimer TASK-1/TASK-3 currents. Conversely, MβCD did not affect TWIK-1- and TRESK-mediated K+ currents. On the other hand, the cholesterol-depleting agent filipin III did not affect TASK-1/TASK-3 channels. Together, the results suggest that neuronal background K+ channels are associated to lipid raft environments whilst the functional activity is independent of the cholesterol membrane organization.
Collapse
|
3
|
|
4
|
Alcohol Regulates BK Surface Expression via Wnt/β-Catenin Signaling. J Neurosci 2017; 36:10625-10639. [PMID: 27733613 DOI: 10.1523/jneurosci.0491-16.2016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 07/27/2016] [Indexed: 12/26/2022] Open
Abstract
It has been suggested that drug tolerance represents a form of learning and memory, but this has not been experimentally established at the molecular level. We show that a component of alcohol molecular tolerance (channel internalization) from rat hippocampal neurons requires protein synthesis, in common with other forms of learning and memory. We identify β-catenin as a primary necessary protein. Alcohol increases β-catenin, and blocking accumulation of β-catenin blocks alcohol-induced internalization in these neurons. In transfected HEK293 cells, suppression of Wnt/β-catenin signaling blocks ethanol-induced internalization. Conversely, activation of Wnt/β-catenin reduces BK current density. A point mutation in a putative glycogen synthase kinase phosophorylation site within the S10 region of BK blocks internalization, suggesting that Wnt/β-catenin directly regulates alcohol-induced BK internalization via glycogen synthase kinase phosphorylation. These findings establish de novo protein synthesis and Wnt/β-catenin signaling as critical in mediating a persistent form of BK molecular alcohol tolerance establishing a commonality with other forms of long-term plasticity. SIGNIFICANCE STATEMENT Alcohol tolerance is a key step toward escalating alcohol consumption and subsequent dependence. Our research aims to make significant contributions toward novel, therapeutic approaches to prevent and treat alcohol misuse by understanding the molecular mechanisms of alcohol tolerance. In our current study, we identify the role of a key regulatory pathway in alcohol-induced persistent molecular changes within the hippocampus. The canonical Wnt/β-catenin pathway regulates BK channel surface expression in a protein synthesis-dependent manner reminiscent of other forms of long-term hippocampal neuronal adaptations. This unique insight opens the possibility of using clinically tested drugs, targeting the Wnt/β-catenin pathway, for the novel use of preventing and treating alcohol dependency.
Collapse
|
5
|
Structure and functional dynamics characterization of the ion channel of the human respiratory syncytial virus (hRSV) small hydrophobic protein (SH) transmembrane domain by combining molecular dynamics with excited normal modes. J Mol Model 2016; 22:286. [PMID: 27817112 DOI: 10.1007/s00894-016-3150-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 10/13/2016] [Indexed: 01/02/2023]
Abstract
The human respiratory syncytial virus (hRSV) is the major cause of lower respiratory tract infection in children and elderly people worldwide. Its genome encodes 11 proteins including SH protein, whose functions are not well known. Studies show that SH protein increases RSV virulence degree and permeability to small compounds, suggesting it is involved in the formation of ion channels. The knowledge of SH structure and function is fundamental for a better understanding of its infection mechanism. The aim of this study was to model, characterize, and analyze the structural behavior of SH protein in the phospholipids bilayer environment. Molecular modeling of SH pentameric structure was performed, followed by traditional molecular dynamics (MD) simulations of the protein immersed in the lipid bilayer. Molecular dynamics with excited normal modes (MDeNM) was applied in the resulting system in order to investigate long time scale pore dynamics. MD simulations support that SH protein is stable in its pentameric form. Simulations also showed the presence of water molecules within the bilayer by density distribution, thus confirming that SH protein is a viroporin. This water transport was also observed in MDeNM studies with histidine residues of five chains (His22 and His51), playing a key role in pore permeability. The combination of traditional MD and MDeNM was a very efficient protocol to investigate functional conformational changes of transmembrane proteins that act as molecular channels. This protocol can support future investigations of drug candidates by acting on SH protein to inhibit viral infection. Graphical Abstract The ion channel of the human respiratory syncytial virus (hRSV) small hydrophobic protein (SH) transmembrane domainᅟ.
Collapse
|
6
|
Caveolin interaction governs Kv1.3 lipid raft targeting. Sci Rep 2016; 6:22453. [PMID: 26931497 PMCID: PMC4773814 DOI: 10.1038/srep22453] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 02/15/2016] [Indexed: 12/22/2022] Open
Abstract
The spatial localization of ion channels at the cell surface is crucial for their functional role. Many channels localize in lipid raft microdomains, which are enriched in cholesterol and sphingolipids. Caveolae, specific lipid rafts which concentrate caveolins, harbor signaling molecules and their targets becoming signaling platforms crucial in cell physiology. However, the molecular mechanisms involved in such spatial localization are under debate. Kv1.3 localizes in lipid rafts and participates in the immunological response. We sought to elucidate the mechanisms of Kv1.3 surface targeting, which govern leukocyte physiology. Kv1 channels share a putative caveolin-binding domain located at the intracellular N-terminal of the channel. This motif, lying close to the S1 transmembrane segment, is situated near the T1 tetramerization domain and the determinants involved in the Kvβ subunit association. The highly hydrophobic domain (FQRQVWLLF) interacts with caveolin 1 targeting Kv1.3 to caveolar rafts. However, subtle variations of this cluster, putative ancillary associations and different structural conformations can impair the caveolin recognition, thereby altering channel’s spatial localization. Our results identify a caveolin-binding domain in Kv1 channels and highlight the mechanisms that govern the regulation of channel surface localization during cellular processes.
Collapse
|
7
|
Leanza L, Venturini E, Kadow S, Carpinteiro A, Gulbins E, Becker KA. Targeting a mitochondrial potassium channel to fight cancer. Cell Calcium 2015; 58:131-8. [DOI: 10.1016/j.ceca.2014.09.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 09/10/2014] [Accepted: 09/11/2014] [Indexed: 12/11/2022]
|
8
|
Abstract
The field of mitochondrial ion channels has recently seen substantial progress, including the molecular identification of some of the channels. An integrative approach using genetics, electrophysiology, pharmacology, and cell biology to clarify the roles of these channels has thus become possible. It is by now clear that many of these channels are important for energy supply by the mitochondria and have a major impact on the fate of the entire cell as well. The purpose of this review is to provide an up-to-date overview of the electrophysiological properties, molecular identity, and pathophysiological functions of the mitochondrial ion channels studied so far and to highlight possible therapeutic perspectives based on current information.
Collapse
|
9
|
Siewert B, Csuk R. Membrane damaging activity of a maslinic acid analog. Eur J Med Chem 2014; 74:1-6. [PMID: 24440377 DOI: 10.1016/j.ejmech.2013.12.031] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 11/28/2013] [Accepted: 12/22/2013] [Indexed: 02/06/2023]
Abstract
Close inspection of human ovarian cancer cells A2780 in the course of an antitumor screening using maslinic acid analogs revealed for one of the compounds, 4-oxa-4-phenyl-butyl 2,3-dihydroxy-olean-12-en-28-oate (1), an unusual behavior. During the incubation of the cells with 1, at the perimeter of the cells or close by crystals were formed consisting of cholesterol and excess 1. Compound 1 was incorporated into the cell's membrane followed by an extrusion of cholesterol from the lipid rafts. As a consequence of the alterations of the cell membrane, a volume decrease was initiated that triggered apoptosis; this extends previous models on apoptosis initiating mechanisms.
Collapse
Affiliation(s)
- Bianka Siewert
- Bereich Organische Chemie, Martin-Luther-Universität Halle-Wittenberg, Kurt-Mothes-Straße 2, D-06120 Halle (Saale), Germany
| | - René Csuk
- Bereich Organische Chemie, Martin-Luther-Universität Halle-Wittenberg, Kurt-Mothes-Straße 2, D-06120 Halle (Saale), Germany.
| |
Collapse
|
10
|
Abstract
Cell shrinkage is a hallmark and contributes to signaling of apoptosis. Apoptotic cell shrinkage requires ion transport across the cell membrane involving K(+) channels, Cl(-) or anion channels, Na(+)/H(+) exchange, Na(+),K(+),Cl(-) cotransport, and Na(+)/K(+)ATPase. Activation of K(+) channels fosters K(+) exit with decrease of cytosolic K(+) concentration, activation of anion channels triggers exit of Cl(-), organic osmolytes, and HCO3(-). Cellular loss of K(+) and organic osmolytes as well as cytosolic acidification favor apoptosis. Ca(2+) entry through Ca(2+)-permeable cation channels may result in apoptosis by affecting mitochondrial integrity, stimulating proteinases, inducing cell shrinkage due to activation of Ca(2+)-sensitive K(+) channels, and triggering cell-membrane scrambling. Signaling involved in the modification of cell-volume regulatory ion transport during apoptosis include mitogen-activated kinases p38, JNK, ERK1/2, MEKK1, MKK4, the small G proteins Cdc42, and/or Rac and the transcription factor p53. Osmosensing involves integrin receptors, focal adhesion kinases, and tyrosine kinase receptors. Hyperosmotic shock leads to vesicular acidification followed by activation of acid sphingomyelinase, ceramide formation, release of reactive oxygen species, activation of the tyrosine kinase Yes with subsequent stimulation of CD95 trafficking to the cell membrane. Apoptosis is counteracted by mechanisms involved in regulatory volume increase (RVI), by organic osmolytes, by focal adhesion kinase, and by heat-shock proteins. Clearly, our knowledge on the interplay between cell-volume regulatory mechanisms and suicidal cell death is still far from complete and substantial additional experimental effort is needed to elucidate the role of cell-volume regulatory mechanisms in suicidal cell death.
Collapse
Affiliation(s)
- Florian Lang
- Institute of Physiology, University of Tübingen, Tübingen, Germany
| | | |
Collapse
|
11
|
Comes N, Bielanska J, Vallejo-Gracia A, Serrano-Albarrás A, Marruecos L, Gómez D, Soler C, Condom E, Ramón Y Cajal S, Hernández-Losa J, Ferreres JC, Felipe A. The voltage-dependent K(+) channels Kv1.3 and Kv1.5 in human cancer. Front Physiol 2013; 4:283. [PMID: 24133455 PMCID: PMC3794381 DOI: 10.3389/fphys.2013.00283] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 09/18/2013] [Indexed: 11/20/2022] Open
Abstract
Voltage-dependent K+ channels (Kv) are involved in a number of physiological processes, including immunomodulation, cell volume regulation, apoptosis as well as differentiation. Some Kv channels participate in the proliferation and migration of normal and tumor cells, contributing to metastasis. Altered expression of Kv1.3 and Kv1.5 channels has been found in several types of tumors and cancer cells. In general, while the expression of Kv1.3 apparently exhibits no clear pattern, Kv1.5 is induced in many of the analyzed metastatic tissues. Interestingly, evidence indicates that Kv1.5 channel shows inversed correlation with malignancy in some gliomas and non-Hodgkin's lymphomas. However, Kv1.3 and Kv1.5 are similarly remodeled in some cancers. For instance, expression of Kv1.3 and Kv1.5 correlates with a certain grade of tumorigenicity in muscle sarcomas. Differential remodeling of Kv1.3 and Kv1.5 expression in human cancers may indicate their role in tumor growth and their importance as potential tumor markers. However, despite of this increasing body of information, which considers Kv1.3 and Kv1.5 as emerging tumoral markers, further research must be performed to reach any conclusion. In this review, we summarize what it has been lately documented about Kv1.3 and Kv1.5 channels in human cancer.
Collapse
Affiliation(s)
- Núria Comes
- Molecular Physiology Laboratory, Departament de Bioquímica i Biologia Molecular, Institut de Biomedicina, Universitat de Barcelona Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Wu J, Zhong D, Wu X, Sha M, Kang L, Ding Z. Voltage-gated potassium channel Kv1.3 is highly expressed in human osteosarcoma and promotes osteosarcoma growth. Int J Mol Sci 2013; 14:19245-56. [PMID: 24065104 PMCID: PMC3794831 DOI: 10.3390/ijms140919245] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 08/22/2013] [Accepted: 09/10/2013] [Indexed: 01/28/2023] Open
Abstract
Deregulation of voltage-gated potassium channel subunit Kv1.3 has been reported in many tumors. Kv1.3 promotes tumorigenesis by enhancing cell proliferation while suppressing apoptosis. However, the expression and function of Kv1.3 in osteosarcoma are unknown. In the present study, we detected the expression of Kv1.3 in human osteosarcoma cells and tissues by RT-PCR, Western blot and immunohistochemistry. We further examined cell proliferation and apoptosis in osteosarcoma MG-63 cells and xenografts following knockdown of Kv1.3 by short hairpin RNA (shRNA). We found that Kv1.3 was upregulated in human osteosarcoma. Knockdown of Kv1.3 significantly suppressed cell proliferation and increased apoptosis as demonstrated by enhanced cleavage of poly (ADP-ribose) polymerase (PARP) and the activation of Caspase-3/7. Furthermore, adenovirus delivered shRNA targeting Kv1.3 significantly inhibited the growth of MG-63 xenografts. Taken together, our results suggest that Kv1.3 is a novel molecular target for osterosarcoma therapy.
Collapse
Affiliation(s)
- Jin Wu
- Department of Orthopaedics, the Affiliated Southeast Hospital of Xiamen University, Zhangzhou 363000, China; E-Mails: (J.W.); (M.S.)
| | - Daixing Zhong
- Department of Thoracic Surgery, the Affiliated Tangdu Hospital of Fourth Military Medical University, Xi’an 710038, China; E-Mail:
| | - Xinyu Wu
- Department of Neurology, the Affiliated Southeast Hospital of Xiamen University, Zhangzhou 363000, China; E-Mail:
| | - Mo Sha
- Department of Orthopaedics, the Affiliated Southeast Hospital of Xiamen University, Zhangzhou 363000, China; E-Mails: (J.W.); (M.S.)
| | - Liangqi Kang
- Department of Orthopaedics, the Affiliated Southeast Hospital of Xiamen University, Zhangzhou 363000, China; E-Mails: (J.W.); (M.S.)
- Authors to whom correspondence should be addressed: E-Mails: (L.K.); (Z.D.); Tel./Fax: +86-596-2931538 (L.K. & Z.D.)
| | - Zhenqi Ding
- Department of Orthopaedics, the Affiliated Southeast Hospital of Xiamen University, Zhangzhou 363000, China; E-Mails: (J.W.); (M.S.)
- Authors to whom correspondence should be addressed: E-Mails: (L.K.); (Z.D.); Tel./Fax: +86-596-2931538 (L.K. & Z.D.)
| |
Collapse
|
13
|
Sphingosine 1-phosphate and cancer: lessons from thyroid cancer cells. Biomolecules 2013; 3:303-15. [PMID: 24970169 PMCID: PMC4030848 DOI: 10.3390/biom3020303] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 05/03/2013] [Accepted: 05/06/2013] [Indexed: 02/03/2023] Open
Abstract
Sphingomyelin is found in the cell membrane of all eukaryotic cells, and was for a long time considered merely as a structural component. However, during the last two decades, metabolites of sphingomyelin, especially sphingosine 1-phosphate (S1P), have proven to be physiologically significant regulators of cell function. Through its five different G protein-coupled receptors, S1P regulates a wide array of cellular processes, ranging from stimulating cellular proliferation and migration, to the inhibition of apoptosis and induction of angiogenesis and modulation of cellular calcium homeostasis. Many of the processes regulated by S1P are important for normal cell physiology, but may also induce severe pathological conditions, especially in malignancies like cancer. Thus, understanding S1P signaling mechanisms has been the aim of a multitude of investigations. Great interest has also been shown in understanding the action of sphingosine kinase (SphK), i.e., the kinase phosphorylating sphingosine to S1P, and the interactions between S1P and growth factor signaling. In the present review, we will discuss recent findings regarding the possible importance of S1P and SphK in the etiology of thyroid cancer. Although clinical data is still scarce, our in vitro findings suggest that S1P may function as a “double-edged sword”, as the receptor profile of thyroid cancer cells largely determines whether S1P stimulates or blocks cellular migration. We will also discuss the interactions between S1P- and VEGF-evoked signaling, and the importance of a S1P1-VEGF receptor 2 complex in thyroid cancer cells.
Collapse
|
14
|
Aweya JJ, Mak TM, Lim SG, Tan YJ. The p7 protein of the hepatitis C virus induces cell death differently from the influenza A virus viroporin M2. Virus Res 2012; 172:24-34. [PMID: 23246447 PMCID: PMC7114515 DOI: 10.1016/j.virusres.2012.12.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 12/04/2012] [Accepted: 12/04/2012] [Indexed: 02/07/2023]
Abstract
Most viruses encode proteins that modulate cell-death signaling by the host. For hepatitis C virus (HCV) infection, apoptosis and other forms of cell-death have been observed in vitro and in vivo but the detailed understanding of this intricate viral-host interplay is unclear. This study examined the role played by the HCV p7 protein in the induction of cell-death. By measuring caspase-3/7 activation and cleavage of endogenous PARP, two hallmarks of apoptosis, the overexpression of p7 protein was shown to induce apoptosis in Huh7.5 cells. Furthermore, p7-induced apoptosis is caspase-dependent and involves both the intrinsic and extrinsic pathways. Similar to the M2 protein of influenza A virus, p7-induced apoptosis is independent of its ion channel activity. Coimmunoprecipitation experiments further showed that both M2 and p7 interact with the essential autophagy protein Beclin-1. However, only the M2 protein could cause an increase in the level of LC3-II, which is an indicator of autophagic activity. Thus, although the p7 protein is functionally similar to the well-characterized M2 protein, they differ in their activation of autophagic cell-death. Taken together, these results shed more light on the relationship between the HCV p7 ion channel protein and cell-death induction in host cells.
Collapse
Affiliation(s)
- Jude Juventus Aweya
- Department of Microbiology, Yong Loo Lin School of Medicine, National University Health System (NUHS), National University of Singapore, Singapore
| | | | | | | |
Collapse
|
15
|
Bianchi E, Scarinci F, Ripandelli G, Feher J, Pacella E, Magliulo G, Gabrieli CB, Plateroti R, Plateroti P, Mignini F, Artico M. Retinal pigment epithelium, age-related macular degeneration and neurotrophic keratouveitis. Int J Mol Med 2012; 31:232-42. [PMID: 23128960 DOI: 10.3892/ijmm.2012.1164] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Accepted: 09/25/2012] [Indexed: 11/05/2022] Open
Abstract
Age-related macular degeneration (AMD) is the leading cause of impaired vision and blindness in the aging population. The aims of our studies were to identify qualitative and quantitative alterations in mitochondria in human retinal pigment epithelium (RPE) from AMD patients and controls and to test the protective effects of pigment epithelium-derived factor (PEDF), a known neurotrophic and antiangiogenic substance, against neurotrophic keratouveitis. Histopathological alterations were studied by means of morphometry, light and electron microscopy. Unexpectedly, morphometric data showed that the RPE alterations noted in AMD may also develop in normal aging, 10-15 years later than appearing in AMD patients. Reduced tear secretion, corneal ulceration and leukocytic infiltration were found in capsaicin (CAP)-treated rats, but this effect was significantly attenuated by PEDF. These findings suggest that PEDF accelerated the recovery of tear secretion and also prevented neurotrophic keratouveitis and vitreoretinal inflammation. PEDF may have a clinical application in inflammatory and neovascular diseases of the eye.
Collapse
Affiliation(s)
- Enrica Bianchi
- Department of Sensory Organs, University of Rome, La Sapienza, Rome, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Observation of Antinociceptive Effects of Oxymatrine and its Effect on Delayed Rectifier K+ Currents (Ik) in PC12 Cells. Neurochem Res 2012; 37:2143-9. [DOI: 10.1007/s11064-012-0836-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2012] [Revised: 06/29/2012] [Accepted: 07/03/2012] [Indexed: 10/28/2022]
|
17
|
Solé L, Felipe A. Does a physiological role for KCNE subunits exist in the immune system? Commun Integr Biol 2011; 3:166-8. [PMID: 20585512 DOI: 10.4161/cib.3.2.10602] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Accepted: 11/10/2009] [Indexed: 11/19/2022] Open
Abstract
The study of channel modulation by regulatory subunits has attracted considerable attention. Evidence indicates a pivotal role for accessory proteins in the channelosome. For instance, these regulatory subunits are necessary to recapitulate in vivo ion currents and to further understand the physiological role of ion channels. KCNEs are a family of regulatory subunits that interact with a wide range of channels. We have described for the first time a molecular interaction between KCNE4 and the voltage-dependent potassium channel K(V)1.3. The association of KCNE4, which alters the biophysical properties, trafficking and membrane localization of K(V)1.3, functions as an endogenous dominantnegative mechanism. Since both proteins are expressed in the immune system, K(V)1.3/KCNE4 channels may contribute to the fine-tuning of the immune response. Therefore, our results point to KCNE4 as a novel target for immunomodulation. KCNE4 is not the only KCNE which is expressed in leukocytes. All KCNEs (KCNE1-5) are present, and some members demonstrate modulation during proliferation and cancer. In summary, regulatory KCNE subunits are expressed in the immune system. In addition, several voltage-dependent K(+) channels, which could interact with KCNEs, are also detected. Therefore, KCNE subunits may play a yet undiscovered role in the physiology of the immune system.
Collapse
Affiliation(s)
- Laura Solé
- Molecular Physiology Laboratory; Departament de Bioquímica i Biologia Molecular; Institut de Biomedicina; Universitat de Barcelona; Barcelona, Spain
| | | |
Collapse
|
18
|
Lang F, Ullrich S, Gulbins E. Ceramide formation as a target in beta-cell survival and function. Expert Opin Ther Targets 2011; 15:1061-71. [PMID: 21635197 DOI: 10.1517/14728222.2011.588209] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Ceramide may be synthesized de novo or generated by sphingomyelinase-dependent hydrolysis of sphingomyelin. AREAS COVERED The role of ceramide, ceramide-sensitive signaling and ion channels in β-cell apoptosis, lipotoxicity and amyloid-induced β-cell death. EXPERT OPINION Ceramide participates in β-cell dysfunction and apoptosis after exposure to TNFα, IL-1β and IFN-γ, excessive amyloid and islet amyloid polypeptide or non-esterified fatty acids (lipotoxicity). Knockout of sphingomyelin synthase 1, which converts ceramide to sphingomyelin, leads to impairment of insulin secretion. Increased ceramidase activity or pharmacological inhibition of ceramide synthetase, inhibits β-cell apoptosis. Ceramide contributes to endoplasmatic reticulum (ER) stress, decreased mitochondrial membrane potential in insulin-secreting cells and mitochondrial release of cytochrome c into the cytosol, which are all triggers of apoptotic cell death. Ceramide-dependent signaling involves activation of extracellularly regulated kinases 1 and 2 (ERK1/2), downregulation of Period (Per)-aryl hydrocarbon receptor nuclear translocator (Arnt)-single-minded (Sim) kinase (PASK), activation of okadaic-acid-sensitive protein phosphatase 2A (PP2A) and stimulation of NADPH-oxidase with generation of superoxides and lipid peroxides. Ceramide reduces the activity of voltage gated potassium (Kv)-channels in insulin-secreting cells. The role of ceramide in β-cell survival and function may be therapeutically relevant, because ceramide formation can be suppressed by pharmacological inhibition of ceramide synthetase and/or sphingomyelinase.
Collapse
Affiliation(s)
- Florian Lang
- University of Tübingen, Institute of Physiology, Germany.
| | | | | |
Collapse
|
19
|
Ernest NJ, Logsdon NJ, McFerrin MB, Sontheimer H, Spiller SE. Biophysical properties of human medulloblastoma cells. J Membr Biol 2010; 237:59-69. [PMID: 20931182 DOI: 10.1007/s00232-010-9306-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2010] [Accepted: 09/22/2010] [Indexed: 01/01/2023]
Abstract
Medulloblastoma is a pediatric high-grade cerebellar malignancy derived from neuronal precursors. Although electrophysiologic characteristics of cerebellar granule neurons at all stages of cell development have been well described, such characterization has not been reported for medulloblastoma. In this study we attempt to characterize important electrophysiologic features of medulloblastoma that may distinguish it from the surrounding cerebellum. Using patient-derived cell lines and tumor tissues, we show that medulloblastoma cells have no inward Na+ current or transient K+ current involved in action potential generation and propagation, typically seen in granule neurons. Expression and function of calcium-activated, large-conductance K+ channels are diminished in medulloblastoma, judged by electrophysiology and Western analysis. The resting membrane potential of medulloblastoma cells in culture is quite depolarized compared to granule neurons. Interestingly, medulloblastoma cells express small, fast-inactivating calcium currents consistent with T-type calcium channels, but these channels are activated only from hyperpolarized potentials, which are unlikely to occur. Additionally, a background acid-sensitive K+ current is present with features characteristic of TASK1 or TASK3 channels, such as inhibition by ruthenium red. Western analysis confirms expression of TASK1 and TASK3. In describing the electrophysiologic characteristics of medulloblastoma, one can see features that resemble other high-grade malignancies as opposed to normal cerebellar granule neurons. This supports the notion that the malignant phenotype of medulloblastoma is characterized by unique changes in ion channel expression.
Collapse
Affiliation(s)
- Nola Jean Ernest
- Department of Pediatrics, University of Alabama School of Medicine, 1719 6th Ave. S., CIRC 252A, Birmingham, AL 35294, USA
| | | | | | | | | |
Collapse
|
20
|
Cacas JL. Devil inside: does plant programmed cell death involve the endomembrane system? PLANT, CELL & ENVIRONMENT 2010; 33:1453-1473. [PMID: 20082668 DOI: 10.1111/j.1365-3040.2010.02117.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Eukaryotic cells have to constantly cope with environmental cues and integrate developmental signals. Cell survival or death is the only possible outcome. In the field of animal biology, tremendous efforts have been put into the understanding of mechanisms underlying cell fate decision. Distinct organelles have been proven to sense a broad range of stimuli and, if necessary, engage cell death signalling pathway(s). Over the years, forward and reverse genetic screens have uncovered numerous regulators of programmed cell death (PCD) in plants. However, to date, molecular networks are far from being deciphered and, apart from the autophagic compartment, no organelles have been assigned a clear role in the regulation of cellular suicide. The endomembrane system (ES) seems, nevertheless, to harbour a significant number of cell death mediators. In this review, the involvement of this system in the control of plant PCD is discussed in-depth, as well as compared and contrasted with what is known in animal and yeast systems.
Collapse
Affiliation(s)
- Jean-Luc Cacas
- Institut de Recherche pour le Développement, Equipe 2, Mécanismes des Résistances, Montpellier Cedex 5, France.
| |
Collapse
|
21
|
Solé L, Roura-Ferrer M, Pérez-Verdaguer M, Oliveras A, Calvo M, Fernández-Fernández JM, Felipe A. KCNE4 suppresses Kv1.3 currents by modulating trafficking, surface expression and channel gating. J Cell Sci 2009; 122:3738-48. [PMID: 19773357 DOI: 10.1242/jcs.056689] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Voltage-dependent potassium channels (Kv) play a crucial role in the activation and proliferation of leukocytes. Kv channels are either homo- or hetero-oligomers. This composition modulates their surface expression and serves as a mechanism for regulating channel activity. Kv channel interaction with accessory subunits provides mechanisms for channels to respond to stimuli beyond changes in membrane potential. Here, we demonstrate that KCNE4 (potassium voltage-gated channel subfamily E member 4), but not KCNE2, functions as an inhibitory Kv1.3 partner in leukocytes. Kv1.3 trafficking, targeting and activity are altered by the presence of KCNE4. KCNE4 decreases current density, slows activation, accelerates inactivation, increases cumulative inactivation, retains Kv1.3 in the ER and impairs channel targeting to lipid raft microdomains. KCNE4 associates with Kv1.3 in the ER and decreases the number of Kv1.3 channels at the cell surface, which diminishes cell excitability. Kv1.3 and KCNE4 are differentially regulated upon activation or immunosuppression in macrophages. Thus, lipopolysaccharide-induced activation increases Kv1.3 and KCNE4 mRNA, whereas dexamethasone triggers a decrease in Kv1.3 with no changes in KCNE4. The channelosome composition determines the activity and affects surface expression and membrane localization. Therefore, KCNE4 association might play a crucial role in controlling immunological responses. Our results indicate that KCNE ancillary subunits could be new targets for immunomodulation.
Collapse
Affiliation(s)
- Laura Solé
- Departament de Bioquímica i Biologia Molecular, Molecular Physiology Laboratory, Institut de Biomedicina (IBUB), Universitat de Barcelona, Avda. Diagonal 645, 08028 Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
22
|
Jang SH, Kang KS, Ryu PD, Lee SY. Kv1.3 voltage-gated K+ channel subunit as a potential diagnostic marker and therapeutic target for breast cancer. BMB Rep 2009; 42:535-9. [DOI: 10.5483/bmbrep.2009.42.8.535] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
23
|
Sphingomyelinase dependent apoptosis following treatment of pancreatic beta-cells with amyloid peptides Aß1-42 or IAPP. Apoptosis 2009; 14:878-89. [DOI: 10.1007/s10495-009-0364-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
24
|
Noe J, Petrusca D, Rush N, Deng P, VanDemark M, Berdyshev E, Gu Y, Smith P, Schweitzer K, Pilewsky J, Natarajan V, Xu Z, Obukhov AG, Petrache I. CFTR regulation of intracellular pH and ceramides is required for lung endothelial cell apoptosis. Am J Respir Cell Mol Biol 2009; 41:314-23. [PMID: 19168702 DOI: 10.1165/rcmb.2008-0264oc] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The functional significance of the expression of cystic fibrosis transmembrane regulator (CFTR) on endothelial cells has not yet been elucidated. Since CFTR has been implicated in the regulation of intracellular sphingolipid levels, which are important regulators of endothelial cell apoptosis in response to various insults, we investigated the role of CFTR in the apoptotic responses of lung endothelial cells. CFTR was detected as a functional chloride channel in primary lung endothelial cells isolated from both pulmonary arteries (human or mouse) and bronchial arteries (sheep). Both specific CFTR inhibition with 2-(phenylamino) benzoic acid diphenylamine-2-carboxylic acid, 5-[(4-carboxyphenyl)methylene]-2-thioxo-3-[(3-trifluoromethyl)phenyl-4-thiazolidinone (CFTR(inh)-172), or 5-nitro-2-(3-phenylpropylamino)benzoic acid and CFTR knockdown significantly attenuated endothelial cell apoptosis induced by staurosporine or H(2)O(2). CFTR(inh)-172 treatment prevented the increases in the ceramide:sphingosine-1 phosphate ratio induced by H(2)O(2) in lung endothelial cells. Replenishing endogenous ceramides via sphingomyelinase supplementation restored the susceptibility of CFTR-inhibited lung endothelial cells to H(2)O(2)-induced apoptosis. Similarly, the anti-apoptotic phenotype of CFTR-inhibited cells was reversed by lowering the intracellular pH, and was reproduced by alkalinization before H(2)O(2) challenge. TUNEL staining and active caspase-3 immunohistochemistry indicated that cellular apoptosis was decreased in lung explants from patients with cystic fibrosis compared with those with smoking-induced chronic obstructive lung disease, especially in the alveolar tissue and vascular endothelium. In conclusion, CFTR function is required for stress-induced apoptosis in lung endothelial cells by maintaining adequate intracellular acidification and ceramide activation. These results may have implications in the pathogenesis of cystic fibrosis, where aberrant endothelial cell death may dysregulate lung vascular homeostasis, contributing to abnormal angiogenesis and chronic inflammation.
Collapse
Affiliation(s)
- Julie Noe
- Section of Pulmonology and Critical Care, Department of Pediatrics, Indiana University, Indianapolis, Indiana 46202-5120, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Garcia-Marcos M, Dehaye JP, Marino A. Membrane compartments and purinergic signalling: the role of plasma membrane microdomains in the modulation of P2XR-mediated signalling. FEBS J 2008; 276:330-40. [DOI: 10.1111/j.1742-4658.2008.06794.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
26
|
Rotenone inhibits delayed rectifier K+ current via a protein kinase A-dependent mechanism. Neuroreport 2008; 19:1401-5. [DOI: 10.1097/wnr.0b013e32830d149e] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
27
|
Jessica Chen M, Sepramaniam S, Armugam A, Shyan Choy M, Manikandan J, Melendez AJ, Jeyaseelan K, Sang Cheung N. Water and ion channels: crucial in the initiation and progression of apoptosis in central nervous system? Curr Neuropharmacol 2008; 6:102-16. [PMID: 19305791 PMCID: PMC2647147 DOI: 10.2174/157015908784533879] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2007] [Revised: 09/09/2007] [Accepted: 10/01/2007] [Indexed: 12/14/2022] Open
Abstract
Programmed cell death (PCD), is a highly regulated and sophisticated cellular mechanism that commits cell to isolated death fate. PCD has been implicated in the pathogenesis of numerous neurodegenerative disorders. Countless molecular events underlie this phenomenon, with each playing a crucial role in death commitment. A precedent event, apoptotic volume decrease (AVD), is ubiquitously observed in various forms of PCD induced by different cellular insults. Under physiological conditions, cells when subjected to osmotic fluctuations will undergo regulatory volume increase/decrease (RVI/RVD) to achieve homeostatic balance with neurons in the brain being additionally protected by the blood-brain-barrier. However, during AVD following apoptotic trigger, cell undergoes anistonic shrinkage that involves the loss of water and ions, particularly monovalent ions e.g. K(+), Na(+) and Cl(-). It is worthwhile to concentrate on the molecular implications underlying the loss of these cellular components which posed to be significant and crucial in the successful propagation of the apoptotic signals. Microarray and real-time PCR analyses demonstrated several ion and water channel genes are regulated upon the onset of lactacystin (a proteosomal inhibitor)-mediated apoptosis. A time course study revealed that gene expressions of water and ion channels are being modulated just prior to apoptosis, some of which are aquaporin 4 and 9, potassium channels and chloride channels. In this review, we shall looked into the molecular protein machineries involved in the execution of AVD in the central nervous system (CNS), and focus on the significance of movements of each cellular component in affecting PCD commitment, thus provide some pharmacological advantages in the global apoptotic cell death.
Collapse
Affiliation(s)
- Minghui Jessica Chen
- Departments of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Sugunavathi Sepramaniam
- Departments of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Arunmozhiarasi Armugam
- Departments of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Meng Shyan Choy
- Departments of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Jayapal Manikandan
- Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Alirio J Melendez
- Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Kandiah Jeyaseelan
- Departments of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Nam Sang Cheung
- Departments of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| |
Collapse
|
28
|
Gan SW, Ng L, Lin X, Gong X, Torres J. Structure and ion channel activity of the human respiratory syncytial virus (hRSV) small hydrophobic protein transmembrane domain. Protein Sci 2008; 17:813-20. [PMID: 18369195 DOI: 10.1110/ps.073366208] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The small hydrophobic (SH) protein from the human respiratory syncytial virus (hRSV) is a glycoprotein of approximately 64 amino acids with one putative alpha-helical transmembrane domain. Although SH protein is important for viral infectivity, its exact role during viral infection is not clear. Herein, we have studied the secondary structure, orientation, and oligomerization of the transmembrane domain of SH (SH-TM) in the presence of lipid bilayers. Only one oligomer, a pentamer, was observed in PFO-PAGE. Using polarized attenuated total reflection-Fourier transform infrared (PATR-FTIR) spectroscopy, we show that the SH-TM is alpha-helical. The rotational orientation of SH-TM was determined by site-specific infrared dichroism (SSID) at two consecutive isotopically labeled residues. This orientation is consistent with that of an evolutionary conserved pentameric model obtained from a global search protocol using 13 homologous sequences of RSV. Conductance studies of SH-TM indicate ion channel activity, which is cation selective, and inactive below the predicted pK(a) of histidine. Thus, our results provide experimental evidence that the transmembrane domain of SH protein forms pentameric alpha-helical bundles that form cation-selective ion channels in planar lipid bilayers. We provide a model for this pore, which should be useful in mutagenesis studies to elucidate its role during the virus cycle.
Collapse
Affiliation(s)
- Siok Wan Gan
- School of Biological Sciences, Nanyang Technological University, 637551 Singapore
| | | | | | | | | |
Collapse
|
29
|
Biju KC, Marks DR, Mast TG, Fadool DA. Deletion of voltage-gated channel affects glomerular refinement and odorant receptor expression in the mouse olfactory system. J Comp Neurol 2008; 506:161-79. [PMID: 18022950 DOI: 10.1002/cne.21540] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Olfactory sensory neurons (OSNs) expressing a specific odorant receptor (OR) gene send axonal projections to specific glomeruli, creating a stereotypic olfactory sensory map. Odorant receptor sequence, G-protein cAMP signaling, and axon guidance molecules have been shown to direct axons of OSNs toward central targets in the olfactory bulb (OB). Although the OR sequence may act as one determinant, our objective was to elucidate the extent by which voltage-dependent activity of postsynaptic projection neurons in the OB centrally influences peripheral development and target destination of OSNs. We bred OR-tagged transgenic mice to homozygosity with mice that had a gene-targeted deletion of the Shaker potassium ion channel (Kv1.3) to elucidate how activity modulates synaptic connections that formulate the sensory map. Here we report that the Kv1.3 ion channel, which is predominantly expressed in mitral cells and whose gene-targeted deletion causes a "super-smeller" phenotype, alters synaptic refinement of axonal projections from OSNs expressing P2, M72, and MOR28 ORs. Absence of Kv1.3 voltage-gated activity caused the formation of small, heterogeneous, and supernumerary glomeruli that failed to undergo neural pruning over development. These changes were accompanied by a significant decrease in the number of P2-, M72-, and MOR28-expressing OSNs, which contained an overexpression of OR protein and G-protein G(olf) in the cilia of the olfactory epithelium. These findings suggest that voltage-gated activity of projection neurons is essential to refine primary olfactory projections and that it regulates proper expression of the transduction machinery at the periphery.
Collapse
Affiliation(s)
- K C Biju
- Department of Biological Science, Program in Neuroscience, Biomedical Research Facility, The Florida State University, Tallahassee, Florida 32306, USA
| | | | | | | |
Collapse
|
30
|
Vicente R, Villalonga N, Calvo M, Escalada A, Solsona C, Soler C, Tamkun MM, Felipe A. Kv1.5 association modifies Kv1.3 traffic and membrane localization. J Biol Chem 2008; 283:8756-64. [PMID: 18218624 DOI: 10.1074/jbc.m708223200] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Kv1.3 activity is determined by raft association. In addition to Kv1.3, leukocytes also express Kv1.5, and both channels control physiological responses. Because the oligomeric composition may modify the channel targeting to the membrane, we investigated heterotetrameric Kv1.3/Kv1.5 channel traffic and targeting in HEK cells. Kv1.3 and Kv1.5 generate multiple heterotetramers with differential surface expression according to the subunit composition. FRET analysis and pharmacology confirm the presence of functional hybrid channels. Raft association was evaluated by cholesterol depletion, caveolae colocalization, and lateral diffusion at the cell surface. Immunoprecipitation showed that both Kv1.3 and heteromeric channels associate with caveolar raft domains. However, homomeric Kv1.3 channels showed higher association with caveolin traffic. Moreover, FRAP analysis revealed higher mobility for hybrid Kv1.3/Kv1.5 than Kv1.3 homotetramers, suggesting that heteromers target to distinct surface microdomains. Studies with lipopolysaccharide-activated macrophages further supported that different physiological mechanisms govern Kv1.3 and Kv1.5 targeting to rafts. Our results implicate the traffic and localization of Kv1.3/Kv1.5 heteromers in the complex regulation of immune system cells.
Collapse
Affiliation(s)
- Rubén Vicente
- Molecular Physiology Laboratory, Departament de Bioquímica i Biologia Molecular, Institut de Biomedicina, Universitat de Barcelona, Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Lang F, Gulbins E, Szabo I, Vereninov A, Huber SM. Ion Channels, Cell Volume, Cell Proliferation and Apoptotic Cell Death. SENSING WITH ION CHANNELS 2008. [DOI: 10.1007/978-3-540-72739-2_4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
32
|
Dopico AM, Tigyi GJ. A glance at the structural and functional diversity of membrane lipids. Methods Mol Biol 2007; 400:1-13. [PMID: 17951723 DOI: 10.1007/978-1-59745-519-0_1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
In the postgenomic era, spatially and temporally regulated molecular interactions as signals are beginning to take center stage in the understanding of fundamental biological events. For years, reductionism derived from the "fluid mosaic" model of the cell membrane has portrayed membrane lipids as rather passive molecules that, whereas separating biologically relevant aqueous phases, provided an environment so that membrane proteins could fulfill the specificity and selectivity required for proper cell signaling. Whereas these roles for membrane lipids still stand, the structural diversity of lipids and their complex arrangement in supramolecular assemblies have expanded such limited, although fundamental roles. Growing developments in the field of membrane lipids help to understand biological phenomena at the nanoscale domain, and reveal this heterogeneous group of organic compounds as a long underestimated group of key regulatory molecules. In this introductory chapter, brief overviews of the structural diversity of membrane lipids, the impact of different lipids on membrane properties, the vertical organization of lipids into rafts and caveolae, and the functional role of lipids as mediators of inter- and intracellular signals are provided. Any comprehensive review on membrane lipids, whether emphasizing structural or functional aspects, will require several volumes. The purpose of this chapter is to provide both introduction and rationale for the selection of topics that lie ahead in this book. For this reason, the list of references primarily includes reviews on particular issues dealing with membrane lipids wherein the reader can find further references.
Collapse
Affiliation(s)
- Alex M Dopico
- Department of Pharmacology, The University of Tennessee Health Science Center, Memphis, TN, USA
| | | |
Collapse
|
33
|
Maggio B, Borioli GA, Del Boca M, De Tullio L, Fanani ML, Oliveira RG, Rosetti CM, Wilke N. Composition-driven surface domain structuring mediated by sphingolipids and membrane-active proteins. Above the nano- but under the micro-scale: mesoscopic biochemical/structural cross-talk in biomembranes. Cell Biochem Biophys 2007; 50:79-109. [PMID: 17968678 DOI: 10.1007/s12013-007-9004-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2007] [Indexed: 10/22/2022]
Abstract
Biomembranes contain a wide variety of lipids and proteins within an essentially two-dimensional structure. The coexistence of such a large number of molecular species causes local tensions that frequently relax into a phase or compositional immiscibility along the lateral and transverse planes of the interface. As a consequence, a substantial microheterogeneity of the surface topography develops and that depends not only on the lipid-protein composition, but also on the lateral and transverse tensions generated as a consequence of molecular interactions. The presence of proteins, and immiscibility among lipids, constitute major perturbing factors for the membrane sculpturing both in terms of its surface topography and dynamics. In this work, we will summarize some recent evidences for the involvement of membrane-associated, both extrinsic and amphitropic, proteins as well as membrane-active phosphohydrolytic enzymes and sphingolipids in driving lateral segregation of phase domains thus determining long-range surface topography.
Collapse
Affiliation(s)
- Bruno Maggio
- Departamento de Química Biológica, Facultad de Ciencias Químicas, Centro de Investigaciones en Química Biológica de Córdoba, Universidad Nacional de Córdoba - CONICET, Argentina.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Vorwerk S, Schiff C, Santamaria M, Koh S, Nishimura M, Vogel J, Somerville C, Somerville S. EDR2 negatively regulates salicylic acid-based defenses and cell death during powdery mildew infections of Arabidopsis thaliana. BMC PLANT BIOLOGY 2007; 7:35. [PMID: 17612410 PMCID: PMC1955445 DOI: 10.1186/1471-2229-7-35] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2006] [Accepted: 07/06/2007] [Indexed: 05/16/2023]
Abstract
BACKGROUND The hypersensitive necrosis response (HR) of resistant plants to avirulent pathogens is a form of programmed cell death in which the plant sacrifices a few cells under attack, restricting pathogen growth into adjacent healthy tissues. In spite of the importance of this defense response, relatively little is known about the plant components that execute the cell death program or about its regulation in response to pathogen attack. RESULTS We isolated the edr2-6 mutant, an allele of the previously described edr2 mutants. We found that edr2-6 exhibited an exaggerated chlorosis and necrosis response to attack by three pathogens, two powdery mildew and one downy mildew species, but not in response to abiotic stresses or attack by the bacterial leaf speck pathogen. The chlorosis and necrosis did not spread beyond inoculated sites suggesting that EDR2 limits the initiation of cell death rather than its spread. The pathogen-induced chlorosis and necrosis of edr2-6 was correlated with a stimulation of the salicylic acid defense pathway and was suppressed in mutants deficient in salicylic acid signaling. EDR2 encodes a novel protein with a pleckstrin homology and a StAR transfer (START) domain as well as a plant-specific domain of unknown function, DUF1336. The pleckstrin homology domain binds to phosphatidylinositol-4-phosphate in vitro and an EDR2:HA:GFP protein localizes to endoplasmic reticulum, plasma membrane and endosomes. CONCLUSION EDR2 acts as a negative regulator of cell death, specifically the cell death elicited by pathogen attack and mediated by the salicylic acid defense pathway. Phosphatidylinositol-4-phosphate may have a role in limiting cell death via its effect on EDR2. This role in cell death may be indirect, by helping to target EDR2 to the appropriate membrane, or it may play a more direct role.
Collapse
Affiliation(s)
- Sonja Vorwerk
- Carnegie Institution, Department of Plant Biology, 260 Panama Street, Stanford CA 94305, USA
- Febit Biotech Gmbh, Heidelberg, Germany
| | - Celine Schiff
- Carnegie Institution, Department of Plant Biology, 260 Panama Street, Stanford CA 94305, USA
- Alcimed, Paris, France
| | - Marjorie Santamaria
- Carnegie Institution, Department of Plant Biology, 260 Panama Street, Stanford CA 94305, USA
| | - Serry Koh
- Carnegie Institution, Department of Plant Biology, 260 Panama Street, Stanford CA 94305, USA
- Sogang University, Seoul, 100-611, South Korea
| | - Marc Nishimura
- Carnegie Institution, Department of Plant Biology, 260 Panama Street, Stanford CA 94305, USA
- Department of Biology, University of North Carolina, Chapel Hill, NC, USA
| | - John Vogel
- Carnegie Institution, Department of Plant Biology, 260 Panama Street, Stanford CA 94305, USA
- USDA-ARS Western Regional Laboratory, Albany, CA, USA
| | - Chris Somerville
- Carnegie Institution, Department of Plant Biology, 260 Panama Street, Stanford CA 94305, USA
- Department of Biological Sciences, Stanford University, Stanford CA 94305, USA
| | - Shauna Somerville
- Carnegie Institution, Department of Plant Biology, 260 Panama Street, Stanford CA 94305, USA
| |
Collapse
|
35
|
Sanxaridis PD, Cronin MA, Rawat SS, Waro G, Acharya U, Tsunoda S. Light-induced recruitment of INAD-signaling complexes to detergent-resistant lipid rafts in Drosophila photoreceptors. Mol Cell Neurosci 2007; 36:36-46. [PMID: 17689976 PMCID: PMC2034437 DOI: 10.1016/j.mcn.2007.05.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2006] [Revised: 05/19/2007] [Accepted: 05/31/2007] [Indexed: 12/01/2022] Open
Abstract
Here, we reveal a novel feature of the dynamic organization of signaling components in Drosophila photoreceptors. We show that the multi-PDZ protein INAD and its target proteins undergo light-induced recruitment to detergent-resistant membrane (DRM) rafts. Reduction of ergosterol, considered to be a key component of lipid rafts in Drosophila, resulted in a loss of INAD-signaling complexes associated with DRM fractions. Genetic analysis demonstrated that translocation of INAD-signaling complexes to DRM rafts requires activation of the entire phototransduction cascade, while constitutive activation of the light-activated channels resulted in recruitment of complexes to DRM rafts in the dark. Mutations affecting INAD and TRP showed that PDZ4 and PDZ5 domains of INAD, as well as the INAD-TRP interaction, are required for translocation of components to DRM rafts. Finally, selective recruitment of phosphorylated, and therefore activatable, eye-PKC to DRM rafts suggests that DRM domains are likely to function in signaling, rather than trafficking.
Collapse
Affiliation(s)
| | - Michelle A. Cronin
- Department of Biology, Boston University, 5 Cummington Street, Boston, MA
| | - Satinder S. Rawat
- Program is Gene Function and Expression, University of Massachusetts Medical School, Worcester, MA
| | - Girma Waro
- Department of Biology, Boston University, 5 Cummington Street, Boston, MA
| | - Usha Acharya
- Program is Gene Function and Expression, University of Massachusetts Medical School, Worcester, MA
| | - Susan Tsunoda
- Department of Biology, Boston University, 5 Cummington Street, Boston, MA
- *Address correspondence to: Susan Tsunoda, Department of Biology, Boston University, 5 Cummington Street, Boston, MA 02215, Telephone: 617-358-1756, FAX: 617-353-8484,
| |
Collapse
|
36
|
Bortner CD, Cidlowski JA. Cell shrinkage and monovalent cation fluxes: role in apoptosis. Arch Biochem Biophys 2007; 462:176-88. [PMID: 17321483 PMCID: PMC1941616 DOI: 10.1016/j.abb.2007.01.020] [Citation(s) in RCA: 191] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2006] [Revised: 01/18/2007] [Accepted: 01/23/2007] [Indexed: 12/25/2022]
Abstract
The loss of cell volume or cell shrinkage has been a morphological hallmark of the programmed cell death process known as apoptosis. This isotonic loss of cell volume has recently been term apoptotic volume decrease or AVD to distinguish it from inherent volume regulatory responses that occurs in cells under anisotonic conditions. Recent studies examining the intracellular signaling pathways that result in this unique cellular characteristic have determined that a fundamental movement of ions, particularly monovalent ions, underlie the AVD process and plays an important role on controlling the cell death process. An efflux of intracellular potassium was shown to be a critical aspect of the AVD process, as preventing this ion loss could protect cells from apoptosis. However, potassium plays a complex role as a loss of intracellular potassium has also been shown to be beneficial to the health of the cell. Additionally, the mechanisms that a cell employs to achieve this loss of intracellular potassium vary depending on the cell type and stimulus used to induce apoptosis, suggesting multiple ways exist to accomplish the same goal of AVD. Additionally, sodium and chloride have been shown to play a vital role during cell death in both the signaling and control of AVD in various apoptotic model systems. This review examines the relationship between this morphological change and intracellular monovalent ions during apoptosis.
Collapse
Affiliation(s)
- Carl D Bortner
- The Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, Department of Health and Human Services, National Institutes of Health, Research Triangle Park, NC 27709, USA.
| | | |
Collapse
|
37
|
Rauen U, Kerkweg U, de Groot H. Iron-dependent vs. iron-independent cold-induced injury to cultured rat hepatocytes: A comparative study in physiological media and organ preservation solutions. Cryobiology 2007; 54:77-86. [PMID: 17289012 DOI: 10.1016/j.cryobiol.2006.11.008] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2006] [Revised: 11/20/2006] [Accepted: 11/20/2006] [Indexed: 11/22/2022]
Abstract
We previously described the entity of cold-induced apoptosis to rat hepatocytes and characterized its major, iron-dependent pathway. However, after cold incubation in some solutions, e.g. cell culture medium, hepatocytes show an additional, yet uncharacterized component of cold-induced injury. We here assessed the effects of organ preservation solutions on both components of cold-induced injury and tried to further characterize the iron-independent component. None of the preservation solutions (University of Wisconsin, histidine-tryptophan-ketoglutarate, Euro-Collins, histidine-lactobionate, sodium-lactobionate-sucrose and Celsior solutions) provided significant protection against cold-induced cell injury (LDH release after 24-h cold incubation/3h rewarming >65% for all solutions); three solutions even enhanced cold-induced injury. However, when the predominant iron-dependent mechanism was eliminated by the addition of iron chelators, all preservation solutions yielded hepatocyte protection that was clearly superior to the one obtainable in cell culture medium or Krebs-Henseleit buffer with iron chelators (LDH release after 24-h cold incubation/3h rewarming <or= 35% in all preservation solutions and 65+/-10% in culture medium). The iron-dependent and the weaker iron-independent component of cold-induced injury showed a different temperature dependence, and in experiments with modified Krebs-Henseleit buffer the principle of the preservation solutions that inhibits the iron-independent component was identified as the low chloride concentration of these solutions (LDH release after cold incubation/rewarming in the presence of iron chelators: 66+/-6% in regular and 22+/-8% in chloride-poor Krebs-Henseleit buffer). Taken together, these results suggest that solutions for cold storage of hepatocytes should be chloride-poor and contain an iron chelator.
Collapse
Affiliation(s)
- Ursula Rauen
- Institut für Physiologische Chemie, Universitätsklinikum, Hufelandstr. 55, 45122 Essen, Germany.
| | | | | |
Collapse
|
38
|
Pottosin II, Valencia-Cruz G, Bonales-Alatorre E, Shabala SN, Dobrovinskaya OR. Methyl-beta-cyclodextrin reversibly alters the gating of lipid rafts-associated Kv1.3 channels in Jurkat T lymphocytes. Pflugers Arch 2007; 454:235-44. [PMID: 17242956 DOI: 10.1007/s00424-007-0208-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2006] [Revised: 12/15/2006] [Accepted: 01/08/2007] [Indexed: 10/23/2022]
Abstract
The voltage-dependent Kv1.3 potassium channels mediate a variety of physiological functions in human T lymphocytes. These channels, along with their multiple regulatory components, are localized in cholesterol-enriched microdomains of plasma membrane (lipid rafts). In this study, patch-clamp technique was applied to explore the impact of the lipid-raft integrity on the Kv1.3 channel functional characteristics. T lymphoma Jurkat cells were treated for 1 h with cholesterol-binding oligosaccharide methyl-beta-cyclodextrin (MbetaCD) in 1 or 2 mM concentration, resulting in depletion of cholesterol by 63 +/- 5 or 75 +/- 4%, respectively. Treatment with 2 mM MbetaCD did not affect the cells viability but retarded the cell proliferation. The latter treatment caused a depolarizing shift of the Kv1.3 channel activation and inactivation by 11 and 6 mV, respectively, and more than twofold decrease in the steady-state activity at depolarizing potentials. Altogether, these changes underlie the depolarization of membrane potential, recorded in a current-clamp mode. The effects of MbetaCD were concentration- and time-dependent and reversible. Both development and recovery of the MbetaCD effects were completed within 1-2 h. Therefore, cholesterol depletion causes significant alterations in the Kv1.3 channel function, whereas T cells possess a potential to reverse these changes.
Collapse
Affiliation(s)
- Igor I Pottosin
- Centro Universitario de Investigaciones Biomédicas (CUIB), Universidad de Colima, Av. 25 de Julio 965, Villa San Sebastian, 28045 Colima, Colima, Mexico
| | | | | | | | | |
Collapse
|
39
|
Lang F, Huber SM, Szabo I, Gulbins E. Plasma membrane ion channels in suicidal cell death. Arch Biochem Biophys 2007; 462:189-94. [PMID: 17316548 DOI: 10.1016/j.abb.2006.12.028] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2006] [Revised: 12/21/2006] [Accepted: 12/28/2006] [Indexed: 02/08/2023]
Abstract
The machinery leading to apoptosis includes altered activity of ion channels. The channels contribute to apoptotic cell shrinkage and modify intracellular ion composition. Cl(-) channels allow the exit of Cl(-), osmolytes and HCO(3)(-) leading to cell shrinkage and cytosolic acidification. K(+) exit through K(+) channels contributes to cell shrinkage and decreases intracellular K(+) concentration, which in turn favours apoptotic cell death. K(+) channel activity further determines the cell membrane potential, a driving force for Ca(2+) entry through Ca(2+) channels. Ca(2+) may enter through unselective cation channels. An increase of cytosolic Ca(2+) may stimulate several enzymes executing apoptosis. Specific ion channel blockers may either promote or counteract suicidal cell death. The present brief review addresses the role of ion channels in the regulation of suicidal cell death with special emphasis on the role of channels in CD95 induced apoptosis of lymphocytes and suicidal death of erythrocytes or eryptosis.
Collapse
Affiliation(s)
- Florian Lang
- Department of Physiology, University of Tübingen, Gmelinstrasse 5, D72076 Tuebingen, Germany.
| | | | | | | |
Collapse
|
40
|
Lang F, Föller M, Lang K, Lang P, Ritter M, Vereninov A, Szabo I, Huber SM, Gulbins E. Cell volume regulatory ion channels in cell proliferation and cell death. Methods Enzymol 2007; 428:209-25. [PMID: 17875419 DOI: 10.1016/s0076-6879(07)28011-5] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Alterations of cell volume are key events during both cell proliferation and apoptotic cell death. Cell proliferation eventually requires an increase of cell volume, and apoptosis is typically paralleled by cell shrinkage. Alterations of cell volume require the participation of ion transport across the cell membrane, including appropriate activity of Cl(-) and K(+) channels. Cl(-) channels modify cytosolic Cl(-) activity and mediate osmolyte flux, and thus influence cell volume. Most Cl(-) channels allow exit of HCO(3)(-), leading to cytosolic acidification, which in turn inhibits cell proliferation and favors apoptosis. K(+) exit through K(+) channels decreases cytosolic K(+) concentration, which may sensitize the cell for apoptotic cell death. K(+) channel activity further maintains the cell membrane potential, a critical determinant of Ca(2+) entry through Ca(2+) channels. Ca(2+) may, in addition, enter through Ca(2+)-permeable cation channels, which, in some cells, are activated by hyperosmotic shock. Increases of cytosolic Ca(2+) activity may trigger both mechanisms required for cell proliferation and mechanisms, leading to apoptosis. Thereby cell proliferation and apoptosis depend on magnitude and temporal organization of Ca(2+) entry, as well as activity of other signaling pathways. Accordingly, the same ion channels may participate in the stimulation of both cell proliferation and apoptosis. Specific ion channel blockers may thus abrogate both cellular mechanisms, depending on cell type and condition.
Collapse
Affiliation(s)
- Florian Lang
- Department of Physiology, University of Tübingen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Wilke N, Dassie SA, Leiva EPM, Maggio B. Externally applied electric fields on immiscible lipid monolayers: repulsion between condensed domains precludes domain migration. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2006; 22:9664-70. [PMID: 17073494 DOI: 10.1021/la0614076] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Lipid and protein molecules anisotropically oriented at a hydrocarbon-aqueous interface configure a dynamic array of self-organized molecular dipoles. Electrostatic fields applied to lipid monolayers have been shown to induce in-plane migration of domains or phase separation in a homogeneous system. In this work, we have investigated the effect of externally applied electrostatic fields on different lipid monolayers exhibiting surface immiscibility. In the monolayers studied, lipids in the condensed state segregate in discontinuous round-shaped domains, with the lipid in the liquid-expanded state forming the continuous phase. The use of fluorescent probes with selective phase partitioning allows analyzing by epifluorescence microscopy the migrations of the domains under the influence of inhomogeneous electric fields applied to the surface. Our observations indicate that a positive potential applied to an electrode placed over the monolayer promotes a repulsion of the domains until a steady state is reached, indicating the presence of a force opposed to the externally applied electric force. The experimental results were modeled by considering that the opposing force is generated by the dipole-dipole repulsion between the domains.
Collapse
Affiliation(s)
- N Wilke
- Departamento de Química Biológica-CIQUIBIC, Departamento de Fisicoquímica-INFIQC, Universidad Nacional de Córdoba, Ciudad Universitaria X5000HUA Córdoba, Argentina.
| | | | | | | |
Collapse
|
42
|
Ipatova OM, Torkhovskaya TI, Zakharova TS, Khalilov EM. Sphingolipids and cell signaling: involvement in apoptosis and atherogenesis. BIOCHEMISTRY (MOSCOW) 2006; 71:713-22. [PMID: 16903825 DOI: 10.1134/s0006297906070030] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
This review considers various functional aspects of cell sphingolipids (sphingomyelin, ceramides) and lysosphingolipids (sphingosine-1-phosphate (S1P) and sphingosine phosphorylcholine). Good evidence now exists that they are actively involved in numerous cell-signaling processes. The enzymes responsible for formation and interconversion of cell sphingolipids (sphingomyelinases, ceramidase, sphingosine kinase, S1P-lyase) exhibit high sensitivity to various stimulating factors. This determines the content of individual cell sphingolipids and therefore the mode of cell response. Special attention is paid to preferential localization of sphingolipids in the rigid plasma membrane domains (rafts) coupled to many signal proteins. The suggestion is discussed that ceramide signaling may be based on the modification of fine molecular interactions in lipid rafts, resulting in its clusterization inducing the signal transduction. The review also highlights involvement of sphingolipids in cell proliferation, apoptosis, and in processes implicated to atherosclerosis.
Collapse
Affiliation(s)
- O M Ipatova
- Institute of Biomedical Chemistry, Moscow, 119121, Russia
| | | | | | | |
Collapse
|
43
|
Oz M. Receptor-independent actions of cannabinoids on cell membranes: Focus on endocannabinoids. Pharmacol Ther 2006; 111:114-44. [PMID: 16584786 DOI: 10.1016/j.pharmthera.2005.09.009] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2005] [Accepted: 09/30/2005] [Indexed: 01/08/2023]
Abstract
Cannabinoids are a structurally diverse group of mostly lipophilic molecules that bind to cannabinoid receptors. In fact, endogenous cannabinoids (endocannabinoids) are a class of signaling lipids consisting of amides and esters of long-chain polyunsaturated fatty acids. They are synthesized from lipid precursors in plasma membranes via Ca(2+) or G-protein-dependent processes and exhibit cannabinoid-like actions by binding to cannabinoid receptors. However, endocannabinoids can produce effects that are not mediated by these receptors. In pharmacologically relevant concentrations, endocannabinoids modulate the functional properties of voltage-gated ion channels including Ca(2+) channels, Na(+) channels, various types of K(+) channels, and ligand-gated ion channels such as serotonin type 3, nicotinic acetylcholine, and glycine receptors. In addition, modulatory effects of endocannabinoids on other ion-transporting membrane proteins such as transient potential receptor-class channels, gap junctions and transporters for neurotransmitters have also been demonstrated. Furthermore, functional properties of G-protein-coupled receptors for different types of neurotransmitters and neuropeptides are altered by direct actions of endocannabinoids. Although the mechanisms of these effects are currently not clear, it is likely that these direct actions of endocannabinoids are due to their lipophilic structures. These findings indicate that additional molecular targets for endocannabinoids exist and that these targets may represent novel sites for cannabinoids to alter either the excitability of the neurons or the response of the neuronal systems. This review focuses on the results of recent studies indicating that beyond their receptor-mediated effects, endocannabinoids alter the functions of ion channels and other integral membrane proteins directly.
Collapse
Affiliation(s)
- Murat Oz
- National Institute on Drug Abuse, NIH/DHHS, Intramural Research Program, Cellular Neurobiology Branch, 5500 Nathan Shock Drive, Baltimore MD, 21224, USA.
| |
Collapse
|
44
|
Wilke N, Maggio B. Effect of externally applied electrostatic fields on the surface topography of ceramide-enriched domains in mixed monolayers with sphingomyelin. Biophys Chem 2006; 122:36-42. [PMID: 16529854 DOI: 10.1016/j.bpc.2006.02.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2005] [Revised: 02/14/2006] [Accepted: 02/16/2006] [Indexed: 10/24/2022]
Abstract
Lipid and protein molecules anisotropically oriented at a hydrocarbon-aqueous interface configure a dynamic array of self-organized molecular dipoles. Electrostatic fields applied to lipid monolayers have been shown to induce in-plane migration of domains or phase separation in a homogeneous system. In this work, we have investigated the effect of externally applied electrostatic fields on the distribution of the condensed ceramide-enriched domains in mixed monolayers with sphingomyelin. In these monolayers, the lipids segregate in different phases at all pressures. This allows analyzing by epifluorescence microscopy the effect of the electrostatic field at all lateral pressure because coexistence of lipid domains in condensed state are always present. Our observations indicate that a positive potential applied to an electrode placed over the monolayer promotes a repulsion of the ceramide-enriched domains which is rather insensitive to the film composition, depends inversely on the lateral pressure and exhibits threshold dependence on the in-plane elasticity.
Collapse
Affiliation(s)
- Natalia Wilke
- Departamento de Química Biológica-CIQUIBIC, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000 Córdoba, Argentina
| | | |
Collapse
|
45
|
Lim CH, Schoonderwoerd K, Kleijer WJ, de Jonge HR, Tilly BC. Regulation of the cell swelling-activated chloride conductance by cholesterol-rich membrane domains. Acta Physiol (Oxf) 2006; 187:295-303. [PMID: 16734766 DOI: 10.1111/j.1748-1716.2006.01534.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
AIM The role of high cholesterol-containing microdomains in the signal transduction cascade leading to the activation of volume-regulated anion channels (VRACs) was studied. METHODS Osmotic cell swelling-induced efflux of 125I- was determined in human epithelial Intestine 407 cells and in skin fibroblasts obtained from healthy controls or Niemann-Pick type C (NPC) patients. Cellular cholesterol content was modulated by pre-incubation with 2-hydroxypropyl-beta-cyclodextrin in the presence of acceptor lipid vesicles. RESULTS Osmotic cell swelling of human Intestine 407 cells leads to the rapid activation of a compensatory anion conductance. Treatment of the cells with cyclodextrin enhanced the response to submaximal hypotonic stimulation by approx. twofold, but did not further increase the efflux elicited by a saturating stimulus. In contrast, the volume-sensitive anion efflux was markedly inhibited when cholesterol-loaded cyclodextrin was used. Potentiation of the response by cholesterol depletion was maintained in caveolin-1 deficient Caco-2 colonocytes as well as in sphingomyelinase-treated Intestine 407 cells, indicating that cholesterol-rich microdomains are not crucially involved. However, treatment of the cells with progesterone, an inhibitor of NPC1-dependent endosomal cholesterol trafficking, not only markedly reduced the hypotonicity-provoked anion efflux, but also prevented its potentiation by cyclodextrin. In addition, the volume-sensitive anion efflux from human NPC skin fibroblasts was significantly smaller when compared with control fibroblasts. CONCLUSIONS The results support a model of regulatory volume decrease involving recruitment of volume-sensitive anion channels from intracellular compartments to the plasma membrane.
Collapse
Affiliation(s)
- C H Lim
- Department of Biochemistry, Erasmus University Medical Center, Rotterdam, The Netherlands
| | | | | | | | | |
Collapse
|
46
|
Gombos I, Kiss E, Detre C, László G, Matkó J. Cholesterol and sphingolipids as lipid organizers of the immune cells’ plasma membrane: Their impact on the functions of MHC molecules, effector T-lymphocytes and T-cell death. Immunol Lett 2006; 104:59-69. [PMID: 16388855 DOI: 10.1016/j.imlet.2005.11.021] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2005] [Revised: 11/20/2005] [Accepted: 11/20/2005] [Indexed: 12/11/2022]
Abstract
The possible regulatory mechanisms by which glycosphingolipid- and cholesterol-rich membrane microdomains, caveolar and non-caveolar lipid rafts, control the immune response are continuously expanding. In the present overview we will focus on how these membrane-organizing lipids are involved, in collaboration with tetraspanin proteins, in the formation of distinct MHC-I and MHC-II microdomains at the cell surface and will analyze the possible roles of MHC compartmentation in the processes of antigen presentation and regulation of various stages of the cellular immune response. Some basic, lipid raft- and tetraspan mediated mechanisms involved in the formation and function of immunological synapses between various APCs and T-cells will also be discussed. Finally, a new aspect of immune regulation by sphingolipids will be briefly described, namely how can the death or stress signals, leading to ceramide accumulation, result in raft-associated regulatory platforms controlling cell death or antigen-induced, TCRmediated signaling of T-lymphocytes. The influence of these signals and their cross-talk on the fate (death or survival) of T-cells and the outcome of T-cell response will also be discussed.
Collapse
Affiliation(s)
- Imre Gombos
- Institute of Biology, Department of Immunology, Eötvös Lorand University, Budapest, Hungary
| | | | | | | | | |
Collapse
|
47
|
Detre C, Kiss E, Varga Z, Ludányi K, Pászty K, Enyedi A, Kövesdi D, Panyi G, Rajnavölgyi E, Matkó J. Death or survival: Membrane ceramide controls the fate and activation of antigen-specific T-cells depending on signal strength and duration. Cell Signal 2006; 18:294-306. [PMID: 16099142 DOI: 10.1016/j.cellsig.2005.05.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2005] [Accepted: 05/04/2005] [Indexed: 01/17/2023]
Abstract
Sphingomyelinase (SMase)-mediated release of ceramide in the plasma membrane of T-lymphocytes induced by different stimuli such as ligation of Fas/CD95, irradiation, stress, inflammation or anticancer drugs primarily involves mitochondrial apoptosis signaling, but under specific conditions non-apoptotic Fas-signaling was also reported. Here we investigated, using a quantitative simulation model with exogenous C2-ceramide (and SMase), the dependence of activation and fate of T-cells on the strength and duration of ceramide accumulation. A murine, influenza virus hemagglutinin-specific T-helper cell (IP12-7) alone or together with interacting antigen presenting B-cells (APC) was used. C2-ceramide induced apoptosis of TH cells above a 'threshold' stimulus (>25 microM in 'strength' or >30 min in duration), while below the threshold C2-ceramide was non-apoptotic, as confirmed by early and late apoptotic markers (PS-translocation, mitochondrial depolarization, caspase-3 activation, DNA-fragmentation). The modest ceramide stimuli strongly suppressed the calcium response and inhibited several downstream signal events (e.g. ERK1/2-, JNK-phosphorylation, CD69 expression or IL-2 production) in TH cells during both anti-CD3 induced and APC-triggered activation. Ceramide moderately affected the Ca2+ -release from internal stores upon antigen-specific engagement of TCR in immunological synapses, while the influx phase was remarkably reduced in both amplitude and rate, suggesting that the major target(s) of ceramide-effects are membrane-proximal. Ceramide inhibited Kv1.3 potassium channels, store operated Ca2+ -entry (SOC) and depolarized the plasma membrane to which contribution of spontaneously formed ceramide channels is possible. The impaired function of these transporters may be coupled to the quantitative, membrane raft-remodeling effect of ceramide and responsible, in a concerted action, for the suppressed activation. Our results suggest that non-apoptotic Fas stimuli, received from previously activated, FasL+ interacting lymphocytes in the lymph nodes, may negatively regulate subsequent antigen-specific T-cell activation and thus modulate the antigen-specific T-cell response.
Collapse
Affiliation(s)
- Cynthia Detre
- Department of Immunology, Eötvös Lorand University, Pázmány P. sétány 1/C, 1117, Budapest, Hungary
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Li Z, Guo L, Ye C, Zhang D. U50488 inhibits outwardly rectifying potassium channel in PC12 cells via pertussis toxin-sensitive G-protein. Biochem Biophys Res Commun 2006; 340:1184-91. [PMID: 16405915 DOI: 10.1016/j.bbrc.2005.12.134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2005] [Accepted: 12/20/2005] [Indexed: 10/25/2022]
Abstract
This study was undertaken to determine the effect of U50488, a kappa-opioid receptor agonist, on outwardly rectifying potassium channel (Ik) in undifferentiated PC12 cells. Using whole-cell and on-cell patch-clamp techniques, we found that U50488 decreased Ik amplitude in a time-dependent manner and Ik activation was delayed. Single-channel kinetic analysis provided a two-stage model for us to illuminate the blockage effect induced by U50488. To identify whether U50488 mediates the effect through opioid receptor and G-protein, several specific blockers and activators were used. Not only naloxone but also PTX and GDPbetaS abolished U50488-induced suppression; however, such effect was not observed when cAMP or other adenylyl cyclase activators were used. It is postulated that kappa-opioid receptor and Gi/o protein, but not cAMP, are involved in U50488-induced suppression of Ik.
Collapse
Affiliation(s)
- Zhisong Li
- Department of Pharmacology, School of Basic Medicine, Peking Union Medical College, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing 100005, China
| | | | | | | |
Collapse
|
49
|
Lang F, Föller M, Lang KS, Lang PA, Ritter M, Gulbins E, Vereninov A, Huber SM. Ion channels in cell proliferation and apoptotic cell death. J Membr Biol 2006; 205:147-57. [PMID: 16362503 DOI: 10.1007/s00232-005-0780-5] [Citation(s) in RCA: 249] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2005] [Indexed: 12/11/2022]
Abstract
Cell proliferation and apoptosis are paralleled by altered regulation of ion channels that play an active part in the signaling of those fundamental cellular mechanisms. Cell proliferation must--at some time point--increase cell volume and apoptosis is typically paralleled by cell shrinkage. Cell volume changes require the participation of ion transport across the cell membrane, including appropriate activity of Cl- and K+ channels. Besides regulating cytosolic Cl- activity, osmolyte flux and, thus, cell volume, most Cl- channels allow HCO3- exit and cytosolic acidification, which inhibits cell proliferation and favors apoptosis. K+ exit through K+ channels may decrease intracellular K+ concentration, which in turn favors apoptotic cell death. K+ channel activity further maintains the cell membrane potential, a critical determinant of Ca2+ entry through Ca2+ channels. Cytosolic Ca2+ may trigger mechanisms required for cell proliferation and stimulate enzymes executing apoptosis. The switch between cell proliferation and apoptosis apparently depends on the magnitude and temporal organization of Ca2+ entry and on the functional state of the cell. Due to complex interaction with other signaling pathways, a given ion channel may play a dual role in both cell proliferation and apoptosis. Thus, specific ion channel blockers may abrogate both fundamental cellular mechanisms, depending on cell type, regulatory environment and condition of the cell. Clearly, considerable further experimental effort is required to fully understand the complex interplay between ion channels, cell proliferation and apoptosis.
Collapse
Affiliation(s)
- F Lang
- Department of Physiology, University of Tübingen, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Garcia-Marcos M, Fontanils U, Aguirre A, Pochet S, Dehaye JP, Marino A. Role of sodium in mitochondrial membrane depolarization induced by P2X7 receptor activation in submandibular glands. FEBS Lett 2005; 579:5407-13. [PMID: 16198349 DOI: 10.1016/j.febslet.2005.08.074] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2005] [Revised: 08/20/2005] [Accepted: 08/26/2005] [Indexed: 11/27/2022]
Abstract
The effect of ATP on mitochondrial membrane depolarization in rat submandibular glands was investigated. Exposure of the cell suspension to high concentrations of ATP induced a sustained depolarization of mitochondrial membrane. This effect was blocked in the presence of magnesium and reproduced by low concentrations of 2',3'-O-(4-benzoylbenzoyl)adenosine 5'-triphosphate (BzATP), suggesting the implication of the P2X(7) purinergic receptor. This point was confirmed by comparison of the response to ATP by wild-type and P2X(7) knock-out (P2X(7)R(-/-)) mice. Mitochondria took up calcium after ATP stimulation but the depolarization of the mitochondrial membrane by ATP was not affected by the removal of calcium from the extracellular medium. It was nearly fully suppressed in the absence of sodium and partially blocked by the mitochondrial Na/Ca exchanger inhibitor 7-chloro-5-(2-chlorophenyl)-1,5-dihydro-4,1-benzothiazepin-2(3H)-one (CGP-37157). Both ATP and monensin increased the uptake of extracellular sodium (as shown by the depolarization of the plasma membrane) but the sodium ionophore did not affect the mitochondrial membrane potential. It is concluded that the activation of P2X(7) receptors depolarizes the mitochondrial membrane. The uptake of extracellular sodium is necessary but not sufficient to induce this response.
Collapse
Affiliation(s)
- M Garcia-Marcos
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad del País Vasco, Barrio Sarriena S/N Leioa, Spain
| | | | | | | | | | | |
Collapse
|