1
|
Guerriero I, Monaco G, Coppola V, Orlacchio A. Serum and Glucocorticoid-Inducible Kinase 1 (SGK1) in NSCLC Therapy. Pharmaceuticals (Basel) 2020; 13:ph13110413. [PMID: 33266470 PMCID: PMC7700219 DOI: 10.3390/ph13110413] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 12/21/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) remains the most prevalent and one of the deadliest cancers worldwide. Despite recent success, there is still an urgent need for new therapeutic strategies. It is also becoming increasingly evident that combinatorial approaches are more effective than single modality treatments. This review proposes that the serum and glucocorticoid-inducible kinase 1 (SGK1) may represent an attractive target for therapy of NSCLC. Although ubiquitously expressed, SGK1 deletion in mice causes only mild defects of ion physiology. The frequent overexpression of SGK1 in tumors is likely stress-induced and provides a therapeutic window to spare normal tissues. SGK1 appears to promote oncogenic signaling aimed at preserving the survival and fitness of cancer cells. Most importantly, recent investigations have revealed the ability of SGK1 to skew immune-cell differentiation toward pro-tumorigenic phenotypes. Future studies are needed to fully evaluate the potential of SGK1 as a therapeutic target in combinatorial treatments of NSCLC. However, based on what is currently known, SGK1 inactivation can result in anti-oncogenic effects both on tumor cells and on the immune microenvironment. A first generation of small molecules to inactivate SGK1 has already been already produced.
Collapse
Affiliation(s)
- Ilaria Guerriero
- Biogem Institute for Genetic Research Gaetano Salvatore, Ariano Irpino, 83031 Avellino, Italy; (I.G.); (G.M.)
| | - Gianni Monaco
- Biogem Institute for Genetic Research Gaetano Salvatore, Ariano Irpino, 83031 Avellino, Italy; (I.G.); (G.M.)
| | - Vincenzo Coppola
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- Arthur G. James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
- Correspondence: (V.C.); (A.O.); Tel.: +1-614-688-8038 (V.C.); +1-646-552-0641 (A.O.)
| | - Arturo Orlacchio
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- Arthur G. James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
- Correspondence: (V.C.); (A.O.); Tel.: +1-614-688-8038 (V.C.); +1-646-552-0641 (A.O.)
| |
Collapse
|
2
|
Maestro I, Boya P, Martinez A. Serum- and glucocorticoid-induced kinase 1, a new therapeutic target for autophagy modulation in chronic diseases. Expert Opin Ther Targets 2020; 24:231-243. [PMID: 32067528 DOI: 10.1080/14728222.2020.1730328] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Introduction: Autophagy, a basic cellular degradation pathway essential for survival, is altered both in aging and in many chronic human diseases, including infections, cancer, heart disease, and neurodegeneration. Identifying new therapeutic targets for the control and modulation of autophagy events is therefore of utmost importance in drug discovery. Serum and glucocorticoid activated kinase 1 (SGK1), known for decades for its role in ion channel modulation, is now known to act as a switch for autophagy homeostasis, and has emerged as a novel and important therapeutic target likely to attract considerable research attention in the coming years.Areas covered: In this general review of SGK1 we describe the kinase's structure and its roles in physiological and pathological contexts. We also discuss small-molecule modulators of SGK1 activity. These modulators are of particular interest to medicinal chemists and pharmacists seeking to develop more potent and selective drug candidates for SGK1, which, despite its key role in autophagy, remains relatively understudied.Expert opinion: The main future challenges in this area are (i) deciphering the role of SGK1 in selective autophagy processes (e.g. mitophagy, lipophagy, and aggrephagy); (ii) identifying selective allosteric modulators of SGK1 with specific biological functions; and (iii) conducting first-in-man clinical studies.
Collapse
Affiliation(s)
- Inés Maestro
- Centro de Investigaciones Biológicas Margarita Salas-CSIC, Madrid, Spain
| | - Patricia Boya
- Centro de Investigaciones Biológicas Margarita Salas-CSIC, Madrid, Spain
| | - Ana Martinez
- Centro de Investigaciones Biológicas Margarita Salas-CSIC, Madrid, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
3
|
Ma X, Tannu S, Allocco J, Pan J, Dipiero J, Wong P. A mouse model of heart failure exhibiting pulmonary edema and pleural effusion: Useful for testing new drugs. J Pharmacol Toxicol Methods 2019; 96:78-86. [PMID: 30738210 DOI: 10.1016/j.vascn.2019.02.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 01/11/2019] [Accepted: 02/03/2019] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Mouse models of chronic heart failure (HF) have been widely used in HF research. However, the current HF models most often use the C57BL/6 mouse strain and do not show the clinically relevant characteristics of pulmonary congestion. In this study, we developed a robust mouse model of HF in the BALB/c mouse strain, exhibiting pulmonary edema and pleural effusion, and we validated the model using the standard pharmacological therapies in patients with chronic HF and reduced ejection fraction (HFrEF) or acute decompensated HF. METHODS After induction of myocardial infarction (MI) by permanent ligation of the left coronary artery in BALB/c mice, the cardiac function, pulmonary congestion, disease biomarkers, and survival were evaluated using the angiotensin converting enzyme inhibitor enalapril or the loop diuretic furosemide. Enalapril was administered 4 weeks post-MI for 6 weeks or furosemide was given 10 weeks post-MI for 4 days, when pulmonary congestion was evident. RESULTS Compared to sham controls, MI mice developed systolic dysfunction, exhibited lung weight increase at 4 weeks, and progressively developed pleural effusion (60% of the animals) at 10 weeks. Compared to the vehicle, enalapril significantly reduced the lung weight and pleural effusion, preserved systolic function, and improved survival. Furthermore, furosemide completely abolished the pleural effusion. Enalapril or furosemide also reduced the plasma brain natriuretic peptide concentration. DISCUSSION The post-MI HF in BALB/c mice shows reproducible and robust pulmonary congestion and may be a clinically relevant model for novel drug testing for treatment in patients with HFrEF or acute decompensated HF.
Collapse
Affiliation(s)
- Xiuying Ma
- Cardiovascular & Fibrosis Discovery Biology, Research & Development, Bristol-Myers Squibb Company, 311 Pennington Rocky Hill Road, Pennington, NJ 08534, USA.
| | - Shahid Tannu
- Cardiovascular & Fibrosis Discovery Biology, Research & Development, Bristol-Myers Squibb Company, 311 Pennington Rocky Hill Road, Pennington, NJ 08534, USA.
| | - John Allocco
- Cardiovascular & Fibrosis Discovery Biology, Research & Development, Bristol-Myers Squibb Company, 311 Pennington Rocky Hill Road, Pennington, NJ 08534, USA.
| | - Jie Pan
- Cardiovascular & Fibrosis Discovery Biology, Research & Development, Bristol-Myers Squibb Company, 311 Pennington Rocky Hill Road, Pennington, NJ 08534, USA.
| | - Janet Dipiero
- Cardiovascular & Fibrosis Discovery Biology, Research & Development, Bristol-Myers Squibb Company, 311 Pennington Rocky Hill Road, Pennington, NJ 08534, USA.
| | - Pancras Wong
- Cardiovascular & Fibrosis Discovery Biology, Research & Development, Bristol-Myers Squibb Company, 311 Pennington Rocky Hill Road, Pennington, NJ 08534, USA.
| |
Collapse
|
4
|
Abstract
Since its discovery, aldosterone and ion modulation have been entwined. While scientific investigations throughout the decades have emphasized aldosterone's connection to Na+, K+, and H+ homeostasis, more recent research has demonstrated a relationship between aldosterone and Mg2+, Ca2+, and Cl- homeostasis. The mechanisms connecting aldosterone to ion regulation frequently involve ion channels; the membrane localized proteins containing at least one aqueous pore for ion conduction. In order to precisely control intracellular or intraorganelle ion concentrations, ion channels have evolved highly specific regions within the conduction pore that select ions by charge, size, and/or dehydration energy requirement, meaning aldosterone must be able to modulate multiple ion channels to regulate the many ions described above. The list of ion channels presently connected to aldosterone includes ENaC (Na+), ROMK/BK (K+), TRPV4/5/6 (Ca2+), TRPM7/6 (Mg2+), and ClC-K/CFTR (Cl-), among others. This list is only expected to grow over time, as the promiscuity of aldosterone becomes more understood.
Collapse
Affiliation(s)
| | - Rhian M Touyz
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Alvin Shrier
- Department of Physiology, McGill University, Montreal, QC, Canada.
| |
Collapse
|
5
|
Fakhri H, Pathare G, Fajol A, Zhang B, Bock T, Kandolf R, Schleicher E, Biber J, Föller M, Lang UE, Lang F. Regulation of mineral metabolism by lithium. Pflugers Arch 2014; 466:467-475. [PMID: 24013758 DOI: 10.1007/s00424-013-1340-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 08/21/2013] [Accepted: 08/21/2013] [Indexed: 12/12/2022]
Abstract
Lithium, an inhibitor of glycogen synthase kinase 3 (GSK3), is widely used for the treatment of mood disorders. Side effects of lithium include nephrogenic diabetes insipidus, leading to renal water loss. Dehydration has in turn been shown to downregulate Klotho, which is required as co-receptor for the downregulation of 1,25(OH)2D3 formation by fibroblast growth factor 23 (FGF23). FGF23 decreases and 1,25(OH)2D3 stimulates renal tubular phosphate reabsorption. The present study explored whether lithium influences renal Klotho expression, FGF23 serum levels, 1,25(OH)2D3 formation, and renal phosphate excretion. To this end, mice were analyzed after a 14-day period of sham treatment or of treatment with lithium (200 mg/kg/day subcutaneously). Serum antidiuretic hormone (ADH), FGF23, and 1,25(OH)2D3 concentrations were determined by ELISA or EIA, renal Klotho protein abundance and GSK3 phosphorylation were analyzed by Western blotting, and serum phosphate and calcium concentration by photometry. Lithium treatment significantly increased renal GSK3 phosphorylation, enhanced serum ADH and FGF23 concentrations, downregulated renal Klotho expression, stimulated renal calcium and phosphate excretion, and decreased serum 1,25(OH)2D3 and phosphate concentrations. In conclusion, lithium treatment upregulates FGF23 formation, an effect paralleled by substantial decrease of serum 1,25(OH)2D3, and phosphate concentrations and thus possibly affecting tissue calcification.
Collapse
Affiliation(s)
- Hajar Fakhri
- Department of Physiology, University of Tübingen, Tübingen, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Andrukhova O, Smorodchenko A, Egerbacher M, Streicher C, Zeitz U, Goetz R, Shalhoub V, Mohammadi M, Pohl EE, Lanske B, Erben RG. FGF23 promotes renal calcium reabsorption through the TRPV5 channel. EMBO J 2014; 33:229-46. [PMID: 24434184 PMCID: PMC3983685 DOI: 10.1002/embj.201284188] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
αKlotho is thought to activate the epithelial calcium channel Transient Receptor Potential Vanilloid-5 (TRPV5) in distal renal tubules through its putative glucuronidase/sialidase activity, thereby preventing renal calcium loss. However, αKlotho also functions as the obligatory co-receptor for fibroblast growth factor-23 (FGF23), a bone-derived phosphaturic hormone. Here, we show that renal calcium reabsorption and renal membrane abundance of TRPV5 are reduced in Fgf23 knockout mice, similar to what is seen in αKlotho knockout mice. We further demonstrate that αKlotho neither co-localizes with TRPV5 nor is regulated by FGF23. Rather, apical membrane abundance of TRPV5 in renal distal tubules and thus renal calcium reabsorption are regulated by FGF23, which binds the FGF receptor-αKlotho complex and activates a signaling cascade involving ERK1/2, SGK1, and WNK4. Our data thereby identify FGF23, not αKlotho, as a calcium-conserving hormone in the kidney.
Collapse
|
7
|
Abstract
TRPV5 is one of the two channels in the TRPV family that exhibit high selectivity to Ca(2+) ions. TRPV5 mediates Ca(2+) influx into cells as the first step to transport Ca(2+) across epithelia. The specialized distribution in the distal tubule of the kidney positions TRPV5 as a key player in Ca(2+) reabsorption. The responsiveness in expression and/or activity of TRPV5 to hormones such as 1,25-dihydroxyvitamin D3, parathyroid hormone, estrogen, and testosterone makes TRPV5 suitable for its role in the fine-tuning of Ca(2+) reabsorption. This role is further optimized by the modulation of TRPV5 trafficking and activity via its binding partners; co-expressed proteins; tubular factors such as calbindin-D28k, calmodulin, klotho, uromodulin, and plasmin; extracellular and intracellular factors such as proton, Mg(2+), Ca(2+), and phosphatidylinositol-4,5-bisphosphate; and fluid flow. These regulations allow TRPV5 to adjust its overall activity in response to the body's demand for Ca(2+) and to prevent kidney stone formation. A point mutation in mouse Trpv5 gene leads to hypercalciuria similar to Trpv5 knockout mice, suggesting a possible role of TRPV5 in hypercalciuric disorders in humans. In addition, the single nucleotide polymorphisms in Trpv5 gene prevalently present in African descents may contribute to the efficient renal Ca(2+) reabsorption among African descendants. TRPV5 represents a potential therapeutic target for disorders with altered Ca(2+) homeostasis.
Collapse
Affiliation(s)
- Tao Na
- Cell Collection and Research Center, Institute for Biological Product Control, National Institutes for Food and Drug Control, Beijing, China
| | | |
Collapse
|
8
|
Serum- and glucocorticoid-inducible kinase 1 in the regulation of renal and extrarenal potassium transport. Clin Exp Nephrol 2011; 16:73-80. [DOI: 10.1007/s10157-011-0488-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Accepted: 04/08/2010] [Indexed: 01/24/2023]
|
9
|
Kobayashi M, Yasuoka Y, Sato Y, Zhou M, Abe H, Kawahara K, Okamoto H. Upregulation of calbindin D28k in the late distal tubules in the potassium-loaded adrenalectomized mouse kidney. Clin Exp Nephrol 2011; 15:355-362. [PMID: 21347582 DOI: 10.1007/s10157-011-0414-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2010] [Accepted: 01/14/2011] [Indexed: 10/18/2022]
Abstract
BACKGROUND The calcium (Ca)-activated potassium (K) channel is an alternative K-secretory pathway in the apical membranes of the distal nephrons of adrenalectomized (ADX) animals. As a potential approach for estimating intracellular Ca(2+) increase, we investigated normal and ADX mice to determine whether dietary K intake would stimulate the expression of the calbindin D28k protein, a cytosolic Ca(2+)-binding protein, along the distal nephron consisting of the early and late portions of the distal convoluted tubule (DCT1 and DCT2, respectively), the CNT, and CCD. METHODS ADX mice received a control diet plus either 0.3% NaCl solution (C) or a 0.3% NaCl plus 3% KCl solution (HK) for 7 days before the experiment. RESULTS The mean plasma K concentration and pH were significantly (P < 0.001) higher (7.9 ± 0.3 mEq/l) and lower (7.28 ± 0.02) in the K-loaded ADX mice than in the control ADX mice. The mean urinary K excretion (mEq/day) and urine flow (ml/day) increased significantly (P < 0.0001) from 0.47 ± 0.07 (C) to 4.80 ± 0.57 (HK) and from 1.1 ± 0.2 (C) to 8.8 ± 1.0 (HK). Urinary Ca excretion significantly (P < 0.005 and P < 0.05, respectively) increased in K-loaded normal and ADX mice compared with control normal and ADX mice. Immunofluorescence studies revealed that the relative staining of calbindin was 167.0 ± 15.4%, 291.3 ± 13.8%, and 206.3 ± 11.3% for DCT1, DCT2/CNT, and CCD of normal control mice, respectively. These values increased significantly (P < 0.0001) only in DCT2/CNT (574.8 ± 42%) of the K-loaded ADX mice. CONCLUSION Upregulation of calbindin in the late distal tubule suggests that Ca(2+)-dependent K transport may function as an alternative mechanism for urinary K excretion in ADX mice.
Collapse
Affiliation(s)
- Mizuka Kobayashi
- Department of Anesthesiology, Kitasato University Graduate School of Medical Sciences, 1-15-1 Kitasato, Minami-ku, Sagamihara, 252-0374, Japan
| | - Yukiko Yasuoka
- Department of Cellular and Molecular Physiology, Kitasato University Graduate School of Medical Sciences, 1-15-1 Kitasato, Minami-ku, Sagamihara, 252-0374, Japan.,Department of Physiology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, 252-0374, Japan
| | - Yuichi Sato
- Department of Applied Tumor Pathology, Kitasato University Graduate School of Medical Sciences, 1-15-1 Kitasato, Minami-ku, Sagamihara, Japan
| | - Ming Zhou
- Department of Anatomy, Akita University Graduate School of Medicine and Faculty of Medicine, 1-1-1 Hondo, Akita, Japan
| | - Hiroshi Abe
- Department of Anatomy, Akita University Graduate School of Medicine and Faculty of Medicine, 1-1-1 Hondo, Akita, Japan
| | - Katsumasa Kawahara
- Department of Cellular and Molecular Physiology, Kitasato University Graduate School of Medical Sciences, 1-15-1 Kitasato, Minami-ku, Sagamihara, 252-0374, Japan. .,Department of Physiology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, 252-0374, Japan.
| | - Hirotsugu Okamoto
- Department of Anesthesiology, Kitasato University Graduate School of Medical Sciences, 1-15-1 Kitasato, Minami-ku, Sagamihara, 252-0374, Japan
| |
Collapse
|
10
|
Peng JB. TRPV5 and TRPV6 in transcellular Ca(2+) transport: regulation, gene duplication, and polymorphisms in African populations. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 704:239-75. [PMID: 21290300 DOI: 10.1007/978-94-007-0265-3_14] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
TRPV5 and TRPV6 are unique members of the TRP super family. They are highly selective for Ca(2+) ions with multiple layers of Ca(2+)-dependent inactivation mechanisms, expressed at the apical membrane of Ca(2+) transporting epithelia, and robustly responsive to 1,25-dihydroxivitamin D(3). These features are well suited for their roles as Ca(2+) entry channels in the first step of transcellular Ca(2+) transport pathways, which are involved in intestinal absorption, renal reabsorption of Ca(2+), placental transfer of Ca(2+) to fetus, and many other processes. While TRPV6 is more broadly expressed in a variety of tissues such as esophagus, stomach, small intestine, colon, kidney, placenta, pancreas, prostate, uterus, salivary gland, and sweat gland, TRPV5 expression is relatively restricted to the distal convoluted tubule and connecting tubule of the kidney. There is only one TRPV6-like gene in fish and birds in comparison to both TRPV5 and TRPV6 genes in mammals, indicating TRPV5 gene was likely generated from duplication of TRPV6 gene during the evolution of mammals to meet the needs of complex renal function. TRPV5 and TRPV6 are subjected to vigorous regulations under physiological, pathological, and therapeutic conditions. The elevated TRPV6 level in malignant tumors such as prostate and breast cancers makes it a potential therapeutic target. TRPV6, and to a lesser extent TRPV5, exhibit unusually high levels of single nucleotide polymorphisms (SNPs) in African populations as compared to other populations, indicating TRPV6 gene was under selective pressure during or after humans migrated out of Africa. The SNPs of TRPV6 and TRPV5 likely contribute to the Ca(2+) conservation mechanisms in African populations.
Collapse
Affiliation(s)
- Ji-Bin Peng
- Division of Nephrology, Department of Medicine, Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
11
|
Dunbar DR, Khaled H, Evans LC, Al-Dujaili EAS, Mullins LJ, Mullins JJ, Kenyon CJ, Bailey MA. Transcriptional and physiological responses to chronic ACTH treatment by the mouse kidney. Physiol Genomics 2009; 40:158-66. [PMID: 19920212 PMCID: PMC2825763 DOI: 10.1152/physiolgenomics.00088.2009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
We investigated the effects on urinary steroid and electrolyte excretion and renal gene expression of chronic infusions of ACTH in the mouse. ACTH caused a sustained increase in corticosteroid excretion; aldosterone excretion was only transiently elevated. There was an increase in the excretion of deoxycorticosterone, a weak mineralocorticoid, to levels of physiological significance. Nevertheless, we observed neither antinatriuresis nor kaliuresis in ACTH-treated mice, and plasma renin activity was not suppressed. We identified no changes in expression of mineralocorticoid target genes. Water turnover was increased in chronic ACTH-treated mice, as were hematocrit and hypertonicity: volume contraction is consistent with high levels of glucocorticoid. ACTH-treated mice exhibited other signs of glucocorticoid excess, such as enhanced weight gain and involution of the thymus. We identified novel ACTH-induced changes in 1) genes involved in vitamin D (Cyp27b1, Cyp24a1, Gc) and calcium (Sgk, Calb1, Trpv5) metabolism associated with calciuria and phosphaturia; 2) genes that would be predicted to desensitize the kidney to glucocorticoid action (Nr3c1, Hsd11b1, Fkbp5); and 3) genes encoding transporters of enzyme systems associated with xenobiotic metabolism and oxidative stress. Although there is evidence that ACTH-induced hypertension is a function of physiological cross talk between glucocorticoids and mineralocorticoids, the present study suggests that the major changes in electrolyte and fluid homeostasis and renal function are attributable to glucocorticoids. The calcium and organic anion metabolism pathways that are affected by ACTH may explain some of the known adverse effects associated with glucocorticoid excess.
Collapse
Affiliation(s)
- Donald R Dunbar
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Lang F, Artunc F, Vallon V. The physiological impact of the serum and glucocorticoid-inducible kinase SGK1. Curr Opin Nephrol Hypertens 2009; 18:439-48. [PMID: 19584721 PMCID: PMC2883450 DOI: 10.1097/mnh.0b013e32832f125e] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW The role of serum and glucocorticoid-inducible kinase 1 (SGK1) in renal physiology and pathophysiology is reviewed with particular emphasis on recent advances. RECENT FINDINGS The mammalian target of rapamycin complex 2 has been shown to phosphorylate SGK1 at Ser422 (the so-called hydrophobic motif). Ser397 and Ser401 are two additional SGK1-phosphorylation sites required for maximal SGK1 activity. A 5' variant alternate transcript of human Sgk1 has been identified that is widely expressed and shows improved stability, enhanced membrane association, and greater stimulation of epithelial Na+ transport. SGK1 is essential for optimal processing of the epithelial sodium channel and also regulates the expression of the Na+-Cl- cotransporter. With regard to pathophysiology, SGK1 participates in the stimulation of renal tubular glucose transport in diabetes, the renal profibrotic effect of both angiotensin II and aldosterone, and in fetal programing of arterial hypertension. SUMMARY The outlined recent findings advanced our understanding of the molecular regulation of SGK1 as well as the role of the kinase in renal physiology and the pathophysiology of renal disease and hypertension. Future studies using pharmacological inhibitors of SGK1 will reveal the utility of the kinase as a new therapeutic target.
Collapse
Affiliation(s)
- Florian Lang
- Department of Physiology, University of Tuebingen, Gmelinstrasse 5, Tuebingen 72076, Germany.
| | | | | |
Collapse
|
13
|
Schwab M, Lupescu A, Mota M, Mota E, Frey A, Simon P, Mertens PR, Floege J, Luft F, Asante-Poku S, Schaeffeler E, Lang F. Association of SGK1 gene polymorphisms with type 2 diabetes. Cell Physiol Biochem 2008; 21:151-60. [PMID: 18209482 DOI: 10.1159/000113757] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2007] [Indexed: 11/19/2022] Open
Abstract
The serum and glucocorticoid inducible kinase SGK1 is genomically upregulated by glucocorticoids and in turn stimulates a variety of carriers and channels including the renal epithelial Na(+) channel ENaC and the intestinal Na(+) glucose transporter SGLT1. Twin studies disclosed an association of a specific SGK1 haplotype with moderately enhanced blood pressure in individuals who are carrying simultaneously a homozygous genotype for a variant in intron 6 [I6CC] and a homozygous or heterozygous genotype for the C allele of a polymorphism in exon 8 [E8CC/CT] of the SGK1 gene. A subsequent study confirmed the impact of this risk haplotype on blood pressure. SGK1 knockout mice are resistant to the insulin and high salt induced increase of blood pressure, glucocorticoid induced increase of electrogenic glucose transport, and glucocorticoid induced suppression of insulin release. The present study explored whether the I6CC/E8CC/CT haplotype impacts on the prevalence of type 2 diabetes. The prevalence of the I6CC genotype was 3.1% in a healthy German, 2.4 % in a healthy Romanian and 11.6 % in a healthy African population from Ghana (p=0.0006 versus prevalence in Caucasians). Comparison of genotype frequencies between type 2 diabetic patients and the respective control groups revealed significant differences for the intron 6 T>C variant. Carriers of at least one T allele were protected against type 2 diabetes (Romanians: p=0.023; OR 0.29; 95% CI 0.09-0.89; Germans: p=0.01; OR 0.37; 95% CI 0.17-0.81). The SGK1 risk haplotype (I6CC/E8CC/CT) was significantly (p=0.032; OR 4.31, 95% CI 1.19-15.58) more frequent in diabetic patients (7.2 %) than in healthy volunteers from Romania (1.8%). The observations support the view that SGK-1 may participate in the pathogenesis of metabolic syndrome.
Collapse
Affiliation(s)
- Matthias Schwab
- Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Lang F, Böhmer C, Palmada M, Seebohm G, Strutz-Seebohm N, Vallon V. (Patho)physiological significance of the serum- and glucocorticoid-inducible kinase isoforms. Physiol Rev 2006; 86:1151-78. [PMID: 17015487 DOI: 10.1152/physrev.00050.2005] [Citation(s) in RCA: 528] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The serum- and glucocorticoid-inducible kinase-1 (SGK1) is ubiquitously expressed and under genomic control by cell stress (including cell shrinkage) and hormones (including gluco- and mineralocorticoids). Similar to its isoforms SGK2 and SGK3, SGK1 is activated by insulin and growth factors via phosphatidylinositol 3-kinase and the 3-phosphoinositide-dependent kinase PDK1. SGKs activate ion channels (e.g., ENaC, TRPV5, ROMK, Kv1.3, KCNE1/KCNQ1, GluR1, GluR6), carriers (e.g., NHE3, GLUT1, SGLT1, EAAT1-5), and the Na+-K+-ATPase. They regulate the activity of enzymes (e.g., glycogen synthase kinase-3, ubiquitin ligase Nedd4-2, phosphomannose mutase-2) and transcription factors (e.g., forkhead transcription factor FKHRL1, beta-catenin, nuclear factor kappaB). SGKs participate in the regulation of transport, hormone release, neuroexcitability, cell proliferation, and apoptosis. SGK1 contributes to Na+ retention and K+ elimination of the kidney, mineralocorticoid stimulation of salt appetite, glucocorticoid stimulation of intestinal Na+/H+ exchanger and nutrient transport, insulin-dependent salt sensitivity of blood pressure and salt sensitivity of peripheral glucose uptake, memory consolidation, and cardiac repolarization. A common ( approximately 5% prevalence) SGK1 gene variant is associated with increased blood pressure and body weight. SGK1 may thus contribute to metabolic syndrome. SGK1 may further participate in tumor growth, neurodegeneration, fibrosing disease, and the sequelae of ischemia. SGK3 is required for adequate hair growth and maintenance of intestinal nutrient transport and influences locomotive behavior. In conclusion, the SGKs cover a wide variety of physiological functions and may play an active role in a multitude of pathophysiological conditions. There is little doubt that further targets will be identified that are modulated by the SGK isoforms and that further SGK-dependent in vivo physiological functions and pathophysiological conditions will be defined.
Collapse
Affiliation(s)
- Florian Lang
- Department of Physiology, University of Tuebingen, Tuebingen, Germany.
| | | | | | | | | | | |
Collapse
|
15
|
Artunc F, Amann K, Nasir O, Friedrich B, Sandulache D, Jahovic N, Risler T, Vallon V, Wulff P, Kuhl D, Lang F. Blunted DOCA/high salt induced albuminuria and renal tubulointerstitial damage in gene-targeted mice lacking SGK1. J Mol Med (Berl) 2006; 84:737-46. [PMID: 16924469 DOI: 10.1007/s00109-006-0082-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2006] [Accepted: 04/28/2006] [Indexed: 10/24/2022]
Abstract
Mineralocorticoids stimulate renal tubular Na(+) reabsorption, enhance salt appetite, increase blood pressure, and favor the development of renal fibrosis. The effects of mineralocorticoids on renal tubular Na(+) reabsorption and salt appetite involve the serum- and glucocorticoid-inducible kinase 1 (SGK1). The kinase is highly expressed in fibrosing tissue. The present experiments thus explored the involvement of SGK1 in renal fibrosis. To this end, SGK1-knockout mice (sgk1 (-/-)) and their wild-type littermates (sgk1 (+/+)) were implanted with desoxycorticosterone acetate (DOCA)-release pellets and offered 1% saline as drinking water for 12 weeks. The treatment led to significant increases in fluid and Na(+) intake and urinary output of fluid and Na(+) in sgk1 (+/+) mice, effects blunted in sgk1 (-/-) mice. Blood pressure increased within the first 7 weeks to a similar extent in both genotypes, but within the next 5 weeks, it increased further only in sgk1 (+/+) mice. Creatinine clearance did not change significantly but albuminuria increased dramatically in sgk1 (+/+) mice, an effect significantly blunted in sgk1 (-/-) mice. Histology after 12 weeks treatment revealed marked glomerular sclerosis and tubulointerstitial damage with interstitial fibrosis and inflammation in kidneys from sgk1 (+/+) mice, but not from sgk1 (-/-) mice. In conclusion, a lack of SGK1 protects against DOCA/high-salt-induced albuminuria and renal fibrosis.
Collapse
Affiliation(s)
- Ferruh Artunc
- Department of Physiology, University of Tübingen, Gmelinstr. 5, 72076, Tübingen, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|