1
|
Biological and Mechanical Factors and Epigenetic Regulation Involved in Tendon Healing. Stem Cells Int 2023; 2023:4387630. [PMID: 36655033 PMCID: PMC9842431 DOI: 10.1155/2023/4387630] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/18/2022] [Accepted: 12/28/2022] [Indexed: 01/11/2023] Open
Abstract
Tendons are an important part of the musculoskeletal system. Connecting muscles to bones, tendons convert force into movement. Tendon injury can be acute or chronic. Noticeably, tendon healing requires a long time span and includes inflammation, proliferation, and remodeling processes. The mismatch between endogenous and exogenous healing may lead to adhesion causing further negative effects. Management of tendon injuries and complications such as subsequent adhesion formation are still challenges for clinicians. Due to numerous factors, tendon healing is a complex process. This review introduces the role of various biological and mechanical factors and epigenetic regulation processes involved in tendon healing.
Collapse
|
2
|
Roberts JH, Halper J. Growth Factor Roles in Soft Tissue Physiology and Pathophysiology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1348:139-159. [PMID: 34807418 DOI: 10.1007/978-3-030-80614-9_6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Repair and healing of injured and diseased tendons has been traditionally fraught with apprehension and difficulties, and often led to rather unsatisfactory results. The burgeoning research field of growth factors has opened new venues for treatment of tendon disorders and injuries, and possibly for treatment of disorders of the aorta and major arteries as well. Several chapters in this volume elucidate the role of transforming growth factor β (TGFß) in pathogenesis of several heritable disorders affecting soft tissues, such as aorta, cardiac valves, and tendons and ligaments. Several members of the bone morphogenetic group either have been approved by the FDA for treatment of non-healing fractures or have been undergoing intensive clinical and experimental testing for use of healing bone fractures and tendon injuries. Because fibroblast growth factors (FGFs) are involved in embryonic development of tendons and muscles among other tissues and organs, the hope is that applied research on FGF biological effects will lead to the development of some new treatment strategies providing that we can control angiogenicity of these growth factors. The problem, or rather question, regarding practical use of imsulin-like growth factor I (IGF-I) in tendon repair is whether IGF-I acts independently or under the guidance of growth hormone. FGF2 or platelet-derived growth factor (PDGF) alone or in combination with IGF-I stimulates regeneration of periodontal ligament: a matter of importance in Marfan patients with periodontitis. In contrast, vascular endothelial growth factor (VEGF) appears to have rather deleterious effects on experimental tendon healing, perhaps because of its angiogenic activity and stimulation of matrix metalloproteinases-proteases whose increased expression has been documented in a variety of ruptured tendons. Other modalities, such as local administration of platelet-rich plasma (PRP) and/or of mesenchymal stem cells have been explored extensively in tendon healing. Though treatment with PRP and mesenchymal stem cells has met with some success in horses (who experience a lot of tendon injuries and other tendon problems), the use of PRP and mesenchymal stem cells in people has been more problematic and requires more studies before PRP and mesenchymal stem cells can become reliable tools in management of soft tissue injuries and disorders.
Collapse
Affiliation(s)
- Jennifer H Roberts
- Department of Pathology, College of Veterinary Medicine, The University of Georgia, Athens, GA, USA
| | - Jaroslava Halper
- Department of Pathology, College of Veterinary Medicine, and Department of Basic Sciences, AU/UGA Medical Partnership, The University of Georgia, Athens, GA, USA.
| |
Collapse
|
3
|
Kirby TJ, Patel RM, McClintock TS, Dupont-Versteegden EE, Peterson CA, McCarthy JJ. Myonuclear transcription is responsive to mechanical load and DNA content but uncoupled from cell size during hypertrophy. Mol Biol Cell 2016; 27:788-98. [PMID: 26764089 PMCID: PMC4803305 DOI: 10.1091/mbc.e15-08-0585] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 01/05/2016] [Indexed: 01/19/2023] Open
Abstract
Muscle hypertrophy is used as a physiological model to study how global transcription is affected by changes in cell size and DNA content. Myonuclear transcription is sensitive to both mechanical load and DNA content, with smaller myofibers unexpectedly having the highest level of transcription during hypertrophy. Myofibers increase size and DNA content in response to a hypertrophic stimulus, thus providing a physiological model with which to study how these factors affect global transcription. Using 5-ethynyl uridine (EU) to metabolically label nascent RNA, we measured a sevenfold increase in myofiber transcription during early hypertrophy before a change in cell size and DNA content. The typical increase in myofiber DNA content observed at the later stage of hypertrophy was associated with a significant decrease in the percentage of EU-positive myonuclei; however, when DNA content was held constant by preventing myonuclear accretion via satellite cell depletion, both the number of transcriptionally active myonuclei and the amount of RNA generated by each myonucleus increased. During late hypertrophy, transcription did not scale with cell size, as smaller myofibers (<1000 μm2) demonstrated the highest transcriptional activity. Finally, transcription was primarily responsible for changes in the expression of genes known to regulate myofiber size. These findings show that resident myonuclei possess a significant reserve capacity to up-regulate transcription during hypertrophy and that myofiber transcription is responsive to DNA content but uncoupled from cell size during hypertrophy.
Collapse
Affiliation(s)
- Tyler J Kirby
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KT 40536 Center for Muscle Biology, University of Kentucky, Lexington, KT 40536
| | - Rooshil M Patel
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KT 40536
| | - Timothy S McClintock
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KT 40536
| | - Esther E Dupont-Versteegden
- Center for Muscle Biology, University of Kentucky, Lexington, KT 40536 Department of Rehabilitation Sciences, College of Health Sciences, University of Kentucky, Lexington, KT 40536
| | - Charlotte A Peterson
- Center for Muscle Biology, University of Kentucky, Lexington, KT 40536 Department of Rehabilitation Sciences, College of Health Sciences, University of Kentucky, Lexington, KT 40536
| | - John J McCarthy
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KT 40536 Center for Muscle Biology, University of Kentucky, Lexington, KT 40536
| |
Collapse
|
4
|
The effects of testosterone and insulin-like growth factor 1 on motor system form and function. Exp Gerontol 2015; 64:81-6. [PMID: 25681641 DOI: 10.1016/j.exger.2015.02.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 01/31/2015] [Accepted: 02/10/2015] [Indexed: 12/25/2022]
Abstract
In this perspective article, we review the effects of selected anabolic hormones on the motoric system and speculate on the role these hormones may have on influencing muscle and physical function via their impact on the nervous system. Both muscle strength and anabolic hormone levels decline around middle age into old age over a similar time period, and several animal and human studies indicate that exogenously increasing anabolic hormones (e.g., testosterone and insulin-like growth factor-1 (IGF-1)) in aged subjects is positively associated with improved muscle strength. While most studies in humans have focused on the effects of anabolic hormones on muscle growth, few have considered the impact these hormones have on the motoric system. However, data from animals demonstrate that administering either testosterone or IGF-1 to cells of the central and peripheral motor system can increase cell excitability, attenuate atrophic changes, and improve regenerative capacity of motor neurons. While these studies do not directly indicate that changes in anabolic hormones contribute to reduced human performance in the elderly (e.g., muscle weakness and physical limitations), they do suggest that additional research is warranted along these lines.
Collapse
|
5
|
MacKenzie MG, Hamilton DL, Pepin M, Patton A, Baar K. Inhibition of myostatin signaling through Notch activation following acute resistance exercise. PLoS One 2013; 8:e68743. [PMID: 23844238 PMCID: PMC3699505 DOI: 10.1371/journal.pone.0068743] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 06/01/2013] [Indexed: 02/03/2023] Open
Abstract
Myostatin is a TGFβ family member and negative regulator of muscle size. Due to the complexity of the molecular pathway between myostatin mRNA/protein and changes in transcription, it has been difficult to understand whether myostatin plays a role in resistance exercise-induced skeletal muscle hypertrophy. To circumvent this problem, we determined the expression of a unique myostatin target gene, Mighty, following resistance exercise. Mighty mRNA increased by 6 h (82.9 ± 24.21%) and remained high out to 48 h (56.5 ± 19.67%) after resistance exercise. Further examination of the soleus, plantaris and tibialis anterior muscles showed that the change in Mighty mRNA at 6 h correlated with the increase in muscle size associated with this protocol (R(2) = 0.9996). The increase in Mighty mRNA occurred both independent of Smad2 phosphorylation and in spite of an increase in myostatin mRNA (341.8 ± 147.14% at 3 h). The myostatin inhibitor SKI remained unchanged. However, activated Notch, another potential inhibitor of TGFβ signaling, increased immediately following resistance exercise (83 ± 11.2%) and stayed elevated out to 6 h (78 ± 16.6%). Electroportion of the Notch intracellular domain into the tibialis anterior resulted in an increase in Mighty mRNA (63 ± 13.4%) that was equivalent to the canonical Notch target HES-1 (94.4 ± 7.32%). These data suggest that acute resistance exercise decreases myostatin signaling through the activation of the TGFβ inhibitor Notch resulting in a decrease in myostatin transcriptional activity that correlates well with muscle hypertrophy.
Collapse
Affiliation(s)
- Matthew G. MacKenzie
- Division of Molecular Physiology, University of Dundee, Dundee, Scotland, United Kingdom
| | - David Lee Hamilton
- Division of Molecular Physiology, University of Dundee, Dundee, Scotland, United Kingdom
- Health and Exercise Sciences Research Group, School of Sport, University of Stirling, Stirling, United Kingdom
| | - Mark Pepin
- Biomedical Engineering, University of California Davis, Davis, California, United States of America
| | - Amy Patton
- Department of Neurobiology, Physiology, and Behavior, University of California Davis, Davis, California, United States of America
| | - Keith Baar
- Division of Molecular Physiology, University of Dundee, Dundee, Scotland, United Kingdom
- Biomedical Engineering, University of California Davis, Davis, California, United States of America
- Department of Neurobiology, Physiology, and Behavior, University of California Davis, Davis, California, United States of America
- Department of Physiology and Membrane Biology, University of California Davis, Davis, California, United States of America
- * E-mail:
| |
Collapse
|
6
|
|
7
|
Elliott B, Renshaw D, Getting S, Mackenzie R. The central role of myostatin in skeletal muscle and whole body homeostasis. Acta Physiol (Oxf) 2012; 205:324-40. [PMID: 22340904 DOI: 10.1111/j.1748-1716.2012.02423.x] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Revised: 10/04/2011] [Accepted: 01/31/2012] [Indexed: 12/11/2022]
Abstract
Myostatin is a powerful negative regulator of skeletal muscle mass in mammalian species. It plays a key role in skeletal muscle homeostasis and has now been well described since its discovery. Myostatin is capable of inducing muscle atrophy via its inhibition of myoblast proliferation, increasing ubiquitin-proteasomal activity and downregulating activity of the IGF-Akt pathway. These well-recognized effects are seen in multiple atrophy causing situations, including injury, diseases such as cachexia, disuse and space flight, demonstrating the importance of the myostatin signalling mechanism. Based on this central role, significant work has been pursued to inhibit myostatin's actions in vivo. Importantly, several new studies have uncovered roles for myostatin distinct from skeletal muscle size. Myostatin has been suggested to play a role in cardiomyocyte homeostasis, glucose metabolism and adipocyte proliferation, all of which are examined in detail below. Based on these effects, myostatin inhibition has potential to be widely utilized in many Western diseases such as chronic obstructive pulmonary disease, type II diabetes and obesity. However, if myostatin inhibitors are to successfully translate from bench-top to bedside in the near future, awareness must be raised on these non-traditional effects of myostatin away from skeletal muscle. Indeed, further research into these novel areas is required.
Collapse
Affiliation(s)
- B. Elliott
- Infection & Immunity Group; Department of Human & Health Science, School of Life Sciences; University of Westminster; London; UK
| | - D. Renshaw
- Infection & Immunity Group; Department of Human & Health Science, School of Life Sciences; University of Westminster; London; UK
| | - S. Getting
- Infection & Immunity Group; Department of Human & Health Science, School of Life Sciences; University of Westminster; London; UK
| | - R. Mackenzie
- Infection & Immunity Group; Department of Human & Health Science, School of Life Sciences; University of Westminster; London; UK
| |
Collapse
|
8
|
Heinemeier KM, Mackey AL, Doessing S, Hansen M, Bayer ML, Nielsen RH, Herchenhan A, Malmgaard-Clausen NM, Kjaer M. GH/IGF-I axis and matrix adaptation of the musculotendinous tissue to exercise in humans. Scand J Med Sci Sports 2012; 22:e1-7. [PMID: 22429205 DOI: 10.1111/j.1600-0838.2012.01459.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2012] [Indexed: 12/11/2022]
Abstract
Exercise is not only associated with adaptive responses within skeletal muscle fibers but also with induction of collagen synthesis both in muscle and adjacent connective tissue. Additionally, exercise and training leads to activation of the systemic growth hormone/insulin-like growth factor I axis (GH/IGF-I), as well as increased local IGF-I expression. Studies in humans with pathologically high levels of GH/IGF-I, and in healthy humans who receive either weeks of GH administration or acute injection of IGF-I into connective tissue, demonstrate increased expression and synthesis of collagen in muscle and tendon. These observations support a stimulatory effect of GH/IGF-I on the connective tissue in muscle and tendon, which appears far more potent than the effect on contractile proteins of skeletal muscle. However, GH/IGF-I may play an additional role in skeletal muscle by regulation of stem cells (satellite cells), as increased satellite cell numbers are found in human muscle with increased GH/IGF-I levels, despite no change in myofibrillar protein synthesis. Although advanced age is associated with both a reduction in the GH/IGF-I axis activity, and in skeletal muscle mass (sarcopenia) as well as in tendon connective tissue, there is no direct proof linking age-related changes in the musculotendinous tissue to an impaired GH/IGF-I axis.
Collapse
Affiliation(s)
- K M Heinemeier
- Institute of Sports Medicine, Department of Orthopedic Surgery M81, Bispebjerg Hospital, Copenhagen, Denmark.
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Age-related loss of muscle mass and strength. J Aging Res 2012; 2012:158279. [PMID: 22506111 PMCID: PMC3312297 DOI: 10.1155/2012/158279] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Accepted: 11/07/2011] [Indexed: 11/26/2022] Open
Abstract
Age-related muscle wasting and increased frailty are major socioeconomic as well as medical problems. In the quest to extend quality of life it is important to increase the strength of elderly people sufficiently so they can carry out everyday tasks and to prevent them falling and breaking bones that are brittle due to osteoporosis. Muscles generate the mechanical strain that contributes to the maintenance of other musculoskeletal tissues, and a vicious circle is established as muscle loss results in bone loss and weakening of tendons. Molecular and proteomic approaches now provide strategies for preventing age-related muscle wasting. Here, attention is paid to the role of the GH/IGF-1 axis and the special role of the IGFI-Ec (mechano growth factor/MGF) which is derived from the IGF-I gene by alternative splicing. During aging MGF levels decline but when administered MGF activates the muscle satellite (stem) cells that “kick start” local muscle repair and induces hypertrophy.
Collapse
|
10
|
Chaillou T, Malgoyre A, Banzet S, Chapot R, Koulmann N, Pugnière P, Beaudry M, Bigard X, Peinnequin A. Pitfalls in target mRNA quantification for real-time quantitative RT-PCR in overload-induced skeletal muscle hypertrophy. Physiol Genomics 2010; 43:228-35. [PMID: 21156833 DOI: 10.1152/physiolgenomics.00109.2010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Quantifying target mRNA using real-time quantitative reverse transcription-polymerase chain reaction requires an accurate normalization method. Determination of normalization factors (NFs) based on validated reference genes according to their relative stability is currently the best standard method in most usual situations. This method controls for technical errors, but its physiological relevance requires constant NF values for a fixed weight of tissue. In the functional overload model, the increase in the total RNA concentration must be considered in determining the NF values. Here, we pointed out a limitation of the classical geNorm-derived normalization. geNorm software selected reference genes despite that the NF values extensively varied under experiment. Only the NF values calculated from four intentionally selected genes were constant between groups. However, a normalization based on these genes is questionable. Indeed, three out of four genes belong to the same functional class (negative regulator of muscle mass), and their use is physiological nonsense in a hypertrophic model. Thus, we proposed guidelines for optimizing target mRNA normalization and quantification, useful in models of muscle mass modulation. In our study, the normalization method by multiple reference genes was not appropriate to compare target mRNA levels between overloaded and control muscles. A solution should be to use an absolute quantification of target mRNAs per unit weight of tissue, without any internal normalization. Even if the technical variations will stay present as a part of the intergroup variations, leading to less statistical power, we consider this method acceptable because it will not generate misleading results.
Collapse
Affiliation(s)
- T Chaillou
- Operational environments, Genomic core facility, IRBA La Tronche, La Tronche, France
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Dai Z, Wu F, Yeung EW, Li Y. IGF-IEc expression, regulation and biological function in different tissues. Growth Horm IGF Res 2010; 20:275-281. [PMID: 20494600 DOI: 10.1016/j.ghir.2010.03.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2009] [Revised: 11/14/2009] [Accepted: 03/15/2010] [Indexed: 11/30/2022]
Abstract
Insulin-like growth factor I (IGF-I) is an important growth factor for embryonic development, postnatal growth, tissue repair and maintenance of homeostasis. IGF-I functions and regulations are complex and tissue-specific. IGF-I mediates growth hormone signaling to target tissues during growth, but many IGF-I variants have been discovered, resulting in complex models to describe IGF-I function and regulation. Mechano-growth factor (MGF) is an alternative splicing variant of IGF-I and serves as a local tissue repair factor that responds to changes in physiological conditions or environmental stimuli. MGF expression is significantly increased in muscle, bone and tendon following damage resulting from mechanical stimuli and in the brain and heart following ischemia. MGF has been shown to activate satellite cells in muscle resulting in hypertrophy or regeneration, and functions as a neuroprotectant in brain ischemia. Both expression and processing of this IGF-I variant are tissue specific, but the functional mechanism is poorly understood. MGF and its short derivative have been examined as a potential therapy for muscular dystrophy and cerebral hypoxia-ischemia using experimental animals. Although the unique mode of action of MGF has been identified, the details remain elusive. Here we review the expression and regulation of MGF and the function of this IGF-I isoform in tissue protection.
Collapse
Affiliation(s)
- Zhongquan Dai
- State Key Laboratory of Space Medicine Fundamentals and Application China Astronaut Research and Training Center, Beijing, China.
| | | | | | | |
Collapse
|
12
|
Bower NI, Johnston IA. Transcriptional regulation of the IGF signaling pathway by amino acids and insulin-like growth factors during myogenesis in Atlantic salmon. PLoS One 2010; 5:e11100. [PMID: 20559434 PMCID: PMC2885424 DOI: 10.1371/journal.pone.0011100] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Accepted: 05/19/2010] [Indexed: 11/19/2022] Open
Abstract
The insulin-like growth factor signalling pathway is an important regulator of skeletal muscle growth. We examined the mRNA expression of components of the insulin-like growth factor (IGF) signalling pathway as well as Fibroblast Growth Factor 2 (FGF2) during maturation of myotubes in primary cell cultures isolated from fast myotomal muscle of Atlantic salmon (Salmo salar). The transcriptional regulation of IGFs and IGFBP expression by amino acids and insulin-like growth factors was also investigated. Proliferation of cells was 15% d−1 at days 2 and 3 of the culture, increasing to 66% d−1 at day 6. Three clusters of elevated gene expression were observed during the maturation of the culture associated with mono-nucleic cells (IGFBP5.1 and 5.2, IGFBP-6, IGFBP-rP1, IGFBP-2.2 and IGF-II), the initial proliferation phase (IGF-I, IGFBP-4, FGF2 and IGF-IRb) and terminal differentiation and myotube production (IGF2R, IGF-IRa). In cells starved of amino acids and serum for 72 h, IGF-I mRNA decreased 10-fold which was reversed by amino acid replacement. Addition of IGF-I and amino acids to starved cells resulted in an 18-fold increase in IGF-I mRNA indicating synergistic effects and the activation of additional pathway(s) leading to IGF-I production via a positive feedback mechanism. IGF-II, IGFBP-5.1 and IGFBP-5.2 expression was unchanged in starved cells, but increased with amino acid replacement. Synergistic increases in expression of IGFBP5.2 and IGFBP-4, but not IGFBP5.1 were observed with addition of IGF-I, IGF-II or insulin and amino acids to the medium. IGF-I and IGF-II directly stimulated IGFBP-6 expression, but not when amino acids were present. These findings indicate that amino acids alone are sufficient to stimulate myogenesis in myoblasts and that IGF-I production is controlled by both endocrine and paracrine pathways. A model depicting the transcriptional regulation of the IGF pathway in Atlantic salmon muscle following feeding is proposed.
Collapse
Affiliation(s)
- Neil I Bower
- Scottish Oceans Institute, School of Biology, University of St Andrews, St Andrews, United Kingdom.
| | | |
Collapse
|
13
|
Li Y, Zhao Z, Song J, Feng Y, Wang Y, Li X, Liu Y, Yang P. Cyclic force upregulates mechano-growth factor and elevates cell proliferation in 3D cultured skeletal myoblasts. Arch Biochem Biophys 2009; 490:171-6. [PMID: 19720043 DOI: 10.1016/j.abb.2009.08.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2009] [Revised: 08/24/2009] [Accepted: 08/24/2009] [Indexed: 01/25/2023]
Abstract
Mechano-growth factor (MGF), the insulin growth factor- I (IGF-I) splice variant, has drawn an increasing attention in recent years. In this study, using a newly established system, we three-dimensionally (3D) cultured rat skeletal myoblasts and loaded them with cyclic uniaxial tensile strain of different magnitudes or time duration. After that, the cell proliferative index (PI) and mRNA expression of MGF, IGF-IEa and integrin beta1 were assayed. The major findings are: (1) mechanical stimulation induced MGF upregulation commensurate with cell PI elevation both in the 3D and 2D cultured myoblasts, but stronger mechanical force was needed to activate MGF expression in the 3D cultures; (2) MGF but not IGF-IEa was essential for mechano-induced myoblast replication, as IGF-IEa upregulation lagged cell PI elevation; and (3) the time course upregulation of MGF and integrin beta1 was correlated with each other, suggesting they shared a common mechanotransduction pathway.
Collapse
Affiliation(s)
- Yu Li
- State Key Laboratory of Oral Diseases, West China Stomatology Hospital, Sichuan University, Chengdu, PR China
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Swanson DL, Sabirzhanov B, Vandezande A, Clark TG. Seasonal variation of myostatin gene expression in pectoralis muscle of house sparrows (Passer domesticus) is consistent with a role in regulating thermogenic capacity and cold tolerance. Physiol Biochem Zool 2009; 82:121-8. [PMID: 19199561 DOI: 10.1086/591099] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Winter acclimatization in small birds overwintering in cold climates, including house sparrows (Passer domesticus), is associated with improved cold tolerance, elevated summit metabolic rates (M(sum) = maximum cold-induced metabolic rate), and increased pectoralis muscle mass compared to summer birds. Myostatin is a potent autocrine/paracrine inhibitor of skeletal muscle growth in mammals and birds and is a potential candidate for regulation of seasonal phenotypic flexibility in birds. As a first step toward examining such a role for myostatin in small birds, we measured summer and winter gene expression of myostatin and its potential metalloproteinase activators TLL-1 and TLL-2 in house sparrows from southeastern South Dakota. Gene expression of myostatin decreased significantly in winter, with summer values exceeding winter values by 1.52-fold. Moreover, gene expression of TLL-1 was also significantly reduced in winter, with summer values exceeding winter values by 1.55-fold. These data are consistent with the hypothesis that the winter increases in pectoralis muscle mass, M(sum), and cold tolerance in house sparrows are mediated by reduced levels of myostatin and its activator TLL-1, and they suggest the possibility that myostatin may be a common mediator of phenotypic flexibility of muscle mass in birds.
Collapse
Affiliation(s)
- David L Swanson
- Department of Biology, University of South Dakota, Vermillion, South Dakota 57069, USA.
| | | | | | | |
Collapse
|
15
|
Bower NI, Li X, Taylor R, Johnston IA. Switching to fast growth: the insulin-like growth factor (IGF) system in skeletal muscle of Atlantic salmon. ACTA ACUST UNITED AC 2009; 211:3859-70. [PMID: 19043058 DOI: 10.1242/jeb.024117] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In this study we describe the complete coding sequence for insulin-like growth factor I (IGF-I), insulin-like growth factor II (IGF-II), insulin-like growth factor binding protein (IGFBP) 1, 2, 4, 5 and 6 and IGFBP-related protein 1 (IGFBP-rP1) of Atlantic salmon (Salmo salar L.). We also report the characterisation of two gene paralogues of IGFBP-2 and IGFBP-5. Following 22 days restricted feeding (0 d) to achieve zero growth, fish were fed to satiation and sampled at 3, 5, 7, 14, 30 and 60 days. Expression profiles for genes involved in the IGF signalling pathway in fast myotomal muscle were determined using real-time quantitative RT-PCR. The transition from zero to fast growth is characterised by constitutive upregulation of IGF-I and IGFBP-4, a transient increase in IGFBP-5.2, and downregulation of IGFBP-2.1, IGF-II, IGF2R (IGF-II receptor) and IGFR1a (IGF-I receptor a). Expression of IGFBP-2.2, IGFBP-5.1, IGFBP-6, IGFBP-rP1 and IGFR1b showed little or no response to feeding. Expression of the myogenic marker genes myogenin, MHC and MLC2 were higher with feed restriction, and decreased as an early response to feeding, before increasing to a peak at 14 days, corresponding with a peak in IGF-I expression. IGFBP-4, which contains a putative connective tissue localisation signal, was the only IGFBP constitutively upregulated following feeding, and was positively correlated with IGF-I expression. Together, these data show that switching to fast growth in Atlantic salmon skeletal muscle involves the local upregulation of IGF-I, IGFBP-5.2 and IGFBP-4, with downregulation of IGFBP-2.1.
Collapse
Affiliation(s)
- Neil I Bower
- Gatty Marine Laboratory, School of Biology, University of St Andrews, St Andrews, Fife KY16 8LB, UK
| | | | | | | |
Collapse
|
16
|
Vingren JL, Kraemer WJ, Hatfield DL, Anderson JM, Volek JS, Ratamess NA, Thomas GA, Ho JY, Fragala MS, Maresh CM. Effect of resistance exercise on muscle steroidogenesis. J Appl Physiol (1985) 2008; 105:1754-60. [DOI: 10.1152/japplphysiol.91235.2008] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Circulating testosterone is elevated acutely following resistance exercise (RE) and is an important anabolic hormone for muscle adaptations to resistance training. The purpose of this study was to examine the acute effect of heavy RE on intracrine muscle testosterone production in young resistance-trained men and women. Fifteen young, highly resistance-trained men ( n = 8; 21 ± 1 yr, 175.3 ± 6.7 cm, 90.8 ± 11.6 kg) and women ( n = 7; 24 ± 5 yr, 164.6 ± 6.7 cm, 76.4 ± 15.6 kg) completed 6 sets of 10 repetitions of Smith machine squats with 80% of their 1-repetition maximum. Before RE and 10 and 70 min after RE, muscle biopsies were obtained from the vastus lateralis. Before RE, after 3 and 6 sets of squats, and 5, 15, 30, and 70 min into recovery from RE, blood samples were obtained using venipuncture from an antecubital vein. Muscle samples were analyzed for testosterone, 17β-hydroxysteroid dehydrogenase (HSD) type 3, and 3β-HSD type 1 and 2 content. Blood samples were analyzed for glucose and lactate concentrations. No changes were found for muscle testosterone, 3β-HSD type 1 and 2, and 17β-HSD type 3 concentrations. However, a change in protein migration in the Bis-Tris gel was observed for 17β-HSD type 3 postexercise; this change in migration indicated an ∼2.8 kDa increase in molecular mass. These findings indicate that species differences in muscle testosterone production may exist between rats and humans. In humans, muscle testosterone concentrations do not appear to be affected by RE. This study expands on the current knowledge obtained from animal studies by examining resting and postexercise concentrations of muscle testosterone and steroidogenic enzymes in humans.
Collapse
|
17
|
Tanaka Y, Yamaguchi A, Fujikawa T, Sakuma K, Morita I, Ishii K. Expression of mRNA for specific fibroblast growth factors associates with that of the myogenic markers MyoD and proliferating cell nuclear antigen in regenerating and overloaded rat plantaris muscle. Acta Physiol (Oxf) 2008; 194:149-59. [PMID: 18429950 DOI: 10.1111/j.1748-1716.2008.01866.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIM To examine the relations between specific fibroblast growth factors (FGFs) and satellite cell activation during muscle regeneration and hypertrophy in vivo, we measured mRNA expression of FGFs and myogenic markers in rat plantaris muscle after bupivacaine administration and synergist ablation. METHODS mRNA levels for MyoD, myogenin, proliferating cell nuclear antigen (PCNA), p21, M-cadherin, Pax7, FGF-1, FGF-2, FGF-3, FGF-4, FGF-5, FGF-6, FGF-7, FGF-8 and hepatocyte growth factor (HGF) were measured continually for up to 72 h after bupivacaine administration and synergist ablation. FGF-5, FGF-7 and HGF proteins were immunostained at 72 h after bupivacaine administration. RESULTS MyoD and PCNA mRNAs started increasing 24 h after bupivacaine administration. Myogenin, p21, M-cadherin and Pax7 mRNAs started to increase after 48 and 72 h. After synergist ablation, MyoD, PCNA, M-cadherin and Pax7 mRNAs had increased at 24 and 48 h, and myogenin and p21 mRNAs at 12 and 24 h. FGF-1, FGF-7 and HGF mRNAs after the treatments started to increase at the same time as MyoD and PCNA mRNAs. FGF-5 was expressed at the same time as MyoD and PCNA mRNAs after bupivacaine administration but did not after the ablation. FGF-2, FGF-3, FGF-4, FGF-6 and FGF-8 mRNAs were not associated with the expression of the myogenic markers. FGF-7 and HGF proteins were expressed in immature muscle fibre nuclei and the extracellular matrix, but FGF-5 protein was preferentially expressed in extracellular matrix. CONCLUSION These results indicate that FGF-1, FGF-7 and HGF are associated with specific myogenic marker expression during muscle regeneration and hypertrophy.
Collapse
Affiliation(s)
- Y Tanaka
- Laboratory of Human Performance and Fitness, Graduate School of Education, Hokkaido University, Sapporo, Hokkaido, Japan
| | | | | | | | | | | |
Collapse
|
18
|
Hammers DW, Merritt EK, Matheny RW, Matheny W, Adamo ML, Walters TJ, Estep JS, Farrar RP. Functional deficits and insulin-like growth factor-I gene expression following tourniquet-induced injury of skeletal muscle in young and old rats. J Appl Physiol (1985) 2008; 105:1274-81. [PMID: 18669936 DOI: 10.1152/japplphysiol.90418.2008] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
This study investigated the effect of age on recovery of skeletal muscle from an ischemia-reperfusion (I/R)-induced injury. Young (6 mo old) and old (24-27 mo old) Sprague-Dawley rats underwent a 2-h bout of hindlimb ischemia induced by a pneumatic tourniquet (TK). The TK was released to allow reperfusion of the affected limb, and animals were divided into 7- and 14-day recovery groups. Maximum plantar flexor force production was assessed in both 7- and 14-day recovery groups of both ages, followed by histological evaluation. Subsequent analysis of IGF-I gene expression and intracellular signaling in 7-day recovery muscles was performed by RT-PCR and Western blotting, respectively. Old rats had significantly greater deficits in force production and exhibited more evidence of histological pathology than young at both 7 and 14 days postinjury. In addition, old rats demonstrated an attenuated upregulation of IGF-I mRNA and induction of proanabolic signaling compared with young in response to injury. We conclude that aged skeletal muscle exhibits more damage and/or defective regeneration following I/R and identify an age-associated decrease in local IGF-I responsiveness as a potential mechanism for this phenomenon.
Collapse
Affiliation(s)
- David W Hammers
- Department of Kinesiology, The University of Texas at Austin, 1 University Station, Austin, TX 78712, USA
| | | | | | | | | | | | | | | |
Collapse
|
19
|
McGee SL, Mustard KJ, Hardie DG, Baar K. Normal hypertrophy accompanied by phosphoryation and activation of AMP-activated protein kinase alpha1 following overload in LKB1 knockout mice. J Physiol 2008; 586:1731-41. [PMID: 18202101 DOI: 10.1113/jphysiol.2007.143685] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The activation of the AMP-activated protein kinase (AMPK) and inhibition of the mammalian target of rapamycin complex 1 (mTORC1) is hypothesized to underlie the fact that muscle growth following resistance exercise is decreased by concurrent endurance exercise. To directly test this hypothesis, the capacity for muscle growth was determined in mice lacking the primary upstream kinase for AMPK in skeletal muscle, LKB1. Following either 1 or 4 weeks of overload, there was no difference in muscle growth between the wild type (wt) and LKB1(-/-) mice (1 week: wt, 38.8 +/- 7.75%; LKB1(-/-), 27.8 +/- 12.98%; 4 week: wt, 75.8 +/- 15.2%; LKB1(-/-), 85.0 +/- 22.6%). In spite of the fact that the LKB1 had been knocked out in skeletal muscle, the phosphorylation and activity of the alpha1 isoform of AMPK were markedly increased in both the wt and the LKB1(-/-) mice. To identify the upstream kinase(s) responsible, we studied potential upstream kinases other than LKB1. The activity of both Ca(2+)-calmodulin-dependent protein kinase kinase alpha (CaMKKalpha) (5.05 +/- 0.86-fold) and CaMKKbeta (10.1 +/- 2.59-fold) increased in the overloaded muscles, and this correlated with their increased expression. Phosphorylation of TAK-1 also increased 10-fold following overload in both the wt and LKB1 mice. Even though the alpha1 isoform of AMPK was activated by overload, there were no increases in expression of mitochondrial proteins or GLUT4, indicating that the alpha1 isoform is not involved in these metabolic adaptations. The phosphorylation of TSC2, an upstream regulator of the TORC1 pathway, at the AMPK site (Ser1345) was increased in response to overload, and this was not affected by LKB1 deficiency. Taken together, these data suggest that the alpha1 isoform of AMPK is preferentially activated in skeletal muscle following overload in the absence of metabolic adaptations, suggesting that this isoform might be important in the regulation of growth but not metabolism.
Collapse
Affiliation(s)
- Sean L McGee
- Functional Molecular Biology Lab, Division of Molecular Physiology, University of Dundee, Sir James Black Centre, Dow Street, Dundee DD1 5EH, UK
| | | | | | | |
Collapse
|
20
|
Abstract
Age-related muscle wasting and increased frailty is a major socioeconomic as well as a major medical problem. In our quest to extend the quality of life it is important to increase the strength of elderly people sufficiently so they can carry out everyday tasks and prevent them falling and breaking bones that are brittle because of osteoporosis. Muscles generate the mechanical strain that contributes to the maintenance of other musculoskeletal tissues and a vicious cycle is established when the muscles start to produce less force resulting in more bone loss and weakening of tendons. Another aspect that is less well appreciated is that muscle acts as a dynamic, metabolic store. In a traumatic situation, muscle provides amino acids to aid tissue repair processes and maintaining acid-base balance. At the present time there are strategies in addition to exercise for preventing age-related muscle wasting and these are briefly reviewed. Here, more attention is paid to the role of the growth hormone/insulin-like growth factor-1 (GH/IGF-1) axis and the discovery of mechano-growth factor (MGF). This is derived from the IGF-1 gene by alternative splicing and in the young is responsible for increasing contractile strength in response to exercise by activating the muscle satellite (stem) cells that kick-start local muscle repair and induce hypertrophy. Recent studies including gene transfer of this part of the IGF-1 gene and unique MGF peptides offer the prospect of treating muscle wasting during the aging process as well as muscle cachexia associated with many diseases.
Collapse
Affiliation(s)
- Geoffrey Goldspink
- Molecular Tissue Repair Unit, Department of Surgery, Royal Free and University College Medical School, University of London, London, UK.
| |
Collapse
|
21
|
Heinemeier KM, Olesen JL, Schjerling P, Haddad F, Langberg H, Baldwin KM, Kjaer M. Short-term strength training and the expression of myostatin and IGF-I isoforms in rat muscle and tendon: differential effects of specific contraction types. J Appl Physiol (1985) 2007; 102:573-81. [PMID: 17038487 DOI: 10.1152/japplphysiol.00866.2006] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In skeletal muscle, an increased expression of insulin like growth factor-I isoforms IGF-IEa and mechano-growth factor (MGF) combined with downregulation of myostatin is thought to be essential for training-induced hypertrophy. However, the specific effects of different contraction types on regulation of these factors in muscle are still unclear, and in tendon the functions of myostatin, IGF-IEa, and MGF in relation to training are unknown. Female Sprague-Dawley rats were subjected to 4 days of concentric, eccentric, or isometric training ( n = 7–9 per group) of the medial gastrocnemius, by stimulation of the sciatic nerve during general anesthesia. mRNA levels for myostatin, IGF-IEa, and MGF in muscle and Achilles' tendon were measured by real-time RT-PCR. Muscle myostatin mRNA decreased in response to all types of training (2- to 8-fold) ( P < 0.05), but the effect of eccentric training was greater than concentric and isometric training ( P < 0.05). In tendon, myostatin mRNA was detected, but no changes were seen after exercise. IGF-IEa and MGF increased in muscle (up to 15-fold) and tendon (up to 4-fold) in response to training ( P < 0.01). In tendon no difference was seen between training types, but in muscle the effect of eccentric training was greater than concentric training for both IGF-IEa and MGF ( P < 0.05), and for IGF-IEa isometric training had greater effect than concentric ( P < 0.05). The results indicate a possible role for IGF-IEa and MGF in adaptation of tendon to training, and the combined changes in myostatin and IGF-IEa/MGF expression could explain the important effect of eccentric actions for muscle hypertrophy.
Collapse
Affiliation(s)
- K M Heinemeier
- Institute of Sports Medicine, Bispebjerg Hospital-Bldg. 8, 1st Floor, 23 Bispebjerg Bakke, DK-2400 Copenhagen NV, Denmark.
| | | | | | | | | | | | | |
Collapse
|