1
|
Bernikova OG, Tsvetkova AS, Gonotkov MA, Ovechkin AO, Demidova MM, Azarov JE, Platonov PG. Prolonged repolarization in the early phase of ischemia is associated with ventricular fibrillation development in a porcine model. Front Physiol 2023; 14:1035032. [PMID: 36755793 PMCID: PMC9899978 DOI: 10.3389/fphys.2023.1035032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 01/09/2023] [Indexed: 01/24/2023] Open
Abstract
Background: Repolarization prolongation can be the earliest electrophysiological change in ischemia, but its role in arrhythmogenesis is unclear. The aim of the present study was to evaluate the early ischemic action potential duration (APD) prolongation concerning its causes, expression in ECG and association with early ischemic ventricular fibrillation (phase 1A VF). Methods: Coronary occlusion was induced in 18 anesthetized pigs, and standard 12 lead ECG along with epicardial electrograms were recorded. Local activation time (AT), end of repolarization time (RT), and activation-repolarization interval (ARIc) were determined as dV/dt minimum during QRS-complex, dV/dt maximum during T-wave, and rate-corrected RT-AT differences, respectively. Patch-clamp studies were done in enzymatically isolated porcine cardiomyocytes. IK(ATP) activation and Ito1 inhibition were tested as possible causes of the APD change. Results: During the initial period of ischemia, a total of 11 pigs demonstrated maximal ARIc prolongation >10 ms at 1 and/or 2.5 min of occlusion (8 and 6 cases at 1 and 2.5 min, respectively) followed by typical ischemic ARIc shortening. The maximal ARIc across all leads was associated with VF development (OR 1.024 95% CI 1.003-1.046, p = 0.025) and maximal rate-corrected QT interval (QTc) (B 0.562 95% CI 0.346-0.775, p < 0.001) in logistic and linear regression analyses, respectively. Phase 1A VF incidence was associated with maximal QTc at the 2.5 min of occlusion in ROC curve analysis (AUC 0.867, p = 0.028) with optimal cut-off 456 ms (sensitivity 1.00, specificity 0.778). The pigs having maximal QTc at 2.5 min more and less than 450 ms significantly differed in phase 1A VF incidence in Kaplan-Meier analysis (log-rank p = 0.007). In the patch-clamp experiments, 4-aminopyridine did not produce any effects on the APD; however, pinacidil activated IK(ATP) and caused a biphasic change in the APD with initial prolongation and subsequent shortening. Conclusion: The transiently prolonged repolarization during the initial period of acute ischemia was expressed in the prolongation of the maximal QTc interval in the body surface ECG and was associated with phase 1A VF. IK(ATP) activation in the isolated cardiomyocytes reproduced the biphasic repolarization dynamics observed in vivo, which suggests the probable role of IK(ATP) in early ischemic arrhythmogenesis.
Collapse
Affiliation(s)
- Olesya G. Bernikova
- Department of Cardiac Physiology, Institute of Physiology, Komi Science Center, Ural Branch, Russian Academy of Sciences, Syktyvkar, Russia,Department of Mathematical Physiology, Institute of Immunology and Physiology, Ural Branch, Russian Academy of Sciences, Ekaterinburg, Russia
| | - Alena S. Tsvetkova
- Department of Cardiac Physiology, Institute of Physiology, Komi Science Center, Ural Branch, Russian Academy of Sciences, Syktyvkar, Russia,Institute of Medicine, Pitirim Sorokin Syktyvkar State University, Syktyvkar, Russia
| | - Mikhail A. Gonotkov
- Department of Cardiac Physiology, Institute of Physiology, Komi Science Center, Ural Branch, Russian Academy of Sciences, Syktyvkar, Russia
| | - Alexey O. Ovechkin
- Department of Cardiac Physiology, Institute of Physiology, Komi Science Center, Ural Branch, Russian Academy of Sciences, Syktyvkar, Russia,Department of Mathematical Physiology, Institute of Immunology and Physiology, Ural Branch, Russian Academy of Sciences, Ekaterinburg, Russia,Institute of Medicine, Pitirim Sorokin Syktyvkar State University, Syktyvkar, Russia
| | - Marina M. Demidova
- Department of Cardiology, Clinical Sciences, Lund University, Lund, Sweden
| | - Jan E. Azarov
- Department of Cardiac Physiology, Institute of Physiology, Komi Science Center, Ural Branch, Russian Academy of Sciences, Syktyvkar, Russia,Department of Mathematical Physiology, Institute of Immunology and Physiology, Ural Branch, Russian Academy of Sciences, Ekaterinburg, Russia,Institute of Medicine, Pitirim Sorokin Syktyvkar State University, Syktyvkar, Russia,Department of Cardiology, Clinical Sciences, Lund University, Lund, Sweden,*Correspondence: Jan E. Azarov,
| | - Pyotr G. Platonov
- Department of Cardiology, Clinical Sciences, Lund University, Lund, Sweden,Arrhythmia Clinic, Skåne University Hospital, Lund, Sweden
| |
Collapse
|
2
|
Peris-Yagüe V, Rubio T, Fakuade FE, Voigt N, Luther S, Majumder R. A Mathematical Model for Electrical Activity in Pig Atrial Tissue. Front Physiol 2022; 13:812535. [PMID: 35360247 PMCID: PMC8960738 DOI: 10.3389/fphys.2022.812535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/28/2022] [Indexed: 11/21/2022] Open
Abstract
State of the art mathematical models are currently used to bridge the gap between basic research conducted in the laboratory and preclinical research conducted on large animals, which ultimately paves the way for clinical translation. In this regard, there is a great need for models that can be used alongside experiments for in-depth investigation and validation. One such experimental model is the porcine atrium, which is commonly used to study the mechanisms of onset and control of atrial fibrillation in the context of its surgical management. However, a mathematical model of pig atria is lacking. In this paper, we present the first ionically detailed mathematical model of porcine atrial electrophysiology, at body temperature. The model includes 12 ionic currents, 4 of which were designed based on experimental patch-clamp data directly obtained from literature. The formulations for the other currents are adopted from the human atrial model, and modified for porcine specificity based on our measured restitution data for different action potential characteristics: resting membrane potential, action potential amplitude, maximum upstroke velocity and action potential duration and different levels of membrane voltage repolarization. The intracellular Ca2+ dynamics follows the Luo-Rudy formulation for guinea pig ventricular cardiomyocytes. The resulting model represents “normal” cells which are formulated as a system of ordinary differential equations. We extend our model to two dimensions to obtain plane wave propagation in tissue with a velocity of 0.58 m/s and a wavelength of 8 cm. The wavelength reduces to 5 cm when the tissue is paced at 200 ms. Using S1-S2 cross-field protocol, we demonstrate in an 11.26 cm square simulation domain, the ability to initiate single spiral waves (rotation period ≃ 180 ms) that remain stable for more than 40 s. The spiral tip exhibits hypermeander. In agreement with previous experimental results using pig atria, our model shows that early repolarization is primarily driven by a calcium-mediated chloride current, IClCa, which is completely inactivated at high pacing frequencies. This is a condition that occurs only in porcine atria. Furthermore, the model shows spatiotemporal chaos with reduced repolarization.
Collapse
Affiliation(s)
- Víctor Peris-Yagüe
- Biomedical Physics Group, Max Planck Institute for Dynamics and Self Organisation, Gottingen, Germany
- Centre de Formaćio Interdisciplinària Superior (CFIS), Universitat Politècnica de Catalunya, Barcelona, Spain
| | - Tony Rubio
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Georg-August University, Gottingen, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Gottingen, Germany
| | - Funsho E. Fakuade
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Georg-August University, Gottingen, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Gottingen, Germany
- Cluster of Excellence “Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells” (MBExC), Georg-August University, Gottingen, Germany
| | - Niels Voigt
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Georg-August University, Gottingen, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Gottingen, Germany
- Cluster of Excellence “Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells” (MBExC), Georg-August University, Gottingen, Germany
| | - Stefan Luther
- Biomedical Physics Group, Max Planck Institute for Dynamics and Self Organisation, Gottingen, Germany
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Georg-August University, Gottingen, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Gottingen, Germany
| | - Rupamanjari Majumder
- Biomedical Physics Group, Max Planck Institute for Dynamics and Self Organisation, Gottingen, Germany
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Georg-August University, Gottingen, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Gottingen, Germany
- *Correspondence: Rupamanjari Majumder
| |
Collapse
|
3
|
Varró A, Tomek J, Nagy N, Virág L, Passini E, Rodriguez B, Baczkó I. Cardiac transmembrane ion channels and action potentials: cellular physiology and arrhythmogenic behavior. Physiol Rev 2020; 101:1083-1176. [PMID: 33118864 DOI: 10.1152/physrev.00024.2019] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Cardiac arrhythmias are among the leading causes of mortality. They often arise from alterations in the electrophysiological properties of cardiac cells and their underlying ionic mechanisms. It is therefore critical to further unravel the pathophysiology of the ionic basis of human cardiac electrophysiology in health and disease. In the first part of this review, current knowledge on the differences in ion channel expression and properties of the ionic processes that determine the morphology and properties of cardiac action potentials and calcium dynamics from cardiomyocytes in different regions of the heart are described. Then the cellular mechanisms promoting arrhythmias in congenital or acquired conditions of ion channel function (electrical remodeling) are discussed. The focus is on human-relevant findings obtained with clinical, experimental, and computational studies, given that interspecies differences make the extrapolation from animal experiments to human clinical settings difficult. Deepening the understanding of the diverse pathophysiology of human cellular electrophysiology will help in developing novel and effective antiarrhythmic strategies for specific subpopulations and disease conditions.
Collapse
Affiliation(s)
- András Varró
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary.,MTA-SZTE Cardiovascular Pharmacology Research Group, Hungarian Academy of Sciences, Szeged, Hungary
| | - Jakub Tomek
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Norbert Nagy
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary.,MTA-SZTE Cardiovascular Pharmacology Research Group, Hungarian Academy of Sciences, Szeged, Hungary
| | - László Virág
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Elisa Passini
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Blanca Rodriguez
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - István Baczkó
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary
| |
Collapse
|
4
|
Calloe K. Doctoral Dissertation: The transient outward potassium current in healthy and diseased hearts. Acta Physiol (Oxf) 2019; 225 Suppl 717:e13225. [PMID: 30628199 DOI: 10.1111/apha.13225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 11/20/2018] [Accepted: 11/21/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Kirstine Calloe
- Section for Anatomy; Biochemistry and Physiology; Department for Veterinary and Animal Sciences; Faculty of Health and Medical Sciences; University of Copenhagen; Frederiksberg C Denmark
| |
Collapse
|
5
|
de Boer TP, Stengl M. Action potential contour and inter-species differences. Europace 2018; 20:1395-1396. [PMID: 29096032 DOI: 10.1093/europace/eux308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Teun P de Boer
- Division of Heart and Lungs, Department of Medical Physiology, University Medical Center Utrecht, Yalelaan 50, CM Utrecht, The Netherlands
| | - Milan Stengl
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, Pilsen, Czech Republic.,Department of Physiology, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, Pilsen, Czech Republic
| |
Collapse
|
6
|
Kheradvar A, Zareian R, Kawauchi S, Goodwin RL, Rugonyi S. Animal Models for Heart Valve Research and Development. ACTA ACUST UNITED AC 2018; 24:55-62. [PMID: 30631375 DOI: 10.1016/j.ddmod.2018.04.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Valvular heart disease is the third-most common cause of heart problems in the United States. Malfunction of the valves can be acquired or congenital and each may lead either to stenosis or regurgitation, or even both in some cases. Heart valve disease is a progressive disease, which is irreversible and may be fatal if left untreated. Pharmacological agents cannot currently prevent valvular calcification or help repair damaged valves, as valve tissue is unable to regenerate spontaneously. Thus, heart valve replacement/repair is the only current available treatment. Heart valve research and development is currently focused on two parallel paths; first, research that aims to understand the underlying mechanisms for heart valve disease to emerge with an ultimate goal to devise medical treatment; and second, efforts to develop repair and replacement options for a diseased valve. Studies that focus on developmental malformation, genetic and disease epigenetics usually employ small animal models that are easy to access for in vivo imaging that minimally disturbs their environment during early stages of development. Alternatively, studies that aim to develop novel device for replacement and repair of diseased valves often employ large animals whose heart size and anatomy closely replicate human's. This paper aims to briefly review the current state-of-the-art animal models, and justification to use an animal model for a particular heart valve related project.
Collapse
|
7
|
Electronegative LDL-mediated cardiac electrical remodeling in a rat model of chronic kidney disease. Sci Rep 2017; 7:40676. [PMID: 28094801 PMCID: PMC5240592 DOI: 10.1038/srep40676] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 12/09/2016] [Indexed: 12/11/2022] Open
Abstract
The mechanisms underlying chronic kidney disease (CKD)–associated higher risks for life-threatening ventricular tachyarrhythmias remain poorly understood. In rats subjected to unilateral nephrectomy (UNx), we examined cardiac electrophysiological remodeling and relevant mechanisms predisposing to ventricular arrhythmias. Adult male Sprague-Dawley rats underwent UNx (n = 6) or sham (n = 6) operations. Eight weeks later, the UNx group had higher serum blood urea nitrogen and creatinine levels and a longer electrocardiographic QTc interval than did the sham group. Patch-clamp studies revealed epicardial (EPI)-predominant prolongation of the action potential duration (APD) at 50% and 90% repolarization in UNx EPI cardiomyocytes compared to sham EPI cardiomyocytes. A significant reduction of the transient outward potassium current (Ito) in EPI but not in endocardial (ENDO) cardiomyocytes of UNx rats led to a decreased transmural gradient of Ito. The reduction of Ito currents in UNx EPI cardiomyocytes was secondary to downregulation of KChIP2 but not Kv4.2, Kv4.3, and Kv1.4 protein expression. Incubation of plasma electronegative low-density lipoprotein (LDL) from UNx rats with normal EPI and ENDO cardiomyocytes recapitulated the electrophysiological phenotype of UNx rats. In conclusion, CKD disrupts the physiological transmural gradient of Ito via downregulation of KChIP2 proteins in the EPI region, which may promote susceptibility to ventricular tachyarrhythmias. Electronegative LDL may underlie downregulation of KChIP2 in CKD.
Collapse
|
8
|
McKinnon D, Rosati B. Transmural gradients in ion channel and auxiliary subunit expression. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2016; 122:165-186. [PMID: 27702655 DOI: 10.1016/j.pbiomolbio.2016.09.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 09/30/2016] [Indexed: 12/11/2022]
Abstract
Evolution has acted to shape the action potential in different regions of the heart in order to produce a maximally stable and efficient pump. This has been achieved by creating regional differences in ion channel expression levels within the heart as well as differences between equivalent cardiac tissues in different species. These region- and species-dependent differences in channel expression are established by regulatory evolution, evolution of the regulatory mechanisms that control channel expression levels. Ion channel auxiliary subunits are obvious targets for regulatory evolution, in order to change channel expression levels and/or modify channel function. This review focuses on the transmural gradients of ion channel expression in the heart and the role that regulation of auxiliary subunit expression plays in generating and shaping these gradients.
Collapse
Affiliation(s)
- David McKinnon
- Department of Veterans Affairs Medical Center, Northport, NY, USA; Institute of Molecular Cardiology, Stony Brook University, Stony Brook, NY, USA; Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Barbara Rosati
- Department of Veterans Affairs Medical Center, Northport, NY, USA; Institute of Molecular Cardiology, Stony Brook University, Stony Brook, NY, USA; Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY, 11794, USA.
| |
Collapse
|
9
|
Milani-Nejad N, Janssen PML. Small and large animal models in cardiac contraction research: advantages and disadvantages. Pharmacol Ther 2014; 141:235-49. [PMID: 24140081 PMCID: PMC3947198 DOI: 10.1016/j.pharmthera.2013.10.007] [Citation(s) in RCA: 326] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 08/15/2013] [Indexed: 12/22/2022]
Abstract
The mammalian heart is responsible for not only pumping blood throughout the body but also adjusting this pumping activity quickly depending upon sudden changes in the metabolic demands of the body. For the most part, the human heart is capable of performing its duties without complications; however, throughout many decades of use, at some point this system encounters problems. Research into the heart's activities during healthy states and during adverse impacts that occur in disease states is necessary in order to strategize novel treatment options to ultimately prolong and improve patients' lives. Animal models are an important aspect of cardiac research where a variety of cardiac processes and therapeutic targets can be studied. However, there are differences between the heart of a human being and an animal and depending on the specific animal, these differences can become more pronounced and in certain cases limiting. There is no ideal animal model available for cardiac research, the use of each animal model is accompanied with its own set of advantages and disadvantages. In this review, we will discuss these advantages and disadvantages of commonly used laboratory animals including mouse, rat, rabbit, canine, swine, and sheep. Since the goal of cardiac research is to enhance our understanding of human health and disease and help improve clinical outcomes, we will also discuss the role of human cardiac tissue in cardiac research. This review will focus on the cardiac ventricular contractile and relaxation kinetics of humans and animal models in order to illustrate these differences.
Collapse
Affiliation(s)
- Nima Milani-Nejad
- Department of Physiology and Cell Biology and D. Davis Heart Lung Institute, College of Medicine, The Ohio State University, OH, USA
| | - Paul M L Janssen
- Department of Physiology and Cell Biology and D. Davis Heart Lung Institute, College of Medicine, The Ohio State University, OH, USA.
| |
Collapse
|
10
|
Hu HJ, Gereau RW. Metabotropic glutamate receptor 5 regulates excitability and Kv4.2-containing K⁺ channels primarily in excitatory neurons of the spinal dorsal horn. J Neurophysiol 2011; 105:3010-21. [PMID: 21451053 DOI: 10.1152/jn.01050.2010] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Metabotropic glutamate (mGlu) receptors play important roles in the modulation of nociception. Previous studies demonstrated that mGlu5 modulates nociceptive plasticity via activation of ERK signaling. We have reported recently that the Kv4.2 K(+) channel subunit underlies A-type currents in spinal cord dorsal horn neurons and that this channel is modulated by mGlu5-ERK signaling. In the present study, we tested the hypothesis that modulation of Kv4.2 by mGlu5 occurs in excitatory spinal dorsal horn neurons. With the use of a transgenic mouse strain expressing enhanced green fluorescent protein (GFP) under control of the promoter for the γ-amino butyric acid (GABA)-synthesizing enzyme, glutamic acid decarboxylase 67 (GAD67), we found that these GABAergic neurons express less Kv4.2-mediated A-type current than non-GAD67-GFP neurons. Furthermore, the mGlu1/5 agonist, (R,S)-3,5-dihydroxyphenylglycine, had no modulatory effects on A-type currents or neuronal excitability in this subgroup of GABAergic neurons but robustly modulated A-type currents and neuronal excitability in non-GFP-expressing neurons. Immunofluorescence studies revealed that Kv4.2 was highly colocalized with markers of excitatory neurons, such as vesicular glutamate transporter 1/2, PKCγ, and neurokinin 1, in cultured dorsal horn neurons. These results indicate that mGlu5-Kv4.2 signaling is associated with excitatory dorsal horn neurons and suggest that the pronociceptive effects of mGlu5 activation in the spinal cord likely involve enhanced excitability of excitatory neurons.
Collapse
Affiliation(s)
- Hui-Juan Hu
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, USA.
| | | |
Collapse
|
11
|
Gwanyanya A, Macianskiene R, Bito V, Sipido KR, Vereecke J, Mubagwa K. Inhibition of the calcium-activated chloride current in cardiac ventricular myocytes by N-(p-amylcinnamoyl)anthranilic acid (ACA). Biochem Biophys Res Commun 2010; 402:531-6. [PMID: 20971070 DOI: 10.1016/j.bbrc.2010.10.069] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Accepted: 10/17/2010] [Indexed: 12/01/2022]
Abstract
N-(p-amylcinnamoyl)anthranilic acid (ACA), a phospholipase A(2) (PLA(2)) inhibitor, is structurally-related to non-steroidal anti-inflammatory drugs (NSAIDs) of the fenamate group and may also modulate various ion channels. We used the whole-cell, patch-clamp technique at room temperature to investigate the effects of ACA on the Ca(2+)-activated chloride current (I(Cl(Ca))) and other chloride currents in isolated pig cardiac ventricular myocytes. ACA reversibly inhibited I(Cl(Ca)) in a concentration-dependent manner (IC(50)=4.2 μM, n(Hill)=1.1), without affecting the L-type Ca(2+) current. Unlike ACA, the non-selective PLA(2) inhibitor bromophenacyl bromide (BPB; 50 μM) had no effect on I(Cl(Ca)). In addition, the analgesic NSAID structurally-related to ACA, diclofenac (50 μM) also had no effect on I(Cl(Ca)), whereas the current in the same cells could be suppressed by chloride channel blockers flufenamic acid (FFA; 100 μM) or 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS;100 μM). Besides I(Cl(Ca)), ACA (50 μM) also suppressed the cAMP-activated chloride current, but to a lesser extent. It is proposed that the inhibitory effects of ACA on I(Cl(Ca)) are PLA(2)-independent and that the drug may serve as a useful tool in understanding the nature and function of cardiac anion channels.
Collapse
Affiliation(s)
- Asfree Gwanyanya
- Division of Experimental Cardiac Surgery, Department of Cardiovascular Diseases, University of Leuven, Leuven, Belgium
| | | | | | | | | | | |
Collapse
|
12
|
Niwa N, Nerbonne JM. Molecular determinants of cardiac transient outward potassium current (I(to)) expression and regulation. J Mol Cell Cardiol 2009; 48:12-25. [PMID: 19619557 DOI: 10.1016/j.yjmcc.2009.07.013] [Citation(s) in RCA: 167] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Revised: 06/25/2009] [Accepted: 07/10/2009] [Indexed: 12/21/2022]
Abstract
Rapidly activating and inactivating cardiac transient outward K(+) currents, I(to), are expressed in most mammalian cardiomyocytes, and contribute importantly to the early phase of action potential repolarization and to plateau potentials. The rapidly recovering (I(t)(o,f)) and slowly recovering (I(t)(o,s)) components are differentially expressed in the myocardium, contributing to regional heterogeneities in action potential waveforms. Consistent with the marked differences in biophysical properties, distinct pore-forming (alpha) subunits underlie the two I(t)(o) components: Kv4.3/Kv4.2 subunits encode I(t)(o,f), whereas Kv1.4 encodes I(t)(o,s), channels. It has also become increasingly clear that cardiac I(t)(o) channels function as components of macromolecular protein complexes, comprising (four) Kvalpha subunits and a variety of accessory subunits and regulatory proteins that influence channel expression, biophysical properties and interactions with the actin cytoskeleton, and contribute to the generation of normal cardiac rhythms. Derangements in the expression or the regulation of I(t)(o) channels in inherited or acquired cardiac diseases would be expected to increase the risk of potentially life-threatening cardiac arrhythmias. Indeed, a recently identified Brugada syndrome mutation in KCNE3 (MiRP2) has been suggested to result in increased I(t)(o,f) densities. Continued focus in this area seems certain to provide new and fundamentally important insights into the molecular determinants of functional I(t)(o) channels and into the molecular mechanisms involved in the dynamic regulation of I(t)(o) channel functioning in the normal and diseased myocardium.
Collapse
Affiliation(s)
- Noriko Niwa
- Department of Developmental Biology, Washington University School of Medicine, 660 South Euclid Avenue, Box 8103, St. Louis, MO 63110-1093, USA
| | | |
Collapse
|
13
|
Jerng HH, Pfaffinger PJ. Multiple Kv channel-interacting proteins contain an N-terminal transmembrane domain that regulates Kv4 channel trafficking and gating. J Biol Chem 2008; 283:36046-59. [PMID: 18957440 PMCID: PMC2602920 DOI: 10.1074/jbc.m806852200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2008] [Revised: 10/22/2008] [Indexed: 11/06/2022] Open
Abstract
Kv channel-interacting proteins (KChIPs) are auxiliary subunits of the heteromultimeric channel complexes that underlie neuronal I(SA), the subthreshold transient K(+) current that dynamically regulates membrane excitability, action potential firing properties, and long term potentiation. KChIPs form cytoplasmic associations with the principal pore-forming Kv4 subunits and typically mediate enhanced surface expression and accelerated recovery from depolarization-induced inactivation. An exception is KChIP4a, which dramatically suppresses Kv4 inactivation while promoting neither surface expression nor recovery. These unusual properties are attributed to the effects of a K channel inactivation suppressor domain (KISD) encoded within the variable N terminus of KChIP4a. Here, we have functionally and biochemically characterized two brain KChIP isoforms, KChIP2x and KChIP3x (also known as KChIP3b) and show that they also contain a functional KISD. Like KChIP4a and in contrast with non-KISD-containing KChIPs, both KChIP2x and KChIP3x strongly suppress inactivation and slow activation and inhibit the typical increases in surface expression of Kv4.2 channels. We then examined the properties of the KISD to determine potential mechanisms for its action. Subcellular fractionation shows that KChIP4a, KChIP2x, and KChIP3x are highly associated with the membrane fraction. Fluorescent confocal imaging of enhanced green fluorescent proteins (eGFP) N-terminally fused with KISD in HEK293T cells indicates that KISDs of KChIP4a, KChIP2x, and KChIP3x all autonomously target eGFP to intracellular membranes. Cell surface biotinylation experiments on KChIP4a indicate that the N terminus is exposed extracellularly, consistent with a transmembrane KISD. In summary, KChIP4a, KChIP2x, and KChIP3x comprise a novel class of KChIP isoforms characterized by an unusual transmembrane domain at their N termini that modulates Kv4 channel gating and trafficking.
Collapse
Affiliation(s)
- Henry H Jerng
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030, USA.
| | | |
Collapse
|