1
|
Cavalcante JGT, Ribeiro VHDS, Marqueti RDC, Paz IDA, Bastos JAI, Vaz MA, Babault N, Durigan JLQ. Effect of muscle length on maximum evoked torque, discomfort, contraction fatigue, and strength adaptations during electrical stimulation in adult populations: A systematic review. PLoS One 2024; 19:e0304205. [PMID: 38857245 PMCID: PMC11164398 DOI: 10.1371/journal.pone.0304205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 05/08/2024] [Indexed: 06/12/2024] Open
Abstract
Neuromuscular electrical stimulation (NMES) can improve physical function in different populations. NMES-related outcomes may be influenced by muscle length (i.e., joint angle), a modulator of the force generation capacity of muscle fibers. Nevertheless, to date, there is no comprehensive synthesis of the available scientific evidence regarding the optimal joint angle for maximizing the effectiveness of NMES. We performed a systematic review to investigate the effect of muscle length on NMES-induced torque, discomfort, contraction fatigue, and strength training adaptations in healthy and clinical adult populations (PROSPERO: CRD42022332965). We conducted searches across seven electronic databases: PUBMED, Web of Science, EMBASE, PEDro, BIREME, SCIELO, and Cochrane, over the period from June 2022 to October 2023, without restricting the publication year. We included cross-sectional and longitudinal studies that used NMES as an intervention or assessment tool for comparing muscle lengths in adult populations. We excluded studies on vocalization, respiratory, or pelvic floor muscles. Data extraction was performed via a standardized form to gather information on participants, interventions, and outcomes. Risk of bias was assessed using the Revised Cochrane risk-of-bias tool for cross-over trials and the Physiotherapy Evidence Database scale. Out of the 1185 articles retrieved through our search strategy, we included 36 studies in our analysis, that included 448 healthy young participants (age: 19-40 years) in order to investigate maximum evoked torque (n = 268), contraction fatigability (n = 87), discomfort (n = 82), and muscle strengthening (n = 22), as well as six participants with spinal cord injuries, and 15 healthy older participants. Meta-analyses were possible for comparing maximal evoked torque according to quadriceps muscle length through knee joint angle. At optimal muscle length 50° - 70° of knee flexion, where 0° is full extension), there was greater evoked torque during nerve stimulation compared to very short (0 - 30°) (p<0.001, CI 95%: -2.03, -1.15 for muscle belly stimulation, and -3.54, -1.16 for femoral nerve stimulation), short (31° - 49°) (p = 0.007, CI 95%: -1.58, -0.25), and long (71° - 90°) (p<0.001, CI 95%: 0.29, 1.02) muscle lengths. At long muscle lengths, NMES evoked greater torque than very short (p<0.001, CI 95%: -2.50, -0.67) and short (p = 0.04, CI 95%: -2.22, -0.06) lengths. The shortest quadriceps length generated the highest perceived discomfort for a given current amplitude. The amount of contraction fatigability was greater when muscle length allowed greater torque generation in the pre-fatigue condition. Strength gains were greater for a protocol at the optimal muscle length than for short muscle length. The quality of evidence was very high for most comparisons for evoked torque. However, further studies are necessary to achieve certainty for the other outcomes. Optimal muscle length should be considered the primary choice during NMES interventions, as it promotes higher levels of force production and may facilitate the preservation/gain in muscle force and mass, with reduced discomfort. However, a longer than optimal muscle length may also be used, due to possible muscle lengthening at high evoked tension. Thorough understanding of these physiological principles is imperative for the appropriate prescription of NMES for healthy and clinical populations.
Collapse
Affiliation(s)
- Jonathan Galvão Tenório Cavalcante
- Laboratory of Muscle and Tendon Plasticity, Graduate Program of Physical Education, University of Brasília, Brasília, Distrito Federal, Brazil
| | - Victor Hugo de Souza Ribeiro
- Laboratory of Muscle and Tendon Plasticity, Graduate Program of Rehabilitation Sciences, University of Brasília, Brasília, Distrito Federal, Brazil
| | - Rita de Cássia Marqueti
- Molecular Analysis Laboratory, Graduate Program of Rehabilitation Sciences, University of Brasília, Brasília, Distrito Federal, Brazil
| | - Isabel de Almeida Paz
- Exercise Research Laboratory, School of Physical Education, Physical Therapy and Dance, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Júlia Aguillar Ivo Bastos
- Laboratory of Muscle and Tendon Plasticity, Graduate Program of Rehabilitation Sciences, University of Brasília, Brasília, Distrito Federal, Brazil
| | - Marco Aurélio Vaz
- Exercise Research Laboratory, School of Physical Education, Physical Therapy and Dance, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Nicolas Babault
- Centre d’Expertise de la Performance, INSERM UMR1093-CAPS, UFR des Sciences du Sport, University of Burgundy Franche-Comté, Besançon, Dijon, France
| | - João Luiz Quagliotti Durigan
- Laboratory of Muscle and Tendon Plasticity, Graduate Program of Physical Education, University of Brasília, Brasília, Distrito Federal, Brazil
- Laboratory of Muscle and Tendon Plasticity, Graduate Program of Rehabilitation Sciences, University of Brasília, Brasília, Distrito Federal, Brazil
| |
Collapse
|
2
|
McMahon G, Onambele-Pearson G. Joint angle-specific neuromuscular time course of recovery after isometric resistance exercise at shorter and longer muscle lengths. J Appl Physiol (1985) 2024; 136:889-900. [PMID: 38450425 DOI: 10.1152/japplphysiol.00820.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/29/2024] [Accepted: 02/29/2024] [Indexed: 03/08/2024] Open
Abstract
Resistance training at longer muscle lengths induces greater muscle hypertrophy and different neuromuscular functional adaptations than training at shorter muscle lengths. However, the acute time course of recovery of neuromuscular characteristics after resistance exercise at shorter and longer muscle lengths in the quadriceps has never been described. Eight healthy young participants (4 M, 4 F) were randomly assigned to perform four sets of eight maximal isometric contractions at shorter (SL; 50° knee flexion) or longer (LL; 90° knee flexion) muscle lengths in a crossover fashion. During exercise, peak torque (PT), muscle activity [electromyogram (EMG)], and internal muscle forces were assessed. PT and EMG at shorter (PT50, EMG50) and longer (PT90, EMG90) muscle lengths, creatine kinase (CK), and muscle soreness were measured at baseline, immediately after exercise (Post), after 24 h (24 h), and after 48 h (48 h). During exercise, EMG (P = 0.002) and internal muscle forces (P = 0.017) were greater in LL than in SL. During recovery, there was a main effect of exercise angle, with PT50 (P = 0.002), PT90 (P = 0.016), and EMG50 (P = 0.002) all significantly reduced to a greater degree in LL compared with SL. CK and muscle soreness increased after resistance exercise, but there were no differences between SL and LL. The present results suggest that if the preceding isometric resistance exercise is performed at longer muscle lengths, function and muscle activity at shorter and longer muscle lengths are inhibited to a larger degree in the subsequent recovery period. This information can be used by practitioners to manipulate exercise prescription.NEW & NOTEWORTHY Despite the established long-term benefits of training at longer muscle lengths for muscle size and strength, acutely performing resistance exercise at longer muscle lengths may require a longer time course of neuromuscular recovery compared with performing resistance exercises at shorter muscle lengths. Furthermore, there appear to be different joint angle-specific recovery profiles, depending on the muscle length of the preceding exercise.
Collapse
Affiliation(s)
- Gerard McMahon
- Sport and Exercise Sciences Research Institute, School of Sport, Ulster University, Belfast, United Kingdom
| | - Gladys Onambele-Pearson
- Research Centre for MusculoSkeletal Sciences & Sport Medicine, Department of Sport and Exercise Sciences, Manchester Metropolitan University, Manchester, United Kingdom
| |
Collapse
|
3
|
Rockenfeller R, Günther M, Stutzig N, Haeufle DFB, Siebert T, Schmitt S, Leichsenring K, Böl M, Götz T. Exhaustion of Skeletal Muscle Fibers Within Seconds: Incorporating Phosphate Kinetics Into a Hill-Type Model. Front Physiol 2020; 11:306. [PMID: 32431619 PMCID: PMC7214688 DOI: 10.3389/fphys.2020.00306] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 03/19/2020] [Indexed: 12/01/2022] Open
Abstract
Initiated by neural impulses and subsequent calcium release, skeletal muscle fibers contract (actively generate force) as a result of repetitive power strokes of acto-myosin cross-bridges. The energy required for performing these cross-bridge cycles is provided by the hydrolysis of adenosine triphosphate (ATP). The reaction products, adenosine diphosphate (ADP) and inorganic phosphate (P i ), are then used-among other reactants, such as creatine phosphate-to refuel the ATP energy storage. However, similar to yeasts that perish at the hands of their own waste, the hydrolysis reaction products diminish the chemical potential of ATP and thus inhibit the muscle's force generation as their concentration rises. We suggest to use the term "exhaustion" for force reduction (fatigue) that is caused by combined P i and ADP accumulation along with a possible reduction in ATP concentration. On the basis of bio-chemical kinetics, we present a model of muscle fiber exhaustion based on hydrolytic ATP-ADP-P i dynamics, which are assumed to be length- and calcium activity-dependent. Written in terms of differential-algebraic equations, the new sub-model allows to enhance existing Hill-type excitation-contraction models in a straightforward way. Measured time courses of force decay during isometric contractions of rabbit M. gastrocnemius and M. plantaris were employed for model verification, with the finding that our suggested model enhancement proved eminently promising. We discuss implications of our model approach for enhancing muscle models in general, as well as a few aspects regarding the significance of phosphate kinetics as one contributor to muscle fatigue.
Collapse
Affiliation(s)
| | - Michael Günther
- Institute for Modelling and Simulation of Biomechanical Systems, Computational Biophysics and Biorobotics, University of Stuttgart, Stuttgart, Germany
- Friedrich-Schiller-University, Jena, Germany
| | - Norman Stutzig
- Department of Motion and Exercise Science, University of Stuttgart, Stuttgart, Germany
| | - Daniel F. B. Haeufle
- Hertie-Institute for Clinical Brain Research and Center for Integrative Neuroscience, Eberhard-Karls-University, Tübingen, Germany
| | - Tobias Siebert
- Department of Motion and Exercise Science, University of Stuttgart, Stuttgart, Germany
| | - Syn Schmitt
- Institute for Modelling and Simulation of Biomechanical Systems, Computational Biophysics and Biorobotics, University of Stuttgart, Stuttgart, Germany
| | - Kay Leichsenring
- Institute of Solid Mechanics, Technical University Braunschweig, Braunschweig, Germany
| | - Markus Böl
- Institute of Solid Mechanics, Technical University Braunschweig, Braunschweig, Germany
| | - Thomas Götz
- Mathematical Institute, University of Koblenz-Landau, Koblenz, Germany
| |
Collapse
|
4
|
Calcium sensitivity during staircase with sequential incompletely fused contractions. J Muscle Res Cell Motil 2020; 42:59-65. [PMID: 31916128 DOI: 10.1007/s10974-019-09572-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 12/14/2019] [Accepted: 12/27/2019] [Indexed: 10/25/2022]
Abstract
Activity dependent potentiation is thought to result from phosphorylation of the regulatory light chains of myosin, increasing Ca2+ sensitivity. Yet, Ca2+ sensitivity decreases early in a period of intermittent contractions. The purpose of this study was to investigate the early change in Ca2+ sensitivity during intermittent submaximal tetanic contractions. Flexor digitorum brevis muscle fibres were dissected from mice after cervical disarticulation. Fibres were superfused with Tyrode solution at 32 °C. Length was set to yield maximal tetanic force. Indo-1 was microinjected into fibres and allowed to dissipate for 30 min. Fluorescence was measured at 405 and 495 nm wavelength and the ratio was used to estimate [Ca2+]. A control force-Ca2+ relationship was determined with stimulation over a range of frequencies, yielding constants for slope, max force, and half-maximal [Ca2+] (pCa2 +50). Data were collected for sequential contractions at 40 Hz at 2 s intervals. Active force decreased over the first 1-4 contractions then increased. A force-pCa2+ curve was fit to each contraction, using the control values for the Hill slope and max force by adjusting pCa2+50 until the curve passed through the target contraction. Data are presented for three contractions for each fibre: first, maximum shift to the right, and last contraction. There was a significant shift to the right for pCa2+50 (decreased Ca2+ sensitivity), usually early in the series of intermittent contractions, then pCa2 +50 shifted to the left, but remained significantly different from the control value. Although potentiation is associated with increased Ca2+ sensitivity, this increase begins only after Ca2+ sensitivity has decreased and, in most cases, Ca2+ sensitivity does not increase above the control level.
Collapse
|
5
|
MacIntosh BR, Esau SP, Holash RJ, Fletcher JR. Procedures for rat in situ skeletal muscle contractile properties. J Vis Exp 2011:e3167. [PMID: 22025076 PMCID: PMC3227207 DOI: 10.3791/3167] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
There are many circumstances where it is desirable to obtain the contractile response of skeletal muscle under physiological circumstances: normal circulation, intact whole muscle, at body temperature. This includes the study of contractile responses like posttetanic potentiation, staircase and fatigue. Furthermore, the consequences of disease, disuse, injury, training and drug treatment can be of interest. This video demonstrates appropriate procedures to set up and use this valuable muscle preparation. To set up this preparation, the animal must be anesthetized, and the medial gastrocnemius muscle is surgically isolated, with the origin intact. Care must be taken to maintain the blood and nerve supplies. A long section of the sciatic nerve is cleared of connective tissue, and severed proximally. All branches of the distal stump that do not innervate the medial gastrocnemius muscle are severed. The distal nerve stump is inserted into a cuff lined with stainless steel stimulating wires. The calcaneus is severed, leaving a small piece of bone still attached to the Achilles tendon. Sonometric crystals and/or electrodes for electromyography can be inserted. Immobilization by metal probes in the femur and tibia prevents movement of the muscle origin. The Achilles tendon is attached to the force transducer and the loosened skin is pulled up at the sides to form a container that is filled with warmed paraffin oil. The oil distributes heat evenly and minimizes evaporative heat loss. A heat lamp is directed on the muscle, and the muscle and rat are allowed to warm up to 37°C. While it is warming, maximal voltage and optimal length can be determined. These are important initial conditions for any experiment on intact whole muscle. The experiment may include determination of standard contractile properties, like the force-frequency relationship, force-length relationship, and force-velocity relationship. With care in surgical isolation, immobilization of the origin of the muscle and alignment of the muscle-tendon unit with the force transducer, and proper data analysis, high quality measurements can be obtained with this muscle preparation.
Collapse
|
6
|
MacIntosh BR, Shahi MRS. A peripheral governor regulates muscle contraction. Appl Physiol Nutr Metab 2011; 36:1-11. [PMID: 21326373 DOI: 10.1139/h10-073] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Active skeletal muscles are capable of keeping the global [adenosine triphosphate (ATP)] reasonably constant during exercise, whether it is mild exercise, activating a few motor units, or all-out exercise using a substantial mass of muscle. This could only be accomplished if there were regulatory processes in place not only to replenish ATP as quickly as possible, but also to modulate the rate of ATP use when that rate threatens to exceed the rate of ATP replenishment, a situation that could lead to metabolic catastrophe. This paper proposes that there is a regulatory process or "peripheral governor" that can modulate activation of muscle to avoid metabolic catastrophe. A peripheral governor, working at the cellular level, should be able to reduce the cellular rate of ATP hydrolysis associated with muscle contraction by attenuating activation. This would necessarily cause something we call peripheral fatigue (i.e., reduced contractile response to a given stimulation). There is no doubt that peripheral fatigue occurs. It has been demonstrated in isolated muscles, in muscles in situ with no central nervous system input, and in intact human subjects performing voluntary exercise with small muscle groups or doing whole-body exercise. The regulation of muscle activation is achieved in at least 3 ways (decreasing membrane excitability, inhibiting Ca2+ release through ryanodine receptors, and decreasing the availability of Ca2+ in the sarcoplasmic reticulum), making this a highly redundant control system. The peripheral governor attenuates cellular activation to reduce the metabolic demand, thereby preserving ATP and the integrity of the cell.
Collapse
Affiliation(s)
- Brian R MacIntosh
- Faculty of Kinesiology, University of Calgary, Calgary, AB T2N 1N4, Canada.
| | | |
Collapse
|
7
|
The influence of muscle length on the fatigue-related reduction in joint range of motion of the human dorsiflexors. Eur J Appl Physiol 2010; 109:405-15. [DOI: 10.1007/s00421-010-1364-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2010] [Indexed: 10/19/2022]
|
8
|
CHAPMAN DALEWILSON, NEWTON MICHAEL, MCGUIGAN MICHAEL, NOSAKA KAZUNORI. Effect of Lengthening Contraction Velocity on Muscle Damage of the Elbow Flexors. Med Sci Sports Exerc 2008; 40:926-33. [DOI: 10.1249/mss.0b013e318168c82d] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|