1
|
Pryymachuk G, El-Awaad E, Piekarek N, Drebber U, Maul AC, Hescheler J, Wodarz A, Pfitzer G, Neiss WF, Pietsch M, Schroeter MM. Angiotensin II type 1 receptor localizes at the blood-bile barrier in humans and pigs. Histochem Cell Biol 2022; 157:513-524. [PMID: 35229169 PMCID: PMC9114028 DOI: 10.1007/s00418-022-02087-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2022] [Indexed: 12/24/2022]
Abstract
Animal models and clinical studies suggest an influence of angiotensin II (AngII) on the pathogenesis of liver diseases via the renin–angiotensin system. AngII application increases portal blood pressure, reduces bile flow, and increases permeability of liver tight junctions. Establishing the subcellular localization of angiotensin II receptor type 1 (AT1R), the main AngII receptor, helps to understand the effects of AngII on the liver. We localized AT1R in situ in human and porcine liver and porcine gallbladder by immunohistochemistry. In order to do so, we characterized commercial anti-AT1R antibodies regarding their capability to recognize heterologous human AT1R in immunocytochemistry and on western blots, and to detect AT1R using overlap studies and AT1R-specific blocking peptides. In hepatocytes and canals of Hering, AT1R displayed a tram-track-like distribution, while in cholangiocytes AT1R appeared in a honeycomb-like pattern; i.e., in liver epithelia, AT1R showed an equivalent distribution to that in the apical junctional network, which seals bile canaliculi and bile ducts along the blood–bile barrier. In intrahepatic blood vessels, AT1R was most prominent in the tunica media. We confirmed AT1R localization in situ to the plasma membrane domain, particularly between tight and adherens junctions in both human and porcine hepatocytes, cholangiocytes, and gallbladder epithelial cells using different anti-AT1R antibodies. Localization of AT1R at the junctional complex could explain previously reported AngII effects and predestines AT1R as a transmitter of tight junction permeability.
Collapse
Affiliation(s)
- Galyna Pryymachuk
- Department of Anatomy I, University of Cologne, Faculty of Medicine and University Hospital Cologne, Kerpener Str. 62, 50937, Cologne, Germany.
| | - Ehab El-Awaad
- Institute II of Pharmacology, Center of Pharmacology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Gleueler Str. 24, 50931, Cologne, Germany
- Department of Pharmacology, Faculty of Medicine, Assiut University, Assiut, 71515, Egypt
| | - Nadin Piekarek
- Department of Anatomy I, University of Cologne, Faculty of Medicine and University Hospital Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Uta Drebber
- Institute of Pathology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Alexandra C Maul
- Experimental Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Ostmerheimer Str. 200, 51109, Cologne, Germany
| | - Juergen Hescheler
- Institute for Neurophysiology, Center for Physiology and Pathophysiology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Robert-Koch-Str. 39, 50931, Cologne, Germany
| | - Andreas Wodarz
- Department of Anatomy I, University of Cologne, Faculty of Medicine and University Hospital Cologne, Kerpener Str. 62, 50937, Cologne, Germany
- Cologne Excellence Cluster Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Str. 26, 50931, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Robert-Koch-Str. 21, 50931, Cologne, Germany
| | - Gabriele Pfitzer
- Institute of Vegetative Physiology, Center for Physiology and Pathophysiology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Robert-Koch-Str. 39, 50931, Cologne, Germany
| | - Wolfram F Neiss
- Department of Anatomy I, University of Cologne, Faculty of Medicine and University Hospital Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Markus Pietsch
- Institute II of Pharmacology, Center of Pharmacology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Gleueler Str. 24, 50931, Cologne, Germany
| | - Mechthild M Schroeter
- Institute for Neurophysiology, Center for Physiology and Pathophysiology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Robert-Koch-Str. 39, 50931, Cologne, Germany
| |
Collapse
|
2
|
Bui VC, Nguyen TH. Direct monitoring of drug-induced mechanical response of individual cells by atomic force microscopy. J Mol Recognit 2020; 33:e2847. [PMID: 32212218 DOI: 10.1002/jmr.2847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/08/2020] [Accepted: 03/10/2020] [Indexed: 01/12/2023]
Abstract
Mechanical characteristics of individual cells play a vital role in many biological processes and are considered as indicators of the cells' states. Disturbances including methyl-β-cyclodextrin (MβCD) and cytochalasin D (cytoD) are known to significantly affect the state of cells, but little is known about the real-time response of single cells to these drugs in their physiological condition. Here, nanoindentation-based atomic force microscopy (AFM) was used to measure the elasticity of human embryonic kidney cells in the presence and absence of these pharmaceuticals. The results showed that depletion of cholesterol in the plasma membrane with MβCD resulted in cell stiffening whereas depolymerization of the actin cytoskeleton by cytoD resulted in cell softening. Using AFM for real-time measurements, we observed that cells mechanically responded right after these drugs were added. In more detail, the cell´s elasticity suddenly increased with increasing instability upon cholesterol extraction while it is rapidly decreased without changing cellular stability upon depolymerizing actin cytoskeleton. These results demonstrated that actin cytoskeleton and cholesterol contributed differently to the cell mechanical characteristics.
Collapse
Affiliation(s)
- Van-Chien Bui
- Institute for Immunology and Transfusion Medicine, University Medicine Greifswald, Greifswald, Germany.,ZIK HIKE, University of Greifswald, Greifswald, Germany
| | - Thi-Huong Nguyen
- Institute for Immunology and Transfusion Medicine, University Medicine Greifswald, Greifswald, Germany.,Institute for Bioprocessing and Analytical Measurement Techniques, Heilbad Heiligenstadt, Germany
| |
Collapse
|
3
|
Lavenus S, Simard É, Besserer-Offroy É, Froehlich U, Leduc R, Grandbois M. Label-free cell signaling pathway deconvolution of angiotensin type 1 receptor reveals time-resolved G-protein activity and distinct AngII and AngIIIIV responses. Pharmacol Res 2018; 136:108-120. [PMID: 29959993 DOI: 10.1016/j.phrs.2018.06.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 06/18/2018] [Accepted: 06/26/2018] [Indexed: 01/14/2023]
Abstract
Angiotensin II (AngII) type 1 receptor (AT1R) is a G protein-coupled receptor known for its role in numerous physiological processes and its implication in many vascular diseases. Its functions are mediated through G protein dependent and independent signaling pathways. AT1R has several endogenous peptidic agonists, all derived from angiotensinogen, as well as several synthetic ligands known to elicit biased signaling responses. Here, surface plasmon resonance (SPR) was used as a cell-based and label-free technique to quantify, in real time, the response of HEK293 cells stably expressing the human AT1R. The goal was to take advantage of the integrative nature of this assay to identify specific signaling pathways in the features of the response profiles generated by numerous endogenous and synthetic ligands of AT1R. First, we assessed the contributions of Gq, G12/13, Gi, Gβγ, ERK1/2 and β-arrestins pathways in the cellular responses measured by SPR where Gq, G12/Rho/ROCK together with β-arrestins and ERK1/2 were found to play significant roles. More specifically, we established a major role for G12 in the early events of the AT1R-dependent response, which was followed by a robust ERK1/2 component associated to the later phase of the signal. Interestingly, endogenous AT1R ligands (AngII, AngIII and AngIV) exhibited distinct responses signatures with a significant increase of the ERK1/2-like components for both AngIII and AngIV, which points toward possibly distinct physiological roles for the later. We also tested AT1R biased ligands, all of which affected both the early and later events. Our results support SPR-based integrative cellular assays as a powerful approach to delineate the contribution of specific signaling pathways for a given cell response and reveal response differences associated with ligands with distinct pharmacological properties.
Collapse
Affiliation(s)
- Sandrine Lavenus
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, J1H5N4, Canada; Institut de pharmacologie de Sherbrooke, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, J1H5N4, Canada.
| | - Élie Simard
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, J1H5N4, Canada; Institut de pharmacologie de Sherbrooke, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, J1H5N4, Canada.
| | - Élie Besserer-Offroy
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, J1H5N4, Canada; Institut de pharmacologie de Sherbrooke, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, J1H5N4, Canada.
| | - Ulrike Froehlich
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, J1H5N4, Canada; Institut de pharmacologie de Sherbrooke, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, J1H5N4, Canada.
| | - Richard Leduc
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, J1H5N4, Canada; Institut de pharmacologie de Sherbrooke, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, J1H5N4, Canada.
| | - Michel Grandbois
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, J1H5N4, Canada; Institut de pharmacologie de Sherbrooke, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, J1H5N4, Canada.
| |
Collapse
|
4
|
Biophysical characteristics of hematopoietic cells during division. Exp Cell Res 2018; 367:132-136. [DOI: 10.1016/j.yexcr.2018.03.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 03/20/2018] [Accepted: 03/21/2018] [Indexed: 01/11/2023]
|
5
|
Observations of the Effects of Angiotensin II Receptor Blocker on Angiotensin II-Induced Morphological and Mechanical Changes in Renal Tubular Epithelial Cells Using Atomic Force Microscopy. BIOMED RESEARCH INTERNATIONAL 2018; 2018:9208795. [PMID: 29888284 PMCID: PMC5985133 DOI: 10.1155/2018/9208795] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 04/19/2018] [Indexed: 11/17/2022]
Abstract
Objective Angiotensin II (Ang II) plays a profibrotic role in the kidneys. Although many pathways of Ang II have been discovered, the morphological and mechanical aspects have not been well investigated. We observed the changes in tubular epithelial cells (TECs) after Ang II treatment with or without Ang II receptor blockers (ARBs) using atomic force microscopy (AFM). Methods TECs were stimulated with Ang II with or without telmisartan, PD123319, and blebbistatin. AFM was performed to measure the cellular stiffness, cell volume, and cell surface roughness. Epithelial to mesenchymal transition markers were determined via immunocytochemistry. Results After Ang II stimulation, cells transformed to a flattened and elongated mesenchymal morphology. Cell surface roughness and volume significantly increased in Ang II treated TECs. Ang II also induced an increase in phospho-myosin light chain and F-actin and a decrease in E-cadherin. Ang II coincubation with either telmisartan or blebbistatin attenuated these Ang II-induced changes. Conclusion We report, for the first time, the use of AFM in directly observing the changes in TECs after Ang II treatment with or without ARBs. Simultaneously, we successfully measured the selective effect of PD123319 or blebbistatin. AFM could be a noninvasive evaluating strategy for cellular processes in TECs.
Collapse
|
6
|
Li W, Xu J, Kou X, Zhao R, Zhou W, Fang X. Single-molecule force spectroscopy study of interactions between angiotensin II type 1 receptor and different biased ligands in living cells. Anal Bioanal Chem 2018; 410:3275-3284. [PMID: 29492619 DOI: 10.1007/s00216-018-0956-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 01/12/2018] [Accepted: 02/09/2018] [Indexed: 01/14/2023]
Abstract
Angiotensin II type 1 receptor (AT1R), a typical G protein-coupled receptor, plays a key role in regulating many cardiovascular functions. Different ligands can bind with AT1R to selectively activate either G protein (Gq) or β-arrestin (β-arr) pathway, or both pathways, but the molecular mechanism is not clear yet. In this work, we used, for the first time, atomic force microscopy-based single molecule force spectroscopy (SMFS) to study the interactions of AT1R with three types of ligands, balanced ligand, Gq-biased ligand, and β-arr-biased ligand, in living cells. The results revealed their difference in binding force and binding stability. The complex of the Gq-biased ligand-AT1R overcame two energy barriers with an intermediate state during dissociation, whereas that of β-arr-biased ligand-AT1R complex overcame one energy barrier. This indicated that AT1R had different ligand-binding conformational substates and underwent different structural changes to activate downstream signaling pathways with variable agonist efficacies. Quantitative analysis of AT1R-ligand binding in living cells at the single-molecule level offers a new tool to study the molecular mechanism of AT1R biased activation. Graphical Abstract Single-molecule force measurement on the living cell expressing AT1R-eGFP with a ligand modified AFM tip (left), the dynamic force spectra of β-arrestin biased ligands-AT1R (middle), and Gq-biased ligands-AT1R (right). The complexes of β-arr-biased ligand-AT1R overcame one energy barrier, with one linear region in the spectra, whereas the Gq-biased ligand-AT1R complexes overcame two energy barriers with two linear regions.
Collapse
Affiliation(s)
- Wenhui Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, 2 North First Street, Zhongguancun, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiachao Xu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, 2 North First Street, Zhongguancun, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaolong Kou
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, 2 North First Street, Zhongguancun, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Rong Zhao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, 2 North First Street, Zhongguancun, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei Zhou
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, 2 North First Street, Zhongguancun, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaohong Fang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, 2 North First Street, Zhongguancun, Beijing, 100190, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
7
|
Söllradl T, Chabot K, Fröhlich U, Canva M, Charette PG, Grandbois M. Monitoring individual cell-signaling activity using combined metal-clad waveguide and surface-enhanced fluorescence imaging. Analyst 2018; 143:5559-5567. [DOI: 10.1039/c8an00911b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Validation of a combined metal-clad waveguide and surface enhanced fluorescence imaging platform for live cell imaging.
Collapse
Affiliation(s)
- Thomas Söllradl
- Laboratoire Nanotechnologies Nanosystèmes (LN2) – CNRS UMI-3463
- Université de Sherbrooke
- Canada
- Institut Interdisciplinaire d'Innovation Technologique (3IT)
- Université de Sherbrooke
| | - Kevin Chabot
- Laboratoire Nanotechnologies Nanosystèmes (LN2) – CNRS UMI-3463
- Université de Sherbrooke
- Canada
- Institut Interdisciplinaire d'Innovation Technologique (3IT)
- Université de Sherbrooke
| | - Ulrike Fröhlich
- Département de Pharmacologie et Physiologie
- Université de Sherbrooke
- Canada
| | - Michael Canva
- Laboratoire Nanotechnologies Nanosystèmes (LN2) – CNRS UMI-3463
- Université de Sherbrooke
- Canada
- Institut Interdisciplinaire d'Innovation Technologique (3IT)
- Université de Sherbrooke
| | - Paul G. Charette
- Laboratoire Nanotechnologies Nanosystèmes (LN2) – CNRS UMI-3463
- Université de Sherbrooke
- Canada
- Institut Interdisciplinaire d'Innovation Technologique (3IT)
- Université de Sherbrooke
| | - Michel Grandbois
- Laboratoire Nanotechnologies Nanosystèmes (LN2) – CNRS UMI-3463
- Université de Sherbrooke
- Canada
- Département de Pharmacologie et Physiologie
- Université de Sherbrooke
| |
Collapse
|
8
|
Bui VC, Nguyen TH. The role of CD4 on mechanical properties of live cell membrane. J Biomed Mater Res A 2015; 104:239-44. [DOI: 10.1002/jbm.a.35559] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 08/13/2015] [Accepted: 09/03/2015] [Indexed: 01/21/2023]
Affiliation(s)
- Van-Chien Bui
- Center for Innovation Competence - Humoral Immune Reactions in Cardiovascular Diseases (ZIK HIKE); University of Greifswald; 17489 Greifswald Germany
| | - Thi-Huong Nguyen
- Center for Innovation Competence - Humoral Immune Reactions in Cardiovascular Diseases (ZIK HIKE); University of Greifswald; 17489 Greifswald Germany
| |
Collapse
|
9
|
Lacraz G, Rouleau AJ, Couture V, Söllrald T, Drouin G, Veillette N, Grandbois M, Grenier G. Increased Stiffness in Aged Skeletal Muscle Impairs Muscle Progenitor Cell Proliferative Activity. PLoS One 2015; 10:e0136217. [PMID: 26295702 PMCID: PMC4546553 DOI: 10.1371/journal.pone.0136217] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 07/31/2015] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Skeletal muscle aging is associated with a decreased regenerative potential due to the loss of function of endogenous stem cells or myogenic progenitor cells (MPCs). Aged skeletal muscle is characterized by the deposition of extracellular matrix (ECM), which in turn influences the biomechanical properties of myofibers by increasing their stiffness. Since the stiffness of the MPC microenvironment directly impacts MPC function, we hypothesized that the increase in muscle stiffness that occurs with aging impairs the behavior of MPCs, ultimately leading to a decrease in regenerative potential. RESULTS We showed that freshly isolated individual myofibers from aged mouse muscles contain fewer MPCs overall than myofibers from adult muscles, with fewer quiescent MPCs and more proliferative and differentiating MPCs. We observed alterations in cultured MPC behavior in aged animals, where the proliferation and differentiation of MPCs were lower and higher, respectively. These alterations were not linked to the intrinsic properties of aged myofibers, as shown by the similar values for the cumulative population-doubling values and fusion indexes. However, atomic force microscopy (AFM) indentation experiments revealed a nearly 4-fold increase in the stiffness of the MPC microenvironment. We further showed that the increase in stiffness is associated with alterations to muscle ECM, including the accumulation of collagen, which was correlated with higher hydroxyproline and advanced glycation end-product content. Lastly, we recapitulated the impaired MPC behavior observed in aging using a hydrogel substrate that mimics the stiffness of myofibers. CONCLUSIONS These findings provide novel evidence that the low regenerative potential of aged skeletal muscle is independent of intrinsic MPC properties but is related to the increase in the stiffness of the MPC microenvironment.
Collapse
Affiliation(s)
- Grégory Lacraz
- Centre Hospitalier de l’Université de Sherbrooke Research Center (CRCHUS), Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - André-Jean Rouleau
- Centre Hospitalier de l’Université de Sherbrooke Research Center (CRCHUS), Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Vanessa Couture
- Centre Hospitalier de l’Université de Sherbrooke Research Center (CRCHUS), Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Thomas Söllrald
- Department of Electrical and Computer Engineering, Faculty of Engineering, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Geneviève Drouin
- Centre Hospitalier de l’Université de Sherbrooke Research Center (CRCHUS), Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Noémie Veillette
- Centre Hospitalier de l’Université de Sherbrooke Research Center (CRCHUS), Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Michel Grandbois
- Centre Hospitalier de l’Université de Sherbrooke Research Center (CRCHUS), Université de Sherbrooke, Sherbrooke, Quebec, Canada
- Department of Pharmacology, Faculty of Medicine, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Guillaume Grenier
- Centre Hospitalier de l’Université de Sherbrooke Research Center (CRCHUS), Université de Sherbrooke, Sherbrooke, Quebec, Canada
- Department of Orthopedic Surgery, Faculty of Medicine, Université de Sherbrooke, Sherbrooke, Quebec, Canada
- * E-mail:
| |
Collapse
|
10
|
Receptor for Advanced Glycation End-Products Signaling Interferes with the Vascular Smooth Muscle Cell Contractile Phenotype and Function. PLoS One 2015; 10:e0128881. [PMID: 26248341 PMCID: PMC4527751 DOI: 10.1371/journal.pone.0128881] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 05/02/2015] [Indexed: 11/27/2022] Open
Abstract
Increased blood glucose concentrations promote reactions between glucose and proteins to form advanced glycation end-products (AGE). Circulating AGE in the blood plasma can activate the receptor for advanced end-products (RAGE), which is present on both endothelial and vascular smooth muscle cells (VSMC). RAGE exhibits a complex signaling that involves small G-proteins and mitogen activated protein kinases (MAPK), which lead to increased nuclear factor kappa B (NF-κB) activity. While RAGE signaling has been previously addressed in endothelial cells, little is known regarding its impact on the function of VSMC. Therefore, we hypothesized that RAGE signaling leads to alterations in the mechanical and functional properties of VSMC, which could contribute to complications associated with diabetes. We demonstrated that RAGE is expressed and functional in the A7r5 VSMC model, and its activation by AGE significantly increased NF-κB activity, which is known to interfere with the contractile phenotype of VSMC. The protein levels of the contraction-related transcription factor myocardin were also decreased by RAGE activation with a concomitant decrease in the mRNA and protein levels of transgelin (SM-22α), a regulator of VSMC contraction. Interestingly, we demonstrated that RAGE activation increased the overall cell rigidity, an effect that can be related to an increase in myosin activity. Finally, although RAGE stimulation amplified calcium signaling and slightly myosin activity in VSMC challenged with vasopressin, their contractile capacity was negatively affected. Overall, RAGE activation in VSMC could represent a keystone in the development of vascular diseases associated with diabetes by interfering with the contractile phenotype of VSMC through the modification of their mechanical and functional properties.
Collapse
|
11
|
Trensz F, Lucien F, Couture V, Söllrald T, Drouin G, Rouleau AJ, Grandbois M, Lacraz G, Grenier G. Increased microenvironment stiffness in damaged myofibers promotes myogenic progenitor cell proliferation. Skelet Muscle 2015; 5:5. [PMID: 25729564 PMCID: PMC4343274 DOI: 10.1186/s13395-015-0030-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 01/19/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The stiffness of the myogenic stem cell microenvironment markedly influences the ability to regenerate tissue. We studied the effect of damaged myofibers on myogenic progenitor cell (MPC) proliferation and determined whether the structural integrity of the microenvironment contributes to phenotypic changes. METHODS Individual myofibers were isolated and cultured for 6 days. During this period, the cytoskeleton of myofibers and transcription factors regulating MPC differentiation were characterized by immunostaining. Atomic Force Microscopy (AFM) was performed to measure stiffness of cultured myofibers. Healthy and damaged myofibers, and their associated MPCs, were studied in skeletal muscle from dystrophic and tenotomy mouse models. MPCs were cultured on stiffness-tunable substrates, and their phenotypes were assessed by immunostaining of myogenic transcription factors. RESULTS We showed that individual myofibers tend to shrink or collapse when cultured ex vivo starting from day 1 and that this is associated with a marked increase in the number of proliferative MPCs (Pax7(+)MyoD(+)). The myofibers collapsed due to a loss of viability as shown by Evans blue dye uptake and the disorganization of their cytoskeletons. Interestingly, collapsed myofibers in mdx skeletal muscles were similar to damaged myofibers in that they lose their viability, have a disorganized cytoskeleton (actin and α-actinin), and display local MPC (MyoD(+)) proliferation at their periphery. In a tenotomy model that causes loss of muscle tension, the cytoskeletal disorganization of myofibers also correlated with the activation/proliferation of MPCs. A deeper analysis of collapsed myofibers revealed that they produce trophic factors that influence MPC proliferation. In addition, collapsed myofibers expressed several genes related to the basal lamina. Immunostaining revealed the presence of fibronectin in the basal lamina and the cytoplasm of damaged myofibers. Lastly, using atomic force microscopy (AFM), we showed that collapsed myofibers exhibit greater stiffness than intact myofibers. Growing MPCs on a 2-kPa polyacrylamide-based substrate, exempt of additional microenvironmental cues, recapitulated proliferation and reduced spontaneous differentiation compared to growth on a 0.5-kPa substrate. CONCLUSIONS Our results support the notion that collapsed or damaged myofibers increase the structural stiffness of the satellite cell microenvironment, which in addition to other cues such as trophic factors and changes in extracellular matrix composition, promotes the proliferation and maintenance of MPCs, required for myofiber repair.
Collapse
Affiliation(s)
- Frédéric Trensz
- Research Centre of the Centre Hospitalier de l'Université de Sherbrooke (CRCHUS), Université de Sherbrooke, Sherbrooke, QC Canada
| | - Fabrice Lucien
- Research Centre of the Centre Hospitalier de l'Université de Sherbrooke (CRCHUS), Université de Sherbrooke, Sherbrooke, QC Canada
| | - Vanessa Couture
- Research Centre of the Centre Hospitalier de l'Université de Sherbrooke (CRCHUS), Université de Sherbrooke, Sherbrooke, QC Canada
| | - Thomas Söllrald
- Department of Electrical and Computer Engineering, Faculty of Engineering, Université de Sherbrooke, Sherbrooke, QC Canada
| | - Geneviève Drouin
- Research Centre of the Centre Hospitalier de l'Université de Sherbrooke (CRCHUS), Université de Sherbrooke, Sherbrooke, QC Canada
| | - André-Jean Rouleau
- Research Centre of the Centre Hospitalier de l'Université de Sherbrooke (CRCHUS), Université de Sherbrooke, Sherbrooke, QC Canada
| | - Michel Grandbois
- Research Centre of the Centre Hospitalier de l'Université de Sherbrooke (CRCHUS), Université de Sherbrooke, Sherbrooke, QC Canada ; Department of Pharmacology, Faculty of Medicine, Université de Sherbrooke, Sherbrooke, QC Canada
| | - Gregory Lacraz
- Research Centre of the Centre Hospitalier de l'Université de Sherbrooke (CRCHUS), Université de Sherbrooke, Sherbrooke, QC Canada ; New address: Hubrecht Institute, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Guillaume Grenier
- Research Centre of the Centre Hospitalier de l'Université de Sherbrooke (CRCHUS), Université de Sherbrooke, Sherbrooke, QC Canada ; Department of Orthopedic Surgery, Faculty of Medicine, Université de Sherbrooke, 3001-12th Avenue North, Sherbrooke, J1H 5N4, QC Canada
| |
Collapse
|
12
|
Moeendarbary E, Harris AR. Cell mechanics: principles, practices, and prospects. WILEY INTERDISCIPLINARY REVIEWS. SYSTEMS BIOLOGY AND MEDICINE 2014; 6:371-88. [PMID: 25269160 PMCID: PMC4309479 DOI: 10.1002/wsbm.1275] [Citation(s) in RCA: 167] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cells generate and sustain mechanical forces within their environment as part of their normal physiology. They are active materials that can detect mechanical stimulation by the activation of mechanosensitive signaling pathways, and respond to physical cues through cytoskeletal re-organization and force generation. Genetic mutations and pathogens that disrupt the cytoskeletal architecture can result in changes to cell mechanical properties such as elasticity, adhesiveness, and viscosity. On the other hand, perturbations to the mechanical environment can affect cell behavior. These transformations are often a hallmark and symptom of a variety of pathologies. Consequently, there are now a myriad of experimental techniques and theoretical models adapted from soft matter physics and mechanical engineering to characterize cell mechanical properties. Interdisciplinary research combining modern molecular biology with advanced cell mechanical characterization techniques now paves the way for furthering our fundamental understanding of cell mechanics and its role in development, physiology, and disease. We describe a generalized outline for measuring cell mechanical properties including loading protocols, tools, and data interpretation.We summarize recent advances in the field and explain how cell biomechanics research can be adopted by physicists, engineers, biologists, and clinicians alike.
Collapse
Affiliation(s)
- Emad Moeendarbary
- Department of Physiology, Development and Neuroscience, University of CambridgeCambridge, UK
- Hughes Hall, University of CambridgeCambridge, UK
| | - Andrew R Harris
- Department of Bioengineering, University of California BerkeleyBerkeley, CA, USA
| |
Collapse
|
13
|
Lamprecht C, Hinterdorfer P, Ebner A. Applications of biosensing atomic force microscopy in monitoring drug and nanoparticle delivery. Expert Opin Drug Deliv 2014; 11:1237-53. [PMID: 24809228 DOI: 10.1517/17425247.2014.917078] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION The therapeutic effects of medicinal drugs not only depend on their properties, but also on effective transport to the target receptor. Here we highlight recent developments in this discipline and show applications of atomic force microscopy (AFM) that enable us to track the effects of drugs and the effectiveness of nanoparticle delivery at the single molecule level. AREAS COVERED Physiological AFM imaging enables visualization of topographical changes to cells as a result of drug exposure and allows observation of cellular responses that yield morphological changes. When we upgrade the regular measuring tip to a molecular biosensor, it enables investigation of functional changes at the molecular level via single molecule force spectroscopy. EXPERT OPINION Biosensing AFM techniques have generated powerful tools to monitor drug delivery in (living) cells. While technical developments in actual AFM methods have simplified measurements at relevant physiological conditions, understanding both the biological and technical background is still a crucial factor. However, due to its potential impact, we expect the number of application-based biosensing AFM techniques to further increase in the near future.
Collapse
Affiliation(s)
- Constanze Lamprecht
- University of Kiel, Institute of Materials Science Biocompatible Nanomaterials , Kaiserstr.2, 24143 Kiel , Germany
| | | | | |
Collapse
|
14
|
Boucher J, Simard E, Froehlich U, Grandbois M. Amplification of AngII-dependent cell contraction by glyoxal: implication of cell mechanical properties and actomyosin activity. Integr Biol (Camb) 2014; 6:411-21. [PMID: 24503653 DOI: 10.1039/c3ib40243f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Glyoxal (GO), a highly reactive metabolite of glucose, is associated with diabetic vascular complications via the formation of advanced glycation end-products. Considering its ability to react with proteins' amino acids and its crosslinking potential, we suggest that GO affects cellular mechanical functions such as contractility. Therefore, we tested the effects of GO on cellular contractile response following AngII stimulation of human embryonic kidney cells over-expressing the AT1 receptor (HEK 293 AT1aR). Prior to cell stimulation with AngII, cells exposed to GO exhibited carboxymethyllysine-adduct formation and an increase in cellular stiffness, which could be prevented by pre-treatment with aminoguanidine. The time-dependent cellular contractile response to AngII was measured by monitoring cell membrane displacement by atomic force atomic force microscopy (AFM) and by quantifying myosin light chain phosphorylation (p-MLC) via immunoblotting. Interestingly, short-term GO exposure increased by 2.6 times the amplitude of cell contraction induced by AngII and this was also associated with a sustained rise in p-MLC. This increased response to AngII induced by GO appears to be linked to its glycation potential, as aminoguanidine pre-treatment prevented this increased cellular mechanical response. Our results also suggest that GO could have an impact on ROCK activity, as ROCK inhibition with Y-27632 blocked the enhanced contractile response (p = 0.011) measured under GO conditions. Together, these results indicate that GO enhances the cellular response to AngII and modifies cellular mechanical properties via a mechanism that relies on its glycation potential and on the activation of the ROCK-dependent pathway.
Collapse
Affiliation(s)
- Julie Boucher
- Department of Pharmacology, Faculty of Medicine & Health Sciences, Université de Sherbrooke, 3001 12e avenue, Sherbrooke, J1H 5N4, QC, Canada.
| | | | | | | |
Collapse
|
15
|
Dörig P, Ossola D, Truong AM, Graf M, Stauffer F, Vörös J, Zambelli T. Exchangeable colloidal AFM probes for the quantification of irreversible and long-term interactions. Biophys J 2014; 105:463-72. [PMID: 23870267 DOI: 10.1016/j.bpj.2013.06.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 05/28/2013] [Accepted: 06/03/2013] [Indexed: 11/29/2022] Open
Abstract
An original method is presented to study single-colloid interaction with a substrate in liquid environment. Colloids, either in solution or adsorbed on a surface, are fixed by suction against the aperture of a microchanneled atomic force microscopy cantilever. Their adhesion to the substrate is measured, followed by their release via a short overpressure surge. Such colloid exchange procedure allows for 1), the quick variation of differently functionalized colloids within the same experiment; 2), the investigation of long-term interactions by leaving the colloids on a surface for a defined time before detaching them; and 3), the inspection of irreversible interactions. After validation of the method by reproducing literature results obtained with traditional colloidal atomic force microscopy, the serial use of colloids with different surface functionalization was shown on a micropatterned surface. Finally, concanavalin A-coated colloids were allowed to adsorb on human embryonic kidney cells and then detached one by one. The adhesion between cells and colloids was up to 60 nN, whereas individual cells adhered with 20 nN to the glass substrate. A cellular elastic modulus of 0.8 kPa was determined using the attached colloid as indenter.
Collapse
Affiliation(s)
- Pablo Dörig
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zurich, Zurich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
16
|
Identification of the molecular mechanisms in cellular processes that elicit a surface plasmon resonance (SPR) response using simultaneous surface plasmon-enhanced fluorescence (SPEF) microscopy. Biosens Bioelectron 2013; 50:125-31. [DOI: 10.1016/j.bios.2013.06.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 05/29/2013] [Accepted: 06/07/2013] [Indexed: 11/24/2022]
|
17
|
Simard E, Kovacs JJ, Miller WE, Kim J, Grandbois M, Lefkowitz RJ. β-Arrestin regulation of myosin light chain phosphorylation promotes AT1aR-mediated cell contraction and migration. PLoS One 2013; 8:e80532. [PMID: 24255721 PMCID: PMC3821855 DOI: 10.1371/journal.pone.0080532] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 10/14/2013] [Indexed: 12/20/2022] Open
Abstract
Over the last decade, it has been established that G-protein-coupled receptors (GPCRs) signal not only through canonical G-protein-mediated mechanisms, but also through the ubiquitous cellular scaffolds β-arrestin-1 and β-arrestin-2. Previous studies have implicated β-arrestins as regulators of actin reorganization in response to GPCR stimulation while also being required for membrane protrusion events that accompany cellular motility. One of the most critical events in the active movement of cells is the cyclic phosphorylation and activation of myosin light chain (MLC), which is required for cellular contraction and movement. We have identified the myosin light chain phosphatase Targeting Subunit (MYPT-1) as a binding partner of the β-arrestins and found that β-arrestins play a role in regulating the turnover of phosphorylated myosin light chain. In response to stimulation of the angiotensin Type 1a Receptor (AT1aR), MLC phosphorylation is induced quickly and potently. We have found that β-arrestin-2 facilitates dephosphorylation of MLC, while, in a reciprocal fashion, β-arrestin 1 limits dephosphorylation of MLC. Intriguingly, loss of either β-arrestin-1 or 2 blocks phospho-MLC turnover and causes a decrease in the contraction of cells as monitored by atomic force microscopy (AFM). Furthermore, by employing the β-arrestin biased ligand [Sar1,Ile4,Ile8]-Ang, we demonstrate that AT1aR-mediated cellular motility involves a β-arrestin dependent component. This suggests that the reciprocal regulation of MLC phosphorylation status by β-arrestins-1 and 2 causes turnover in the phosphorylation status of MLC that is required for cell contractility and subsequent chemotaxic motility.
Collapse
Affiliation(s)
- Elie Simard
- Département de Pharmacologie, Faculté de Médecine et des Sciences de la Santé de l’Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Jeffrey J. Kovacs
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| | - William E. Miller
- Department of Molecular Genetics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Jihee Kim
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Michel Grandbois
- Département de Pharmacologie, Faculté de Médecine et des Sciences de la Santé de l’Université de Sherbrooke, Sherbrooke, Québec, Canada
- Institut de Pharmacologie de Sherbrooke, Faculté de Médecine et des Sciences de la Santé de l’Université de Sherbrooke, Sherbrooke, Québec, Canada
- Chaire de Recherche Canadienne en Nanopharmacologie et Microscopie à Force Atomique, Faculté de Médecine et des Sciences de la Santé de l’Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Robert J. Lefkowitz
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina, United States of America
- Howard Hughes Medical Institute, Duke University Medical Center, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
18
|
Dufrêne YF, Pelling AE. Force nanoscopy of cell mechanics and cell adhesion. NANOSCALE 2013; 5:4094-4104. [PMID: 23535827 DOI: 10.1039/c3nr00340j] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Cells are constantly exposed to mechanical stimuli in their environment and have several evolved mechanisms to sense and respond to these cues. It is becoming increasingly recognized that many cell types, from bacteria to mammalian cells, possess a diverse set of proteins to translate mechanical cues into biochemical signalling and to mediate cell surface interactions such as cell adhesion. Moreover, the mechanical properties of cells are involved in regulating cell function as well as serving as indicators of disease states. Importantly, the recent development of biophysical tools and nanoscale methods has facilitated a deeper understanding of the role that physical forces play in modulating cell mechanics and cell adhesion. Here, we discuss how atomic force microscopy (AFM) has recently been used to investigate cell mechanics and cell adhesion at the single-cell and single-molecule levels. This knowledge is critical to our understanding of the molecular mechanisms that govern mechanosensing, mechanotransduction, and mechanoresponse in living cells. While pushing living cells with the AFM tip provides a means to quantify their mechanical properties and examine their response to nanoscale forces, pulling single surface proteins with a functionalized tip allows one to understand their role in sensing and adhesion. The combination of these nanoscale techniques with modern molecular biology approaches, genetic engineering and optical microscopies provides a powerful platform for understanding the sophisticated functions of the cell surface machinery, and its role in the onset and progression of complex diseases.
Collapse
Affiliation(s)
- Yves F Dufrêne
- Université catholique de Louvain, Institute of Life Sciences, Croix du Sud, 1, bte L7.04.01., B-1348 Louvain-la-Neuve, Belgium.
| | | |
Collapse
|
19
|
A practical guide to quantify cell adhesion using single-cell force spectroscopy. Methods 2013; 60:169-78. [DOI: 10.1016/j.ymeth.2013.01.006] [Citation(s) in RCA: 147] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 01/18/2013] [Accepted: 01/24/2013] [Indexed: 01/14/2023] Open
|
20
|
Jeong KH, Lee SH. A new technical approach to monitor the cellular physiology by atomic force microscopy. Electrolyte Blood Press 2013; 10:7-11. [PMID: 23508877 PMCID: PMC3597918 DOI: 10.5049/ebp.2012.10.1.7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2012] [Accepted: 12/12/2012] [Indexed: 11/05/2022] Open
Abstract
Atomic force microscopy (AFM) has become an important medical and biological tool for non-invasive imaging and measuring the mechanical changes of cells since its invention by Binnig et al. AFM can be used to investigate the mechanical properties of cellular events in individual living cells on a nanoscale level. In addition, the dynamic cellular movements induced by biochemical activation of specific materials can be detected in real time with three dimensional resolution. Force measurement with the use of AFM has become the tool of choice to monitor the mechanical changes of variable cellular events. In addition, the AFM approach can be applied to measure cellular adhesion properties. Moreover, the information gathered from AFM is important to understanding the mechanisms related to cellular movement and mechanical regulation. This review will discuss recent contributions of AFM to cellular physiology with a focus on monitoring the effects of antihypertensive agents in kidney cells.
Collapse
Affiliation(s)
- Kyung Hwan Jeong
- Department of Internal Medicine, College of Medicine, Kyung Hee University, Seoul, Korea
| | | |
Collapse
|
21
|
Hong Z, Staiculescu MC, Hampel P, Levitan I, Forgacs G. How cholesterol regulates endothelial biomechanics. Front Physiol 2012; 3:426. [PMID: 23162471 PMCID: PMC3498650 DOI: 10.3389/fphys.2012.00426] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Accepted: 10/19/2012] [Indexed: 11/13/2022] Open
Abstract
As endothelial cells form the barrier between blood flow and surrounding tissue, many of their functions depend on mechanical integrity, in particular those of the plasma membrane. As component and organizer of the plasma membrane, cholesterol is a regulator of cellular mechanical properties. Disruption of cholesterol balance leads to impairment of endothelial functions and eventually to disease. The mechanical properties of the membrane are strongly affected by the cytoskeleton. As Phosphatidylinositol-4,5-bisphosphate (PIP2) is a key mediator between the membrane and cytoskeleton, it also affects cellular biomechanical properties. Typically, PIP2 is concentrated in cholesterol-rich microdomains, such as caveolae and lipid rafts, which are particularly abundant in the endothelial plasma membrane. We investigated the connection between cholesterol and PIP2 by extracting membrane tethers from bovine aortic endothelial cells (BAEC) at different cholesterol levels and PIP2 conditions. Our results suggest that in BAEC the role of PIP2, as a mediator of membrane-cytoskeleton adhesion, is regulated by cholesterol. Our findings confirm the specific role of cholesterol in endothelial cells and may have implications for cholesterol-dependent vascular pathologies.
Collapse
Affiliation(s)
- Zhongkui Hong
- Department of Physics and Astronomy, University of Missouri-Columbia Columbia, MO, USA
| | | | | | | | | |
Collapse
|
22
|
Jeong KH, Lee TW, Ihm CG, Moon JY, Lee GJ, Park HK, Lee SH. Real-time monitoring of the effects of telmisartan on angiotensin II-induced mechanical changes in live mesangial cells using atomic force microscopy. Kidney Blood Press Res 2012; 35:573-82. [PMID: 22890312 DOI: 10.1159/000339175] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 04/27/2012] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND/AIMS Recent studies have shown that angiotensin II (Ang II) type 1 receptor blockers (ARB) may provide renal protection independent of their blood pressure-lowering effect. However, evidence for this comes from indirect methods, such as genetic or protein expression studies. In this study, we hypothesized that telmisartan, a specific ARB, applied to Ang II-stimulated mesangial cell (MC) would exert a renoprotective effect via modulation of MCs' mechanical properties. METHODS We investigated the effect of telmisartan on Ang II-induced changes in MCs utilizing real-time atomic force microscopy (AFM) imaging and force-distance curve measurements. RESULTS Real-time AFM images of live MCs demonstrated that cells contracted towards the center after Ang II exposure, and telmisartan treatment abolished this change. Cellular spring constants showed that telmisartan prevented Ang II-induced MC stiffening (Ang II: 0.109 ± 0.019 N/m, Ang II + telmisartan: 0.051 ± 0.016 N/m, p < 0.005). Telmisartan-treated MCs had a significantly lower adhesion force than those of the control group (control: 0.49 ± 0.22 nN, telmisartan: 0.22 ± 0.06 nN, Ang II: 0.40 ± 0.25 nN, Ang II + telmisartan: 0.27 ± 0.14 nN, p < 0.005). These results demonstrate that the dynamic contraction and mechanical properties of Ang II-stimulated MCs are restored by telmisartan. CONCLUSIONS We report for the first time the use of AFM force-distance curves on live MCs to directly monitor changes in surface adhesion and stiffness of cells after treatment with telmisartan in real time.
Collapse
Affiliation(s)
- Kyung-Hwan Jeong
- Department of Nephrology, College of Medicine, Kyung Hee University, Seoul, Korea
| | | | | | | | | | | | | |
Collapse
|
23
|
Varghese M, Gorsevski P, Cayer ML, Boudreau NS, Heckman CA. Unraveling the determinants of protrusion formation. Int J Cell Biol 2012; 2012:402916. [PMID: 22500172 PMCID: PMC3303863 DOI: 10.1155/2012/402916] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Accepted: 10/26/2011] [Indexed: 01/13/2023] Open
Abstract
A COMPUTERIZED MORPHOMETRIC CLASSIFICATION TECHNIQUE BASED ON LATENT FACTORS REVEALS MAJOR PROTRUSION CLASSES: factors 4, 5, and 7. Previous work showed that factor 4 represented filopodia, 5 the distribution of lamellar cytoplasm, and 7 a blunt protrusion. We explore the relationship of focal contact (FC) characteristics and their integrated actin cables to factors values. The results show that FC maturation/cytoskeletal integration affects factor 5, because FC elongation/integration was correlated with its values. On the contrary, 7 values decreased with maturation, so cable or FC size or their integration must be restricted to form these protrusions. Where integration did occur, the cables showed distinctive size and orientation, as indicated by correlation of 7 values with FC shape. Results obtained with myosin inhibitors support the interpretation that a central, isometric, contractile network puts constraints on both factor 5 and 7 protrusions. We conclude that cells establish functional domains by rearranging the cytoskeleton.
Collapse
Affiliation(s)
- Mita Varghese
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH 43403-0212, USA
| | - Peter Gorsevski
- School of Earth, Environment and Society, Bowling Green State University, Bowling Green, OH 43403-0212, USA
| | - Marilyn L. Cayer
- Center for Microscopy and Microanalysis, Bowling Green State University, Bowling Green, OH 43403-0212, USA
| | - Nancy S. Boudreau
- Department of Applied Statistics and Operations Research, Bowling Green State University, Bowling Green, OH 43403-0212, USA
| | - Carol A. Heckman
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH 43403-0212, USA
| |
Collapse
|
24
|
Stewart MP, Toyoda Y, Hyman AA, Muller DJ. Force probing cell shape changes to molecular resolution. Trends Biochem Sci 2011; 36:444-50. [DOI: 10.1016/j.tibs.2011.05.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2011] [Revised: 04/26/2011] [Accepted: 05/02/2011] [Indexed: 11/25/2022]
|
25
|
Müller DJ, Dufrêne YF. Atomic force microscopy: a nanoscopic window on the cell surface. Trends Cell Biol 2011; 21:461-9. [PMID: 21664134 DOI: 10.1016/j.tcb.2011.04.008] [Citation(s) in RCA: 232] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Revised: 04/22/2011] [Accepted: 04/27/2011] [Indexed: 12/14/2022]
Abstract
Atomic force microscopy (AFM) techniques provide a versatile platform for imaging and manipulating living cells to single-molecule resolution, thereby enabling us to address pertinent questions in key areas of cell biology, including cell adhesion and signalling, embryonic and tissue development, cell division and shape, and microbial pathogenesis. In this review, we describe the principles of AFM, and survey recent breakthroughs made in AFM-based cell nanoscopy, showing how the technology has increased our molecular understanding of the organization, mechanics, interactions and processes of the cell surface. We also discuss the advantages and limitations of AFM techniques, and the challenges remaining to be addressed in future research.
Collapse
Affiliation(s)
- Daniel J Müller
- ETH Zürich, Department of Biosystems Science and Engineering, Basel, Switzerland.
| | | |
Collapse
|
26
|
Wang X, He D, Chen L, Chen T, Jin H, Cai J, Chen Y. Cell-surface ultrastructural changes during the in vitro neuron-like differentiation of rat bone marrow-derived mesenchymal stem cells. SCANNING 2011; 33:69-77. [PMID: 21445986 DOI: 10.1002/sca.20229] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Accepted: 02/28/2011] [Indexed: 05/30/2023]
Abstract
The neuron-like differentiation of bone marrow-derived mesenchymal stem cells (BMMSCs) has been extensively studied. However, the alternations of the cell-surface ultrastructures and the membrane tension/reservoir of the cells during this differentiation process are poorly understood. Therefore, atomic force microscopy (AFM) was utilized in this study to observe the cell-surface ultrastructural changes among rat bone marrow-derived mesenchymal stem cells (rBMMSCs), partially differentiated cells, and fully differentiated neuron-like cells. By analyzing the stiffness of plasma membranes, lamellipodial extensions, average heights of small membrane protrusions and relatively larger uplifted structures, and peak-peak spacing among protrusions and/or uplifted structures, we found that the membrane reservoir may potentially decrease upon the differentiation from rBMMSCs to partially differentiated cells and to fully differentiated neuron-like cells. The results may help to better understanding the membrane tension of various types of cells and related biological processes, such as membrane traffic, cell adhesion, motility, differentiation, among others. The data also implies that AFM may be a useful tool for evaluating membrane reservoir by imaging cell-surface ultrastructures.
Collapse
Affiliation(s)
- Xiaoping Wang
- Department of Anesthesiology, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | | | | | | | | | | | | |
Collapse
|
27
|
Zhong JC, Ye JY, Jin HY, Yu X, Yu HM, Zhu DL, Gao PJ, Huang DY, Shuster M, Loibner H, Guo JM, Yu XY, Xiao BX, Gong ZH, Penninger JM, Oudit GY. Telmisartan attenuates aortic hypertrophy in hypertensive rats by the modulation of ACE2 and profilin-1 expression. ACTA ACUST UNITED AC 2011; 166:90-7. [DOI: 10.1016/j.regpep.2010.09.005] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2010] [Revised: 08/26/2010] [Accepted: 09/13/2010] [Indexed: 12/21/2022]
|
28
|
Kang I, Wang Q, Eppell SJ, Marchant RE, Doerschuk CM. Effect of neutrophil adhesion on the mechanical properties of lung microvascular endothelial cells. Am J Respir Cell Mol Biol 2009; 43:591-8. [PMID: 20023207 DOI: 10.1165/rcmb.2006-0381oc] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Neutrophil adhesion to pulmonary microvascular endothelial cells (ECs) initiates intracellular signaling, resulting in remodeling of F-actin cytoskeletal structure of ECs. The present study determined the mechanical properties of ECs and the changes induced by neutrophil adhesion by atomic force microscopy. The elastic moduli of ECs were compared before neutrophils were present, as soon as neutrophil adhesion was detected, and 1 minute later. ECs that were adjacent to those with adherent neutrophils were also evaluated. Neutrophil adhesion induced a decrease in the elastic moduli in the 6.25-μm rim of ECs surrounding adherent neutrophils as soon as firmly adherent neutrophils were detected, which was transient and lasted less than 1 minute. Adjacent ECs developed an increase in stiffness that was significant in the central regions of these cells. Intercellular adhesion molecule-1 crosslinking did not induce significant changes in the elastic modulus of ECs in either region, suggesting that crosslinking intercellular adhesion molecule-1 is not sufficient to induce the observed changes. Our results demonstrate that neutrophil adhesion induces regional changes in the stiffness of ECs.
Collapse
Affiliation(s)
- Inkyung Kang
- Department of Biomedical Engineering, and Division of Integrative Biology, Case Western Reserve University, Cleveland, Ohio, USA
| | | | | | | | | |
Collapse
|
29
|
Cuerrier CM, Gagner A, Lebel R, Gobeil F, Grandbois M. Effect of thrombin and bradykinin on endothelial cell mechanical properties monitored through membrane deformation. J Mol Recognit 2009; 22:389-96. [DOI: 10.1002/jmr.953] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|