1
|
Analysis of tetrodotoxin-sensitive sodium and low voltage-activated calcium channels in developing mouse retinal horizontal cells. Exp Eye Res 2020; 195:108028. [PMID: 32277973 DOI: 10.1016/j.exer.2020.108028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/24/2020] [Accepted: 03/29/2020] [Indexed: 11/21/2022]
Abstract
Expression patterns of voltage-gated ion channels determine the spatio-temporal dynamics of ion currents that supply excitable neurons in developing tissue with proper electrophysiological properties. The purpose of the study was to identify fast cationic inward currents in mouse retinal horizontal cells (HCs) and describe their biophysical properties at different developmental stages. We also aimed to reveal their physiological role in shaping light responses (LRs) in adult HCs. HCs were recorded in horizontal slices of wild-type mouse retina at postnatal stages ranging from p8 through p60. Voltage-dependent inward currents were isolated with appropriate voltage protocols and blockers specific for sodium and T-type calcium channels. LRs were evoked with full-field flashes (130 μW/cm2). Transient and steady inward currents were identified at all developmental stages. Transient currents were mediated by T-type calcium and TTX-sensitive sodium channels, whereas steady currents were blocked by cadmium, indicating the presence of high voltage-activated calcium channels. Activation and steady-state inactivation kinetics of T-type calcium channels revealed a contribution to the resting membrane potential during postnatal development. Additionally, both sodium and T-type calcium channels had an impact on HC LRs at light offset in adult animals. Our results showed that the voltage-dependent inward currents of postnatally developing mouse HCs consist of T-type calcium, TTX-sensitive sodium, and high voltage-activated calcium channels, and that transient ionic currents contributed to light-evoked responses of adult HCs, suggesting a role in HC information processing.
Collapse
|
2
|
Van Hook MJ, Nawy S, Thoreson WB. Voltage- and calcium-gated ion channels of neurons in the vertebrate retina. Prog Retin Eye Res 2019; 72:100760. [PMID: 31078724 PMCID: PMC6739185 DOI: 10.1016/j.preteyeres.2019.05.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/25/2019] [Accepted: 05/01/2019] [Indexed: 02/06/2023]
Abstract
In this review, we summarize studies investigating the types and distribution of voltage- and calcium-gated ion channels in the different classes of retinal neurons: rods, cones, horizontal cells, bipolar cells, amacrine cells, interplexiform cells, and ganglion cells. We discuss differences among cell subtypes within these major cell classes, as well as differences among species, and consider how different ion channels shape the responses of different neurons. For example, even though second-order bipolar and horizontal cells do not typically generate fast sodium-dependent action potentials, many of these cells nevertheless possess fast sodium currents that can enhance their kinetic response capabilities. Ca2+ channel activity can also shape response kinetics as well as regulating synaptic release. The L-type Ca2+ channel subtype, CaV1.4, expressed in photoreceptor cells exhibits specific properties matching the particular needs of these cells such as limited inactivation which allows sustained channel activity and maintained synaptic release in darkness. The particular properties of K+ and Cl- channels in different retinal neurons shape resting membrane potentials, response kinetics and spiking behavior. A remaining challenge is to characterize the specific distributions of ion channels in the more than 100 individual cell types that have been identified in the retina and to describe how these particular ion channels sculpt neuronal responses to assist in the processing of visual information by the retina.
Collapse
Affiliation(s)
- Matthew J Van Hook
- Truhlsen Eye Institute, Department of Ophthalmology & Visual Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Scott Nawy
- Truhlsen Eye Institute, Department of Ophthalmology & Visual Sciences, University of Nebraska Medical Center, Omaha, NE, USA; Department Pharmacology & Experimental Neuroscience(2), University of Nebraska Medical Center, Omaha, NE, USA
| | - Wallace B Thoreson
- Truhlsen Eye Institute, Department of Ophthalmology & Visual Sciences, University of Nebraska Medical Center, Omaha, NE, USA; Department Pharmacology & Experimental Neuroscience(2), University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
3
|
Sun X, Hirano AA, Brecha NC, Barnes S. Calcium-activated BK Ca channels govern dynamic membrane depolarizations of horizontal cells in rodent retina. J Physiol 2017; 595:4449-4465. [PMID: 28374528 PMCID: PMC5491872 DOI: 10.1113/jp274132] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 03/17/2017] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Large conductance, Ca2+ -activated K+ (BKCa ) channels play important roles in mammalian retinal neurons, including photoreceptors, bipolar cells, amacrine cells and ganglion cells, but they have not been identified in horizontal cells. BKCa channel blockers paxilline and iberiotoxin, as well as Ca2+ free solutions and divalent cation Cav channel blockers, eliminate the outwardly rectifying current, while NS1619 enhances it. In symmetrical 150 mm K+ , single channels had a conductance close to 250 pS, within the range of all known BKCa channels. In current clamped horizontal cells, BKCa channels subdue depolarizing membrane potential excursions, reduce the average resting potential and decrease oscillations. The results show that BKCa channel activation puts a ceiling on horizontal cell depolarization and regulates the temporal responsivity of the cells. ABSTRACT Large conductance, calcium-activated potassium (BKCa ) channels have numerous roles in neurons including the regulation of membrane excitability, intracellular [Ca2+ ] regulation, and neurotransmitter release. In the retina, they have been identified in photoreceptors, bipolar cells, amacrine cells and ganglion cells, but have not been conclusively identified in mammalian horizontal cells. We found that outward current recorded between -30 and +60 mV is carried primarily in BKCa channels in isolated horizontal cells of rats and mice. Whole-cell outward currents were maximal at +50 mV and declined at membrane potentials positive to this value. This current was eliminated by the selective BKCa channel blocker paxilline (100 nm), iberiotoxin (10 μm), Ca2+ free solutions and divalent cation Cav channel blockers. It was activated by the BKCa channel activator NS1619 (30 μm). Single channel recordings revealed the conductance of the channels to be 244 ± 11 pS (n = 17; symmetrical 150 mm K+ ) with open probability being both voltage- and Ca2+ -dependent. The channels showed fast activation kinetics in response to Ca2+ influx and inactivation gating that could be modified by intracellular protease treatment, which suggests β subunit involvement. Under current clamp, block of BKCa current increased depolarizing membrane potential excursions, raising the average resting potential and producing oscillations. BKCa current activation with NS1619 inhibited oscillations and hyperpolarized the resting potential. These effects underscore the functional role of BKCa current in limiting depolarization of the horizontal cell membrane potential and suggest actions of these channels in regulating the temporal responsivity of the cells.
Collapse
Affiliation(s)
- Xiaoping Sun
- Department of NeurobiologyDavid Geffen School of MedicineUniversity of CaliforniaLos AngelesCAUSA
| | - Arlene A. Hirano
- Department of NeurobiologyDavid Geffen School of MedicineUniversity of CaliforniaLos AngelesCAUSA
- Veterans Administration Greater Los Angeles Healthcare SystemLos AngelesCAUSA
| | - Nicholas C. Brecha
- Department of NeurobiologyDavid Geffen School of MedicineUniversity of CaliforniaLos AngelesCAUSA
- Veterans Administration Greater Los Angeles Healthcare SystemLos AngelesCAUSA
- Departments of MedicineOphthalmology and Stein Eye Institute, David Geffen School of MedicineUniversity of CaliforniaLos AngelesCAUSA
| | - Steven Barnes
- Department of NeurobiologyDavid Geffen School of MedicineUniversity of CaliforniaLos AngelesCAUSA
- Veterans Administration Greater Los Angeles Healthcare SystemLos AngelesCAUSA
- Departments of Physiology & Biophysics and Ophthalmology & Visual SciencesDalhousie UniversityHalifaxNova ScotiaCanada
| |
Collapse
|
4
|
Chapot CA, Euler T, Schubert T. How do horizontal cells 'talk' to cone photoreceptors? Different levels of complexity at the cone-horizontal cell synapse. J Physiol 2017; 595:5495-5506. [PMID: 28378516 DOI: 10.1113/jp274177] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 03/27/2017] [Indexed: 11/08/2022] Open
Abstract
The first synapse of the retina plays a fundamental role in the visual system. Due to its importance, it is critical that it encodes information from the outside world with the greatest accuracy and precision possible. Cone photoreceptor axon terminals contain many individual synaptic sites, each represented by a presynaptic structure called a 'ribbon'. These synapses are both highly sophisticated and conserved. Each ribbon relays the light signal to one ON cone bipolar cell and several OFF cone bipolar cells, while two dendritic processes from a GABAergic interneuron, the horizontal cell, modulate the cone output via parallel feedback mechanisms. The presence of these three partners within a single synapse has raised numerous questions, and its anatomical and functional complexity is still only partially understood. However, the understanding of this synapse has recently evolved, as a consequence of progress in understanding dendritic signal processing and its role in facilitating global versus local signalling. Indeed, for the downstream retinal network, dendritic processing in horizontal cells may be essential, as they must support important functional operations such as contrast enhancement, which requires spatial averaging of the photoreceptor array, while at the same time preserving accurate spatial information. Here, we review recent progress made towards a better understanding of the cone synapse, with an emphasis on horizontal cell function, and discuss why such complexity might be necessary for early visual processing.
Collapse
Affiliation(s)
- Camille A Chapot
- Institute for Ophthalmic Research, University of Tübingen, 72076, Tübingen, Germany.,Centre for Integrative Neuroscience, University of Tübingen, 72076, Tübingen, Germany.,Graduate Training Centre of Neuroscience, University of Tübingen, 72076, Tübingen, Germany
| | - Thomas Euler
- Institute for Ophthalmic Research, University of Tübingen, 72076, Tübingen, Germany.,Centre for Integrative Neuroscience, University of Tübingen, 72076, Tübingen, Germany.,Bernstein Centre for Computational Neuroscience, University of Tübingen, 72076, Tübingen, Germany
| | - Timm Schubert
- Institute for Ophthalmic Research, University of Tübingen, 72076, Tübingen, Germany.,Centre for Integrative Neuroscience, University of Tübingen, 72076, Tübingen, Germany
| |
Collapse
|
5
|
Hirano AA, Liu X, Boulter J, Grove J, Pérez de Sevilla Müller L, Barnes S, Brecha NC. Targeted Deletion of Vesicular GABA Transporter from Retinal Horizontal Cells Eliminates Feedback Modulation of Photoreceptor Calcium Channels. eNeuro 2016; 3:ENEURO.0148-15.2016. [PMID: 27022629 PMCID: PMC4785380 DOI: 10.1523/eneuro.0148-15.2016] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 01/20/2016] [Accepted: 01/28/2016] [Indexed: 11/21/2022] Open
Abstract
The cellular mechanisms underlying feedback signaling from horizontal cells to photoreceptors, which are important for the formation of receptive field surrounds of early visual neurons, remain unsettled. Mammalian horizontal cells express a complement of synaptic proteins that are necessary and sufficient for calcium-dependent exocytosis of inhibitory neurotransmitters at their contacts with photoreceptor terminals, suggesting that they are capable of releasing GABA via vesicular release. To test whether horizontal cell vesicular release is involved in feedback signaling, we perturbed inhibitory neurotransmission in these cells by targeted deletion of the vesicular GABA transporter (VGAT), the protein responsible for the uptake of inhibitory transmitter by synaptic vesicles. To manipulate horizontal cells selectively, an iCre mouse line with Cre recombinase expression controlled by connexin57 (Cx57) regulatory elements was generated. In Cx57-iCre mouse retina, only horizontal cells expressed Cre protein, and its expression occurred in all retinal regions. After crossing with a VGAT(flox/flox) mouse line, VGAT was selectively eliminated from horizontal cells, which was confirmed immunohistochemically. Voltage-gated ion channel currents in horizontal cells of Cx57-VGAT(-/-) mice were the same as Cx57-VGAT(+/+) controls, as were the cell responses to the ionotropic glutamate receptor agonist kainate, but the response to the GABAA receptor agonist muscimol in Cx57-VGAT(-/-) mice was larger. In contrast, the feedback inhibition of photoreceptor calcium channels, which in control animals is induced by horizontal cell depolarization, was completely absent in Cx57-VGAT(-/-) mice. The results suggest that vesicular release of GABA from horizontal cells is required for feedback inhibition of photoreceptors.
Collapse
Affiliation(s)
- Arlene A. Hirano
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095
- Veterans Administration Greater Los Angeles Healthcare System, Los Angeles, California 90073
| | - Xue Liu
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095
| | - Jim Boulter
- Department of Psychiatry and Biobehavioral Sciences, Hatos Research Center for Neuropharmacology, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095
| | - James Grove
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095
| | - Luis Pérez de Sevilla Müller
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095
| | - Steven Barnes
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095
- Veterans Administration Greater Los Angeles Healthcare System, Los Angeles, California 90073
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
- Department of Ophthalmology & Visual Sciences, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Nicholas C. Brecha
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095
- Veterans Administration Greater Los Angeles Healthcare System, Los Angeles, California 90073
- Jules Stein Eye Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095
| |
Collapse
|
6
|
Feigenspan A, Babai N. Functional properties of spontaneous excitatory currents and encoding of light/dark transitions in horizontal cells of the mouse retina. Eur J Neurosci 2015; 42:2615-32. [PMID: 26173960 DOI: 10.1111/ejn.13016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 06/23/2015] [Accepted: 07/07/2015] [Indexed: 02/01/2023]
Abstract
As all visual information is represented in the spatio-temporal dynamics of transmitter release from photoreceptors and the combined postsynaptic responses of second-order neurons, appropriate synaptic transfer functions are fundamental for a meaningful perception of the visual world. The functional contribution of horizontal cells to gain control and organization of bipolar and ganglion cell receptive fields can only be evaluated with an in-depth understanding of signal processing in horizontal cells. Therefore, a horizontal slice preparation of the mouse retina was established to record from horizontal cell bodies with their dendritic fields intact and receiving functional synaptic input from cone photoreceptors. Horizontal cell bodies showed spontaneous excitatory currents (spEPSCs) of monophasic and more complex multi-peak waveforms. spEPSCs were induced by quantal release of glutamate from presynaptic cones with a unitary amplitude of 3 pA. Non-stationary noise analysis revealed that spEPSCs with a monoexponential decay were mediated by 7-8 glutamate receptors with a single-channel amplitude of 1.55 pA. Responses to photopic full-field illumination were characterized by reduction of a tonic inward current or hyperpolarization, inhibition of spEPSCs, followed by a fast and transient inward current at light offset. The response to periodic dark/light transitions of different frequencies was dependent on the adaptational status of the cell with a limiting frequency of 10 Hz. Both on and off components of the light response were mediated by AMPA and kainate receptors. Detailed analysis of horizontal cell synaptic physiology is a prerequisite for understanding signal coding and processing at the photoreceptor ribbon synapse.
Collapse
Affiliation(s)
- Andreas Feigenspan
- Department of Biology, Division of Animal Physiology, University of Erlangen-Nuernberg, Staudtstrasse 5, D-91058, Erlangen, German
| | - Norbert Babai
- Department of Biology, Division of Animal Physiology, University of Erlangen-Nuernberg, Staudtstrasse 5, D-91058, Erlangen, German
| |
Collapse
|
7
|
Ströh S, Sonntag S, Janssen-Bienhold U, Schultz K, Cimiotti K, Weiler R, Willecke K, Dedek K. Cell-specific cre recombinase expression allows selective ablation of glutamate receptors from mouse horizontal cells. PLoS One 2013; 8:e83076. [PMID: 24349437 PMCID: PMC3861464 DOI: 10.1371/journal.pone.0083076] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 11/06/2013] [Indexed: 01/26/2023] Open
Abstract
In the mouse retina, horizontal cells form an electrically coupled network and provide feedback signals to photoreceptors and feedforward signals to bipolar cells. Thereby, horizontal cells contribute to gain control at the first visual synapse and to the antagonistic organization of bipolar and ganglion cell receptive fields. However, the nature of horizontal cell output remains a matter of debate, just as the exact contribution of horizontal cells to center-surround antagonism. To facilitate studying horizontal cell function, we developed a knockin mouse line which allows ablating genes exclusively in horizontal cells. This knockin line expresses a Cre recombinase under the promoter of connexin57 (Cx57), a gap junction protein only expressed in horizontal cells. Consistently, in Cx57+/Cre mice, Cre recombinase is expressed in almost all horizontal cells (>99%) and no other retinal neurons. To test Cre activity, we crossbred Cx57+/Cre mice with a mouse line in which exon 11 of the coding sequence for the ionotropic glutamate receptor subunit GluA4 was flanked by two loxP sites (GluA4fl/fl). In GluA4fl/fl:Cx57+/Cre mice, GluA4 immunoreactivity was significantly reduced (∼50%) in the outer retina where horizontal cells receive photoreceptor inputs, confirming the functionality of the Cre/loxP system. Whole-cell patch-clamp recordings from isolated horizontal cell somata showed a reduction of glutamate-induced inward currents by ∼75%, suggesting that the GluA4 subunit plays a major role in mediating photoreceptor inputs. The persistent current in GluA4-deficient cells is mostly driven by AMPA and to a very small extent by kainate receptors as revealed by application of the AMPA receptor antagonist GYKI52466 and concanavalin A, a potentiator of kainate receptor-mediated currents. In summary, the Cx57+/Cre mouse line provides a versatile tool for studying horizontal cell function. GluA4fl/fl:Cx57+/Cre mice, in which horizontal cells receive less excitatory input, can thus be used to analyze the contribution of horizontal cells to retinal processing.
Collapse
Affiliation(s)
- Sebastian Ströh
- Department of Neurobiology, University of Oldenburg, Oldenburg, Germany
| | - Stephan Sonntag
- Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Ulrike Janssen-Bienhold
- Department of Neurobiology, University of Oldenburg, Oldenburg, Germany
- Research Center Neurosensory Science, University of Oldenburg, Oldenburg, Germany
| | - Konrad Schultz
- Department of Neurobiology, University of Oldenburg, Oldenburg, Germany
| | - Kerstin Cimiotti
- Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Reto Weiler
- Department of Neurobiology, University of Oldenburg, Oldenburg, Germany
- Research Center Neurosensory Science, University of Oldenburg, Oldenburg, Germany
| | - Klaus Willecke
- Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Karin Dedek
- Department of Neurobiology, University of Oldenburg, Oldenburg, Germany
- Research Center Neurosensory Science, University of Oldenburg, Oldenburg, Germany
- * E-mail:
| |
Collapse
|
8
|
Cordeiro S, Guseva D, Wulfsen I, Bauer CK. Expression pattern of Kv11 (Ether à-go-go-related gene; erg) K+ channels in the mouse retina. PLoS One 2011; 6:e29490. [PMID: 22206018 PMCID: PMC3242786 DOI: 10.1371/journal.pone.0029490] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Accepted: 11/29/2011] [Indexed: 11/19/2022] Open
Abstract
In response to light, most retinal neurons exhibit gradual changes in membrane potential. Therefore K+ channels that mediate threshold currents are well-suited for the fine-tuning of signal transduction. In the present study we demonstrate the expression of the different Kv11 (ether-à-go-go related gene; erg) channel subunits in the human and mouse retina by RT PCR and quantitative PCR, respectively. Immunofluorescence analysis with cryosections of mouse retinae revealed the following local distribution of the three Kv11 subunits: Kv11.1 (m-erg1) displayed the most abundant expression with the strongest immunoreactivity in rod bipolar cells. In addition, immunoreactivity was found in the inner part of the outer plexiform layer (OPL), in the inner plexiform layer (IPL) and in the inner segments of photoreceptors. Immunoreactivity for Kv11.2 (m-erg2) was observed in the outer part of the OPL and throughout the IPL. Double-labeling for vGluT1 or synaptophysin indicated a mainly presynaptic localization of Kv11.2. While no significant staining for Kv11.3 (m-erg3) was detected in the neuronal retina, strong Kv11.3 immunoreactivity was present in the apical membrane of the retinal pigment epithelium. The different expression levels were confirmed by real-time PCR showing almost equal levels of Kv11.1 and Kv11.2, while Kv11.3 mRNA expression was significantly lower. The two main splice variants of Kv11.1, isoforms a and b were detected in comparable levels suggesting a possible formation of cGMP/cGK-sensitive Kv11.1 channels in photoreceptors and rod bipolar cells. Taken together, the immunohistological results revealed different expression patterns of the three Kv11 channels in the mouse retina supposing distinct physiological roles.
Collapse
Affiliation(s)
- Sönke Cordeiro
- Institut für Neurophysiologie, Medizinische Hochschule Hannover, Hannover, Germany
- Physiologisches Institut, Universität zu Kiel, Kiel, Germany
| | - Daria Guseva
- Institut für Neurophysiologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Iris Wulfsen
- Institut für Pharmakologie für Pharmazeuten, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
- Institut für Zelluläre und Integrative Physiologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Christiane K. Bauer
- Institut für Zelluläre und Integrative Physiologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|