1
|
Ghareeb AFA, Schneiders GH, Richter JN, Foutz JC, Milfort MC, Fuller AL, Yuan J, Rekaya R, Aggrey SE. Heat stress modulates the disruptive effects of Eimeria maxima infection on the ileum nutrient digestibility, molecular transporters, and tissue morphology in meat-type chickens. PLoS One 2022; 17:e0269131. [PMID: 35657942 PMCID: PMC9165794 DOI: 10.1371/journal.pone.0269131] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 05/14/2022] [Indexed: 11/18/2022] Open
Abstract
Eimeria (E.) maxima is one of the most pathogenic Eimeria spp persistently invading the middle jejunum and ileum, damaging the intestinal mucosa of chickens. Heat stress (HS) is a common stressor and equally contributes to inflammation and oxidative stress. We investigated the effect of E. maxima infection and HS on ileal digestibility, mRNA expression of nutrient transporters, and ileal tissue morphology in broiler chickens. There were four treatment groups: thermoneutral control (TNc), thermoneutral infected (TNi), heat stress control (HSc), and heat stress infected (HSi), 6 replicates each of 10 birds per treatment. Chickens were fed a diet containing 0.2% TiO2. At 6-day-post infection, ileal content and tissue were collected to quantify ileal digestibility of crude protein and fat, mRNA levels of nutrient transporters and histopathology. Growth and feed intake were reduced in all treatment groups, compared with the TNc. Contrary to expectation, the combination of two major stressors (E. maxima and HS) in the TNi group exhibited almost normal digestibility while only the TNi birds expressed severe digestibility depression, compared with the TNc group. The TNi group showed the lowest mRNA expression of the transporters: SGLT1, GLUT2-5-8-10-12, FABP1-2-6, and PEPT1 compared with the other treatment groups. The expression of the absorptive enterocytes’ gene markers (ACSL5, IAP, and SGLT1) supported by the ileal tissue morphology indicated that the TNi group had the highest enterocytic destruction. The expression of oxidative genes (iNOS and CYBB) dramatically increased only in the TNi group compared with the other treatment groups. Our results showed that exposing broiler chickens to HS can mitigate the disruptive effect of E. maxima on the ileal digestibility and absorption by limiting the parasite-induced tissue injury and suppressing the enterocytic inducible oxidative damage.
Collapse
Affiliation(s)
- Ahmed F. A. Ghareeb
- Department of Poultry Science, University of Georgia, Athens, Georgia, United States of America
| | - Gustavo H. Schneiders
- Department of Poultry Science, University of Georgia, Athens, Georgia, United States of America
| | - Jennifer N. Richter
- Department of Poultry Science, University of Georgia, Athens, Georgia, United States of America
| | - James C. Foutz
- Department of Poultry Science, University of Georgia, Athens, Georgia, United States of America
| | - Marie C. Milfort
- Department of Poultry Science, University of Georgia, Athens, Georgia, United States of America
| | - Albert L. Fuller
- Department of Poultry Science, University of Georgia, Athens, Georgia, United States of America
| | - Jianmin Yuan
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, Peoples Republic of China
| | - Romdhane Rekaya
- Department of Animal and Dairy Science, University of Georgia, Athens, Georgia, United States of America
| | - Samuel E. Aggrey
- Department of Poultry Science, University of Georgia, Athens, Georgia, United States of America
- * E-mail:
| |
Collapse
|
2
|
Takano M, Kuriyama S, Kameda N, Kawami M, Yumoto R. Effect of Corticosteroids on Peptide Transporter 2 Function and Induction of Innate Immune Response by Bacterial Peptides in Alveolar Epithelial Cells. Biol Pharm Bull 2022; 45:213-219. [PMID: 35110509 DOI: 10.1248/bpb.b21-00813] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In the lung alveolar region, the innate immune system serves as an important host defense system. We recently reported that peptide transporter 2 (PEPT2) has an essential role in the uptake of bacterial peptides and induction of innate immune response in alveolar epithelial cells. In this study, we aimed to clarify the effects of corticosteroids on PEPT2 function and PEPT2-dependent innate immune response. NCI-H441 (H441) cells were used as an in vitro model of human alveolar type II epithelial cells, and the effects of dexamethasone (DEX) and budesonide (BUD) on the transport function of PEPT2 and the innate immune response induced by bacterial peptides were examined. PEPT2 function, estimated by measuring β-alanyl-Nε-(7-amino-4-methyl-2-oxo-2H-1-benzopyran-3-acetyl)-L-lysine (β-Ala-Lys-AMCA) uptake in H441 cells, was suppressed by treatment with DEX and BUD in a concentration- and time-dependent manner. The suppression of PEPT2 function was partially recovered by a glucocorticoid receptor antagonist. The expression of PEPT2 and nucleotide-binding oligomerization domain 1 (NOD1) mRNAs was suppressed by treatment with DEX and BUD, while PEPT2 protein level was not changed by these treatment conditions. Additionally, the increased mRNA expression of interleukin (IL)-8 and the increased secretion of IL-8 into the culture medium induced by bacterial peptides were also suppressed by treatment with these corticosteroids. Taken together, these results clearly suggest that corticosteroids suppress PEPT2 function and bacterial peptide-induced innate immune response in alveolar epithelial cells. Therefore, PEPT2- and NOD1-dependent innate immune response induced by bacterial peptides in the lung alveolar region may be suppressed during the inhaled corticosteroid therapy.
Collapse
Affiliation(s)
- Mikihisa Takano
- Department of Pharmaceutics and Therapeutics, Graduate School of Biomedical and Health Sciences, Hiroshima University
| | - Shiori Kuriyama
- Department of Pharmaceutics and Therapeutics, Graduate School of Biomedical and Health Sciences, Hiroshima University
| | - Nanako Kameda
- Department of Pharmaceutics and Therapeutics, Graduate School of Biomedical and Health Sciences, Hiroshima University
| | - Masashi Kawami
- Department of Pharmaceutics and Therapeutics, Graduate School of Biomedical and Health Sciences, Hiroshima University
| | - Ryoko Yumoto
- Department of Pharmaceutics and Therapeutics, Graduate School of Biomedical and Health Sciences, Hiroshima University
| |
Collapse
|
3
|
Vagnerová K, Ergang P, Soták M, Balounová K, Kvapilová P, Vodička M, Pácha J. Diurnal expression of ABC and SLC transporters in jejunum is modulated by adrenalectomy. Comp Biochem Physiol C Toxicol Pharmacol 2019; 226:108607. [PMID: 31422161 DOI: 10.1016/j.cbpc.2019.108607] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 08/12/2019] [Accepted: 08/14/2019] [Indexed: 01/20/2023]
Abstract
The circadian clock system drives many physiological processes, including plasma concentration of glucocorticoids and epithelial transport of some ions and nutrients. As glucocorticoids entrain the circadian rhythms in various peripheral organs, we examined whether adrenalectomy affects the expression and circadian rhythmicity of intestinal transporters of the solute carrier (SLC) and ATP-binding cassette (ABC) families, which participate in intestinal barriers for absorption of nutrients, nonnutrients and oral drugs. The rat jejunum showed rhythmic circadian profiles of Sglt1, Pept1, Nhe3, Mdr1 and Mrp2 but not Mct1, Oct1, Octn1, Oatp1, Cnt1 and Bcrp. With the exception of Pept1 and Mct1, adrenalectomy decreased the expression of all rhythmic and arrhythmic transporters including the amplitude of Sglt1 and Nhe3 rhythms but minimally affected the phases of rhythmic transporters except of Nhe3. Similarly, adrenalectomy downregulated the expression of rhythmic (Pparα, Hlf, Pgc1α) and arrhythmic (Hnf1β, Hnf4α) transcription factors, which are known to regulate the expression of transporters. We conclude that endogenous corticosteroids have a profound effect on the expression of intestinal SLC and ABC transporters and their nuclear transcription factors. The circulating corticosteroids are necessary for maintaining upregulated expression of Sglt1, Oct1, Octn1, Oatp1, Cnt1, Nhe3, Mdr1, Bcrp, Mrp2, Pparα, Pgc1α, Hnf1β, Hnf4α and Hlf and for maintaining the high amplitude of Sglt1, Nhe3, Pparα, Pgc1α and Hlf circadian rhythms. The study demonstrates that signals from the adrenal gland are necessary for maintaining the expression of arrhythmic and rhythmic intestinal transporters and that changes in the secretion of corticosteroids associated with stress might reorganize intestinal transport barriers.
Collapse
Affiliation(s)
- Karla Vagnerová
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Peter Ergang
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Matúš Soták
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Kateřina Balounová
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic; Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Pavlína Kvapilová
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Martin Vodička
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Jiří Pácha
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic; Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic.
| |
Collapse
|
4
|
Intracellular signaling of the AMP-activated protein kinase. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2019; 116:171-207. [DOI: 10.1016/bs.apcsb.2018.12.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
5
|
Ishizuka N, Nakayama M, Watanabe M, Tajima H, Yamauchi Y, Ikari A, Hayashi H. Luminal Na + homeostasis has an important role in intestinal peptide absorption in vivo. Am J Physiol Gastrointest Liver Physiol 2018; 315:G799-G809. [PMID: 30138575 DOI: 10.1152/ajpgi.00099.2018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Intestinal cell line studies indicated luminal Na+ homeostasis is essential for proton-coupled peptide absorption, because the driving force of PepT1 activity is supported by the apical Na+/H+ exchanger NHE3. However, there is no direct evidence demonstrating the importance of in vivo luminal Na+ for peptide absorption in animal experiments. To investigate the relationship between luminal Na+ homeostasis and peptide absorption, we took advantage of claudin 15-deficient (cldn15-/-) mice, whereby Na+ homeostasis is disrupted. We quantitatively assessed the intestinal segment responsible for peptide absorption using radiolabeled nonhydrolyzable dipeptide (glycylsarcosine, Gly-Sar) and nonabsorbable fluid phase marker polyethylene glycol (PEG) 4000 in vivo. In wild-type (WT) mice, the concentration ratio of Gly-Sar to PEG 4000 decreased in the upper jejunum, suggesting the upper jejunum is responsible for peptide absorption. Gly-Sar absorption was decreased in the jejunum of cldn15-/- mice. To elucidate the mechanism underlining these impairments, a Gly-Sar-induced short-circuit ( Isc) current was measured. In WT mice, increments of Gly-Sar-induced Isc were inhibited by the luminal application of a NHE3-specific inhibitor S3226 in a dose-dependent fashion. In contrast to in vivo experiments, robust Gly-Sar-induced Isc increments were observed in the jejunal mucosa of cldn15-/- mice. Gly-Sar-induced Isc was inhibited by S3226 or a reduction of luminal Na+ concentration, which mimics low luminal Na+ concentrations in vivo . Our study demonstrates that luminal Na+ homeostasis is important for peptide absorption in native epithelia and that there is a cooperative functional relationship between PepT1 and NHE3. NEW & NOTEWORTHY Our study is the first to demonstrate that luminal Na+ homeostasis is important for proton-coupled peptide absorption in in vivo animal experiments.
Collapse
Affiliation(s)
- Noriko Ishizuka
- Laboratory of Physiology School of Food and Nutritional Sciences, University of Shizuoka, Suruga-ku, Shizuoka , Japan
| | - Michiko Nakayama
- Laboratory of Physiology School of Food and Nutritional Sciences, University of Shizuoka, Suruga-ku, Shizuoka , Japan
| | - Miki Watanabe
- Laboratory of Physiology School of Food and Nutritional Sciences, University of Shizuoka, Suruga-ku, Shizuoka , Japan
| | - Haruna Tajima
- Laboratory of Physiology School of Food and Nutritional Sciences, University of Shizuoka, Suruga-ku, Shizuoka , Japan
| | - Yuri Yamauchi
- Laboratory of Physiology School of Food and Nutritional Sciences, University of Shizuoka, Suruga-ku, Shizuoka , Japan
| | - Akira Ikari
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University , Gifu , Japan
| | - Hisayoshi Hayashi
- Laboratory of Physiology School of Food and Nutritional Sciences, University of Shizuoka, Suruga-ku, Shizuoka , Japan
| |
Collapse
|
6
|
Mooij MG, de Koning BEA, Lindenbergh-Kortleve DJ, Simons-Oosterhuis Y, van Groen BD, Tibboel D, Samsom JN, de Wildt SN. Human Intestinal PEPT1 Transporter Expression and Localization in Preterm and Term Infants. Drug Metab Dispos 2016; 44:1014-9. [PMID: 27079248 DOI: 10.1124/dmd.115.068809] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 04/13/2016] [Indexed: 01/22/2023] Open
Abstract
The intestinal influx oligopeptide transporter peptide transporter 1 (PEPT1) (SLC15A1) is best known for nutrient-derived di- and tripeptide transport. Its role in drug absorption is increasingly recognized. To better understand the disposition of PEPT1 substrate drugs in young infants, we studied intestinal PEPT1 mRNA expression and tissue localization across the pediatric age range. PEPT1 mRNA expression was determined using real-time reverse-transcription polymerase chain reaction in small intestinal tissues collected from surgical procedures (neonates and infants) or biopsies (older children and adolescents). PEPT1 mRNA relative to villin mRNA expression was compared between neonates/infants and older children/adolescents. PEPT1 was visualized in infant tissue using immunohistochemical staining. Other transporters [multidrug resistance protein 1 (MDR1), multidrug resistance-like protein 2 (MRP2), and organic anion transporter polypeptide 2B1 (OATP2B1)] were also stained to describe the localization in relation to PEPT1. Twenty-six intestinal samples (n = 20 neonates/infants, n = 2 pediatric, n = 4 adolescents) were analyzed. The young infant samples were collected at a median (range) gestational age at birth of 29.2 weeks (24.7-40) and postnatal age of 2.4 weeks (0-16.6). The PEPT1 mRNA expression of the neonates/infants was only marginally lower (0.8-fold) than the older children (P < 0.05). Similar and clear apical PEPT1 and MRP2 staining, apical and lateral MDR1 staining, and intraepithelial OATP2B1 staining at the basolateral membrane of the enterocyte were detected in 12 infant and 2 adolescent samples. Although small intestinal PEPT1 expression tended to be lower in neonates than in older children, this difference is small and tissue distribution is similar. This finding suggests similar oral absorption of PEPT1 substrates across the pediatric age range.
Collapse
Affiliation(s)
- Miriam G Mooij
- Intensive Care and Department of Pediatric Surgery (M.G.M., B.E.A.K., B.D.G., D.T., S.N.W.), and Department of Pediatrics (D.J.L.-K., Y.S.-O., J.N.S.), Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands; and Department of Pharmacology and Toxicology, Radboudumc, Nijmegen, The Netherlands (S.N.W.)
| | - Barbara E A de Koning
- Intensive Care and Department of Pediatric Surgery (M.G.M., B.E.A.K., B.D.G., D.T., S.N.W.), and Department of Pediatrics (D.J.L.-K., Y.S.-O., J.N.S.), Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands; and Department of Pharmacology and Toxicology, Radboudumc, Nijmegen, The Netherlands (S.N.W.)
| | - Dicky J Lindenbergh-Kortleve
- Intensive Care and Department of Pediatric Surgery (M.G.M., B.E.A.K., B.D.G., D.T., S.N.W.), and Department of Pediatrics (D.J.L.-K., Y.S.-O., J.N.S.), Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands; and Department of Pharmacology and Toxicology, Radboudumc, Nijmegen, The Netherlands (S.N.W.)
| | - Ytje Simons-Oosterhuis
- Intensive Care and Department of Pediatric Surgery (M.G.M., B.E.A.K., B.D.G., D.T., S.N.W.), and Department of Pediatrics (D.J.L.-K., Y.S.-O., J.N.S.), Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands; and Department of Pharmacology and Toxicology, Radboudumc, Nijmegen, The Netherlands (S.N.W.)
| | - Bianca D van Groen
- Intensive Care and Department of Pediatric Surgery (M.G.M., B.E.A.K., B.D.G., D.T., S.N.W.), and Department of Pediatrics (D.J.L.-K., Y.S.-O., J.N.S.), Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands; and Department of Pharmacology and Toxicology, Radboudumc, Nijmegen, The Netherlands (S.N.W.)
| | - Dick Tibboel
- Intensive Care and Department of Pediatric Surgery (M.G.M., B.E.A.K., B.D.G., D.T., S.N.W.), and Department of Pediatrics (D.J.L.-K., Y.S.-O., J.N.S.), Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands; and Department of Pharmacology and Toxicology, Radboudumc, Nijmegen, The Netherlands (S.N.W.)
| | - Janneke N Samsom
- Intensive Care and Department of Pediatric Surgery (M.G.M., B.E.A.K., B.D.G., D.T., S.N.W.), and Department of Pediatrics (D.J.L.-K., Y.S.-O., J.N.S.), Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands; and Department of Pharmacology and Toxicology, Radboudumc, Nijmegen, The Netherlands (S.N.W.)
| | - Saskia N de Wildt
- Intensive Care and Department of Pediatric Surgery (M.G.M., B.E.A.K., B.D.G., D.T., S.N.W.), and Department of Pediatrics (D.J.L.-K., Y.S.-O., J.N.S.), Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands; and Department of Pharmacology and Toxicology, Radboudumc, Nijmegen, The Netherlands (S.N.W.)
| |
Collapse
|
7
|
Coon SD, Schwartz JH, Rajendran VM, Jepeal L, Singh SK. Glucose-dependent insulinotropic polypeptide regulates dipeptide absorption in mouse jejunum. Am J Physiol Gastrointest Liver Physiol 2013; 305:G678-84. [PMID: 24072682 PMCID: PMC3840233 DOI: 10.1152/ajpgi.00098.2013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Glucose-dependent insulinotropic polypeptide (GIP) secreted from jejunal mucosal K cells augments insulin secretion and plays a critical role in the pathogenesis of obesity and Type 2 diabetes mellitus. In recent studies, we have shown GIP directly activates Na-glucose cotransporter-1 (SGLT1) and enhances glucose absorption in mouse jejunum. It is not known whether GIP would also regulate other intestinal nutrient absorptive processes. The present study investigated the effect of GIP on proton-peptide cotransporter-1 (PepT1) that mediates di- and tripeptide absorption as well as peptidomimetic drugs. Immunohistochemistry studies localized both GIP receptor (GIPR) and PepT1 proteins on the basolateral and apical membranes of normal mouse jejunum, respectively. Anti-GIPR antibody detected 50-, 55-, 65-, and 70-kDa proteins, whereas anti-PepT1 detected a 70-kDa proteins in mucosal homogenates of mouse jejunum. RT-PCR analyses established the expression of GIPR- and PepT1-specific mRNA in mucosal cells of mouse jejunum. Absorption of Gly-Sar (a nondigestible dipeptide) measured under voltage-clamp conditions revealed that the imposed mucosal H(+) gradient-enhanced Gly-Sar absorption as an evidence for the presence of PepT1-mediated H(+):Gly-Sar cotransport on the apical membranes of mouse jejunum. H(+):Gly-Sar absorption was completely inhibited by cephalexin (a competitive inhibitor of PepT1) and was activated by GIP. The GIP-activated Gly-Sar absorption was completely inhibited by RP-cAMP (a cAMP antagonist). In contrast to GIP, the ileal L cell secreting glucagon-like peptide-1 (GLP-1) did not affect the H(+):Gly-Sar absorption in mouse jejunum. We conclude from these observations that GIP, but not GLP-1, directly activates PepT1 activity by a cAMP-dependent signaling pathway in jejunum.
Collapse
Affiliation(s)
- Steven D. Coon
- 1Department of Medicine, Boston University School of Medicine, Boston, Massachusetts; ,2Veterans Affairs Boston Healthcare System, Boston, Massachusetts; ,3Boston University Clinical and Translational Science Institute, Boston, Massachusetts; and
| | - John H. Schwartz
- 1Department of Medicine, Boston University School of Medicine, Boston, Massachusetts;
| | - Vazhaikkurichi M. Rajendran
- 4Department of Biochemistry and Molecular Biology, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Lisa Jepeal
- 1Department of Medicine, Boston University School of Medicine, Boston, Massachusetts; ,2Veterans Affairs Boston Healthcare System, Boston, Massachusetts;
| | - Satish K. Singh
- 1Department of Medicine, Boston University School of Medicine, Boston, Massachusetts; ,2Veterans Affairs Boston Healthcare System, Boston, Massachusetts;
| |
Collapse
|
8
|
Smith DE, Clémençon B, Hediger MA. Proton-coupled oligopeptide transporter family SLC15: physiological, pharmacological and pathological implications. Mol Aspects Med 2013; 34:323-36. [PMID: 23506874 DOI: 10.1016/j.mam.2012.11.003] [Citation(s) in RCA: 238] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Accepted: 06/22/2012] [Indexed: 01/04/2023]
Abstract
Mammalian members of the proton-coupled oligopeptide transporter family (SLC15) are integral membrane proteins that mediate the cellular uptake of di/tripeptides and peptide-like drugs. The driving force for uphill electrogenic symport is the chemical gradient and membrane potential which favors proton uptake into the cell along with the peptide/mimetic substrate. The peptide transporters are responsible for the absorption and conservation of dietary protein digestion products in the intestine and kidney, respectively, and in maintaining homeostasis of neuropeptides in the brain. They are also responsible for the absorption and disposition of a number of pharmacologically important compounds including some aminocephalosporins, angiotensin-converting enzyme inhibitors, antiviral prodrugs, and others. In this review, we provide updated information on the structure-function of PepT1 (SLC15A1), PepT2 (SLC15A2), PhT1 (SLC15A4) and PhT2 (SLC15A3), and their expression and localization in key tissues. Moreover, mammalian peptide transporters are discussed in regard to pharmacogenomic and regulatory implications on host pharmacology and disease, and as potential targets for drug delivery. Significant emphasis is placed on the evolving role of these peptide transporters as elucidated by studies using genetically modified animals. Whenever possible, the relevance of drug-drug interactions and regulatory mechanisms are evaluated using in vivo studies.
Collapse
Affiliation(s)
- David E Smith
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA.
| | | | | |
Collapse
|
9
|
Lang F, Voelkl J. Therapeutic potential of serum and glucocorticoid inducible kinase inhibition. Expert Opin Investig Drugs 2013; 22:701-14. [PMID: 23506284 DOI: 10.1517/13543784.2013.778971] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Expression of serum-and-glucocorticoid-inducible kinase-1 (SGK1) is low in most cells, but dramatically increases under certain pathophysiological conditions, such as glucocorticoid or mineralocorticoid excess, inflammation with TGFβ release, hyperglycemia, cell shrinkage and ischemia. SGK1 is activated by insulin and growth factors via phosphatidylinositide-3-kinase, 3-phosphoinositide-dependent kinase and mammalian target of rapamycin. SGK1 sensitive functions include activation of ion channels (including epithelial Na(+) channel ENaC, voltage gated Na(+) channel SCN5A transient receptor potential channels TRPV4 - 6, Ca(2+) release activated Ca(2+) channel Orai1/STIM1, renal outer medullary K(+) channel ROMK, voltage gated K(+) channels KCNE1/KCNQ1, kainate receptor GluR6, cystic fibrosis transmembrane regulator CFTR), carriers (including Na(+),Cl(-) symport NCC, Na(+),K(+),2Cl(-) symport NKCC, Na(+)/H(+) exchangers NHE1 and NHE3, Na(+), glucose symport SGLT1, several amino acid transporters), and Na(+)/K(+)-ATPase. SGK1 regulates several enzymes (e.g., glycogen synthase kinase-3, ubiquitin-ligase Nedd4-2) and transcription factors (e.g., forkhead transcription factor 3a, β-catenin, nuclear factor kappa B). AREAS COVERED The phenotype of SGK1 knockout mice is mild and SGK1 is apparently dispensible for basic functions. Excessive SGK1 expression and activity, however, contributes to the pathophysiology of several disorders, including hypertension, obesity, diabetes, thrombosis, stroke, fibrosing disease, infertility and tumor growth. A SGK1 gene variant (prevalence ∼ 3 - 5% in Caucasians and ∼ 10% in Africans) is associated with hypertension, stroke, obesity and type 2 diabetes. SGK1 inhibitors have been developed and shown to reduce blood pressure of hyperinsulinemic mice and to counteract tumor cell survival. EXPERT OPINION Targeting SGK1 may be a therapeutic option in several clinical conditions, including metabolic syndrome and tumor growth.
Collapse
Affiliation(s)
- Florian Lang
- University of Tuebingen, Department of Physiology, Tuebingen, Germany.
| | | |
Collapse
|
10
|
Pasham V, Rotte A, Gu S, Yang W, Bhandaru M, Rexhepaj R, Pathare G, Lang F. Upregulation of intestinal NHE3 following saline ingestion. Kidney Blood Press Res 2013; 37:48-57. [PMID: 23548792 DOI: 10.1159/000343401] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/19/2013] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Little is known about the effect of salt content of ingested fluid on intestinal transport processes. Osmosensitive genes include the serum- and glucocorticoid-inducible kinase SGK1, which is up-regulated by hyperosmolarity and cell shrinkage. SGK1 is in turn a powerful stimulator of the intestinal Na(+)/H(+) exchanger NHE3. The present study was thus performed to elucidate, whether the NaCl content of beverages influences NHE3 activity. METHODS Mice were offered access to either plain water or isotonic saline ad libitum. NHE3 transcript levels and protein abundance in intestinal tissue were determined by confocal immunofluorescent microscopy, RT-PCR and western blotting, cytosolic pH (pHi) in intestinal cells from 2',7'-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein (BCECF) fluorescence and Na(+)/H(+) exchanger activity from the Na(+) dependent realkalinization following an ammonium pulse. RESULTS Saline drinking significantly enhanced fluid intake and increased NHE3 transcript levels, NHE3 protein and Na(+)/H(+) exchanger activity. CONCLUSIONS Salt content of ingested fluid has a profound effect on intestinal Na(+)/H(+) exchanger expression and activity.
Collapse
Affiliation(s)
- Venkanna Pasham
- Department of Physiology, University of Tübingen, Tübingen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Serum- and glucocorticoid-inducible kinase 1 in the regulation of renal and extrarenal potassium transport. Clin Exp Nephrol 2011; 16:73-80. [DOI: 10.1007/s10157-011-0488-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Accepted: 04/08/2010] [Indexed: 01/24/2023]
|
12
|
Nakanishi T, Tamai I. Solute Carrier Transporters as Targets for Drug Delivery and Pharmacological Intervention for Chemotherapy. J Pharm Sci 2011; 100:3731-50. [DOI: 10.1002/jps.22576] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 03/29/2011] [Accepted: 03/31/2011] [Indexed: 01/11/2023]
|
13
|
Sopjani M, Kunert A, Czarkowski K, Klaus F, Laufer J, Föller M, Lang F. Regulation of the Ca2+ Channel TRPV6 by the Kinases SGK1, PKB/Akt, and PIKfyve. J Membr Biol 2009; 233:35-41. [DOI: 10.1007/s00232-009-9222-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2009] [Accepted: 12/02/2009] [Indexed: 12/29/2022]
|