1
|
Kleine SA, Gogal RM, Krunkosky TM, Sanderson SL, George C, Norton M, Budsberg SC. Resistin concentrations in serum and stifle synovial fluid from normal and cruciate deficient dogs with osteoarthritis. Vet Surg 2020; 49:1164-1173. [PMID: 32472596 DOI: 10.1111/vsu.13450] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 03/19/2020] [Accepted: 05/02/2020] [Indexed: 12/14/2022]
Abstract
OBJECTIVE To compare synovial fluid (SF) resistin concentrations in healthy dogs to dogs with osteoarthritis (OA) secondary to cranial cruciate ligament (CrCL) injury and to correlate resistin concentrations with body condition score (BCS) and evaluate resistin release from peripheral blood mononuclear cells (PBMC) and adipocytes. STUDY DESIGN Controlled, prospective, clinical study ANIMALS: Thirty-nine client-owned dogs, 13 healthy and 26 with secondary OA, were enrolled. Blood was collected from six healthy purpose-bred dogs for PBMC culture. An additional six mixed-breed dogs were used for adipocyte collection and culture. METHODS Resistin concentrations were measured with a canine-specific enzyme-linked immunoabsorbent assay. Resistin was compared between healthy SF and OA SF with Student's t test. Correlation of resistin concentrations to BCS was performed. Peripheral blood mononuclear cells and adipocytes were cultured under three conditions: negative control, lipopolysaccharide, and concanavalin A (Con A). A linear mixed model was used to determine differences in resistin concentrations among treatments. RESULTS Resistin concentrations in OA SF were comparable to healthy SF. Neither serum nor SF resistin was correlated with BCS. Cultured PBMC stimulated with Con A released resistin, while adipocytes did not. CONCLUSION Neither serum nor SF resistin were altered in dogs with OA secondary to CrCL insufficiency. In addition, resistin was not correlated with canine body fat and did not appear to function as adipocytokine in the dog. CLINICAL SIGNIFICANCE Resistin may not be involved in the pathogenesis of OA. However, resistin may be important in inflammation because it is released from inflammatory cells.
Collapse
Affiliation(s)
- Stephanie A Kleine
- Department of Small Animal Clinical Services, University of Tennessee, Knoxville, Tennessee
| | - Robert M Gogal
- Department of Veterinary Biosciences and Diagnostic Imaging, University of Georgia, Athens, Georgia
| | - Thomas M Krunkosky
- Department of Veterinary Biosciences and Diagnostic Imaging, University of Georgia, Athens, Georgia
| | - Sherry L Sanderson
- Department of Veterinary Biosciences and Diagnostic Imaging, University of Georgia, Athens, Georgia
| | - Clinton George
- Department of Veterinary Biosciences and Diagnostic Imaging, University of Georgia, Athens, Georgia
| | - Megan Norton
- Department of Small Animal Medicine and Surgery, University of Georgia, Athens, Georgia
| | - Steven C Budsberg
- Department of Veterinary Biosciences and Diagnostic Imaging, University of Georgia, Athens, Georgia.,Department of Small Animal Medicine and Surgery, University of Georgia, Athens, Georgia
| |
Collapse
|
2
|
Turner RBS, Tyrrell D, Hepworth G, Dunshea FR, Mansfield CS. Compartmental fat distribution in the abdomen of dogs relative to overall body fat composition. BMC Vet Res 2020; 16:104. [PMID: 32228685 PMCID: PMC7106746 DOI: 10.1186/s12917-020-02327-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 03/23/2020] [Indexed: 12/04/2022] Open
Abstract
Background Adipose tissue may have different metabolic and endocrine functions depending on the region of the body in which it is located. While visceral or intra-abdominal fat has been found to contribute to leptin concentrations, insulin resistance and obesity-related diseases, there are only a few imaging studies documenting the preferential distribution of body fat to either the intra-abdominal or subcutaneous compartments in dogs. This study aimed to determine if CT-measured abdominal fat distributed preferentially to the visceral space (V) relative to the subcutaneous space (SQ), with increasing DXA-determined total body fat percentage; and if ultrasound measurements of the ventral midline subcutaneous (SAT) and visceral adipose thickness (VAT) can be used to estimate the distribution of fat to the subcutaneous and visceral abdominal spaces, in a sample of 22 dogs with variable body condition. Results Multivariate analysis showed no statistically significant correlation between visceral to subcutaneous fat ratio (V/SQ) and increasing total body fat percentage (β = − 0.07, p = 0.733), but strong correlation with age (β = 0.71 p = 0.002). A substantial amount of variation for the ultrasound visceral adipose thickness to subcutaneous fat thickness (VAT/SAT) could be explained by both CT V/SQ and sex (R2Adjusted = 0.477, p = 0.001), with female dogs having significant lower VAT/SAT ratios compared to the male dogs (p = 0.047). The ultrasound fat measurements appeared moderately reliable, but a larger sample number is required to confirm this. Conclusions The findings suggest that dogs with a relatively healthy to slightly overweight body condition score, distribute fat relatively similarly between their peritoneal (visceral) and subcutaneous abdominal compartments with increasing total body fat percentage. However, there was increased fat distribution to the peritoneal space relative to the subcutaneous space with increasing age. Further, abdominal ultrasound may be useful in estimating the ratio of fat distribution to both the abdominal visceral and subcutaneous spaces.
Collapse
Affiliation(s)
- R B S Turner
- U-Vet Animal Hospital, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, 250 Princes Highway, Werribee, Victoria, 3030, Australia.
| | - D Tyrrell
- U-Vet Animal Hospital, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, 250 Princes Highway, Werribee, Victoria, 3030, Australia
| | - G Hepworth
- Statistical Consulting Centre, University of Melbourne, 139 Barry Street, Carlton, Melbourne, Victoria, 3053, Australia
| | - F R Dunshea
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, 3052, Australia
| | - C S Mansfield
- U-Vet Animal Hospital, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, 250 Princes Highway, Werribee, Victoria, 3030, Australia
| |
Collapse
|
3
|
Meeson RL, Todhunter RJ, Blunn G, Nuki G, Pitsillides AA. Spontaneous dog osteoarthritis - a One Medicine vision. Nat Rev Rheumatol 2020; 15:273-287. [PMID: 30953036 PMCID: PMC7097182 DOI: 10.1038/s41584-019-0202-1] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Osteoarthritis (OA) is a global disease that, despite extensive research, has limited treatment options. Pet dogs share both an environment and lifestyle attributes with their owners, and a growing awareness is developing in the public and among researchers that One Medicine, the mutual co-study of animals and humans, could be beneficial for both humans and dogs. To that end, this Review highlights research opportunities afforded by studying dogs with spontaneous OA, with a view to sharing this active area of veterinary research with new audiences. Similarities and differences between dog and human OA are examined, and the proposition is made that suitably aligned studies of spontaneous OA in dogs and humans, in particular hip and knee OA, could highlight new avenues of discovery. Developing cross-species collaborations will provide a wealth of research material and knowledge that is relevant to human OA and that cannot currently be obtained from rodent models or experimentally induced dog models of OA. Ultimately, this Review aims to raise awareness of spontaneous dog OA and to stimulate discussion regarding its exploration under the One Medicine initiative to improve the health and well-being of both species. Osteoarthritis occurs spontaneously in pet dogs, which often share environmental and lifestyle risk-factors with their owners. This Review aims to stimulate cooperation between medical and veterinary research under the One Medicine initiative to improve the welfare of dogs and humans. Dogs have many analogous spontaneous diseases that result in end-stage osteoarthritis (OA). Inbreeding and the predisposition of certain dog breeds for OA enable easier identification of candidate genetic associations than in outbred humans. Dog OA subtypes offer a potential stratification rationale for aetiological differences and alignment to analogous human OA phenotypes. The relatively compressed time course of spontaneous dog OA offers longitudinal research opportunities. Collaboration with veterinary researchers can provide tissue samples from early-stage OA and opportunities to evaluate new therapeutics in a spontaneous disease model. Awareness of the limitations and benefits of using clinical veterinary patients in research is important.
Collapse
Affiliation(s)
- Richard L Meeson
- Skeletal Biology Group, Comparative Biomedical Sciences, Royal Veterinary College, University of London, London, UK.,Department of Clinical Services and Sciences, Royal Veterinary College, University of London, London, UK.,Institute of Orthopaedics and Musculoskeletal Science, University College London, London, UK
| | - Rory J Todhunter
- Department of Clinical Sciences, Cornell University, Ithaca, NY, USA.,Cornell Veterinary Biobank, Cornell University, Ithaca, NY, USA
| | - Gordon Blunn
- Institute of Orthopaedics and Musculoskeletal Science, University College London, London, UK.,School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | - George Nuki
- Institute for Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Andrew A Pitsillides
- Skeletal Biology Group, Comparative Biomedical Sciences, Royal Veterinary College, University of London, London, UK.
| |
Collapse
|
4
|
Choo HR, Kim H, Kang JH, Sung CJ, Ahn C, Kang BT, Chang D, Jeung EB, Yang MP. Effects of hydrocortisone administration on leptin and adiponectin synthesis in dogs. Am J Vet Res 2019; 80:771-778. [PMID: 31339764 DOI: 10.2460/ajvr.80.8.771] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To determine effects of hydrocortisone administration on serum leptin and adiponectin concentrations, abdominal fat distribution, and mRNA expression of leptin and adiponectin in abdominal adipose tissue of dogs. ANIMALS 12 healthy dogs. PROCEDURES Dogs received hydrocortisone (8.5 mg/kg; n = 6) or a placebo (6) orally every 12 hours for 90 days. Serum leptin and adiponectin concentrations were measured with a canine-specific ELISA on the day before (day 0; baseline) and during (days 1, 3, 7, 30, 60, and 90) administration. On days 0, 30, 60, and 90, abdominal fat mass was quantified with CT, and mRNA expression of leptin and adiponectin in abdominal fat was analyzed by use of a PCR assay. RESULTS Hydrocortisone administration resulted in an increase in visceral fat mass on days 60 and 90, compared with the mass at baseline. Visceral fat mass at the level of L3 increased during hydrocortisone administration. Serum leptin concentration began to increase on day 1 and was significantly higher than the baseline concentration on days 30 and 60. Serum adiponectin concentration on days 30, 60, and 90 was significantly lower than the baseline concentration. Leptin and adiponectin mRNA expression in abdominal fat was greater on day 30, compared with expression at baseline, but lower on days 60 and 90, compared with expression on day 30. Serum leptin concentration and visceral fat mass were correlated. CONCLUSIONS AND CLINICAL RELEVANCE Hydrocortisone administration affected abdominal fat distribution and serum leptin and adiponectin concentrations through dysregulation of leptin and adiponectin expression.
Collapse
|
5
|
Mazaki-Tovi M, Bolin SR, Schenck PA. Adipokines secretion in feline primary adipose tissue culture in response to dietary fatty acids. BMC Vet Res 2019; 15:324. [PMID: 31492181 PMCID: PMC6731618 DOI: 10.1186/s12917-019-2065-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 08/26/2019] [Indexed: 12/04/2022] Open
Abstract
Background Obesity in cats has been associated with alterations in adipokines including: adiponectin, interleukin-6 (IL6), and tumor necrosis factor-α (TNFα). Omega-3 polyunsaturated fatty acids have multiple beneficial effects on obesity-associated disorders, and therefore may alleviate these alterations. This study aimed to determine the effects of body condition, fat depot, troglitazone, and different fatty acids on secretion of adiponectin, IL6 and TNFα from adipose tissue of healthy cats. Subcutaneous and visceral adipose tissue samples were collected from 18 healthy intact female cats, and body condition score (Range 3–7/9) was determined. Concentrations of adiponectin were measured in mature adipocytes cultures and concentrations of IL6 and TNFα were measured in stromovascular cells cultures following treatment with control medium, troglitazone at 10 μM, eicosapentaenoic acid, arachidonic acid, or palmitic acid, at 25, 50, or 100 μM. Results Stromovascular cells of visceral origin secreted higher concentrations of IL6 than corresponding cells of subcutaneous origin (P = 0.003). Arachidonic acid treatment at 25, 50, and 100 μM increased IL6 secretion in subcutaneous (P = 0.045, P = 0.002, and P < 0.001, respectively) and visceral (P = 0.034, P = 0.001, and P < 0.001, respectively) stromovascular cells. Eicosapentaenoic acid treatment increased TNFα secretion in subcutaneous stromovascular cells at 25, 50, and 100 μM (P = 0.002, P = 0.001, and P = 0.015, respectively) and in visceral stromovascular cells at 50 μM (P < 0.001). No significant effect on medium adiponectin concentration was observed following troglitazone treatment (P = 0.4) or fatty acids treatments at 25 (P = 0.2), 50 (P = 0.8), or 100 (P = 0.7) μM. Body condition score did not have significant effects on medium concentrations of adiponectin (P = 0.4), IL6 (P = 0.1), or TNFα (P = 0.8). Conclusions This study demonstrated higher basal secretion of IL6 from visceral compared to subcutaneous adipose tissue, a stimulatory effect of arachidonic acid on secretion of IL6 and a stimulatory effect of eicosapentaenoic acid on TNFα from feline adipose tissue.
Collapse
Affiliation(s)
- M Mazaki-Tovi
- Department of Pathobiology and Diagnostic Investigation, Diagnostic Center for Population and Animal Health College of Veterinary Medicine, Michigan State University, East Lansing, MI, 48824, USA. .,Present address: Hebrew University Veterinary Teaching Hospital, Koret School of Veterinary Medicine, The Hebrew University of Jerusalem, P.O. Box 12, 76100, Rehovot, Israel.
| | - S R Bolin
- Department of Pathobiology and Diagnostic Investigation, Diagnostic Center for Population and Animal Health College of Veterinary Medicine, Michigan State University, East Lansing, MI, 48824, USA
| | - P A Schenck
- Department of Pathobiology and Diagnostic Investigation, Diagnostic Center for Population and Animal Health College of Veterinary Medicine, Michigan State University, East Lansing, MI, 48824, USA.,Present address: Veterinary Consulting, Dewitt, MI, 48820, USA
| |
Collapse
|
6
|
Mazaki-Tovi M, Bolin SR, Schenck PA. Dietary Fatty Acids Differentially Regulate Secretion of Adiponectin and Interleukin-6 in Primary Canine Adipose Tissue Culture. Lipids 2018; 53:205-216. [PMID: 29573267 DOI: 10.1002/lipd.12021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 11/26/2017] [Accepted: 01/02/2018] [Indexed: 01/04/2023]
Abstract
The aim of this study was to determine the effect of n3 polyunsaturated fatty acids (PUFA) on canine adipose tissue secretion of adiponectin, interleukin-6 (IL6), and tumor necrosis factor-α (TNFα). Subcutaneous and omental visceral adipose tissue samples were collected from 16 healthy intact female dogs. Concentrations of adiponectin were measured in mature adipocyte cultures, and concentrations of IL6 and TNFα were measured in undifferentiated stromovascular cell (SVC) cultures following treatment with eicosapentaenic acid (EPA, 20:5n-3), arachidonic acid (ARA, 20:4n-6), or palmitic acid (PAM, 16:0) at 25, 50, or 100 μM. Secretion of adiponectin from mature adipocytes was higher (p < 0.001) following EPA treatment at 50 μM compared to control in subcutaneous tissue, and higher following EPA treatment compared to PAM treatment at 25 μM in both subcutaneous (p < 0.001) and visceral tissues (p = 0.010). Secretion of IL6 from SVC derived from subcutaneous tissue was lower following EPA treatment and higher following PAM treatment compared to control both at 50 μM (p = 0.001 and p = 0.041, respectively) and 100 μM (p = 0.013 and p < 0.001, respectively). These findings of stimulation of adiponectin secretion and inhibition of IL6 secretion by EPA, and stimulation of IL6 secretion by PAM, are consistent with findings of increased circulating concentrations of adiponectin and decreased circulating concentration of IL6 in dogs supplemented with dietary fish oil, and show that the effect of fish oil on circulating concentrations of adiponectin and IL6 is, at least partially, the result of local effects of EPA and PAM on adipose tissue.
Collapse
Affiliation(s)
- Michal Mazaki-Tovi
- Department of Pathobiology and Diagnostic Investigation, Diagnostic Center for Population and Animal Health College of Veterinary Medicine, Michigan State University, East Lansing, MI, 48824, USA
| | - Steven R Bolin
- Department of Pathobiology and Diagnostic Investigation, Diagnostic Center for Population and Animal Health College of Veterinary Medicine, Michigan State University, East Lansing, MI, 48824, USA
| | - Patricia A Schenck
- Department of Pathobiology and Diagnostic Investigation, Diagnostic Center for Population and Animal Health College of Veterinary Medicine, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
7
|
|
8
|
Mazaki-Tovi M, Bolin SR, Schenck PA. Differential secretion of adipokines from subcutaneous and visceral adipose tissue in healthy dogs: Association with body condition and response to troglitazone. Vet J 2016; 216:136-41. [PMID: 27687941 DOI: 10.1016/j.tvjl.2016.08.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 08/03/2016] [Accepted: 08/05/2016] [Indexed: 12/15/2022]
Abstract
This study aimed to determine the effects of body condition, fat depot, and a peroxisome proliferator-activated receptor γ-agonist (troglitazone) on secretion of adiponectin, interleukin-6 (IL6), and tumor necrosis factor-α (TNFα) from adipose tissue of healthy dogs. Subcutaneous and omental visceral adipose tissue samples were collected from 16 healthy intact female dogs, and body condition score (range 4-8/9) was determined. Concentrations of adiponectin were measured in mature adipocytes cultures and concentrations of IL6 and TNFα were measured in stromovascular cells cultures after 48 h incubation in fresh control medium, or fresh medium containing 10 µM troglitazone. Mature adipocytes and stromovascular cells of subcutaneous origin secreted higher concentrations of adiponectin and lower concentration of IL6 and TNFα, respectively, than corresponding cells of visceral origin, in both the control (P = 0.015, P = 0.004, and P = 0.016, respectively) and troglitazone-treated cultures (P <0.001, P = 0.004, and P = 0.016, respectively). Troglitazone increased adiponectin secretion from mature adipocytes in visceral (P = 0.019), but not in subcutaneous fat cultures (P = 0.4). Troglitazone decreased IL6 and TNFα secretion from stromovascular cells both in visceral (P = 0.047 and P = 0.016, respectively) and subcutaneous (P = 0.047 and P = 0.016, respectively) fat cultures. Higher body condition score was associated with lower secretion of adiponectin from mature adipocytes (P = 0.007), lower secretion of IL6 (P = 0.040) and higher secretion of TNFα (P = 0.040) from stromovascular cells. This study showed differential secretion of adipokines by subcutaneous and visceral fat depots in dogs and association between body condition and adipokine secretion. Activation of PPARγ altered adipokine secretion.
Collapse
Affiliation(s)
- M Mazaki-Tovi
- Department of Pathobiology and Diagnostic Investigation, Diagnostic Center for Population and Animal Health College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA.
| | - S R Bolin
- Department of Pathobiology and Diagnostic Investigation, Diagnostic Center for Population and Animal Health College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - P A Schenck
- Department of Pathobiology and Diagnostic Investigation, Diagnostic Center for Population and Animal Health College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
9
|
Abstract
The domestication and urbanization of dogs and cats has dramatically altered their environment and behavior. Human and pet obesity is a global concern, particularly in developed countries. An increased incidence of chronic disease is associated with obesity secondary to low-grade systemic inflammation. This article reviews current research into the genetic, dietary, and physiologic factors associated with obesity, along with use of "omics" technology to better understand and characterize this disease.
Collapse
Affiliation(s)
- Beth Hamper
- Hamper Veterinary Nutritional Consulting, 9160 Crestview Drive, Indianapolis, IN 46240, USA.
| |
Collapse
|
10
|
Zhong Q, Zhao S, Yu B, Wang X, Matyal R, Li Y, Jiang Z. High-density lipoprotein increases the uptake of oxidized low density lipoprotein via PPARγ/CD36 pathway in inflammatory adipocytes. Int J Biol Sci 2015; 11:256-65. [PMID: 25678844 PMCID: PMC4323365 DOI: 10.7150/ijbs.10258] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 12/18/2014] [Indexed: 01/08/2023] Open
Abstract
Aim: Previous studies have demonstrated that the dysregulated-secretion of adipokines by adipocytes may contribute to obesity-associated atherosclerosis (As) and high density lipoprotein (HDL) may protect against atherogenesis through multiple pathways. This study was to explore the effect of HDL on the oxLDL uptake in inflammatory adipocytes stimulated by endotoxin lipopolysaccharide (LPS) and the possible mechanism. Methods and Results: 3T3-L1 adipocytes were cultured and induced to differentiation and maturation. Acute inflammation in adipocytes was induced by LPS (100 ng/ml) for 6 hours. The adipocytes were pretreated with HDL in various concentrations (10, 50, 100 μg/ml) for 16 hours or with specific PPARγ antagonist (GW9662, 10 μM) or agonist (Rosiglitazone, 10 μM) for 30 min before administration of LPS. The results showed that LPS significantly increased the release of inflammation-related adipokines, such as monocyte chemoattractant protein-1 (MCP-1), plasminogen activator inhibitor 1 (PAI-1), tumor necrosis factor-alpha (TNF-α), interleukin (IL)-8 and IL-6, while decreasing the release of leptin and adiponectin. Meanwhile, LPS reduced the uptake and degradation of 125I-oxLDL, and down-regulated the expression of PPARγ and CD36. Pretreatment with HDL dose-dependently affected the release of IL-8 and IL-6 and the reduced uptake and degradation of oxLDL of adipocytes stimulated by LPS, accompanied with marked upregulation of PPARγ and CD36 expression. Pretreatment with GW9662 markedly inhibited the upregulation of CD36 expression mediated by HDL (100 μg/ml), while the effects of Rosiglitazone were opposite to GW9662. Conclusions: HDL may increase oxLDL uptake of inflammatory adipocytes stimulated by LPS via upregulation of PPARγ/CD36 pathway, which may be a new mechanism of anti-atherosclerosis mediated by HDL.
Collapse
Affiliation(s)
- Qiaoqing Zhong
- 1. Post-doctoral Mobile Stations for Basic Medicine, Institute of Cardiovascular Disease and Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang, Hunan, 421001, China ; 2. Department of Cardiology, First People's Hospital of Chenzhou, Chenzhou, 423000, China ; 3. Department of Cardiology, The second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Shuiping Zhao
- 3. Department of Cardiology, The second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Bilian Yu
- 3. Department of Cardiology, The second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Xing Wang
- 4. Department of Cardiology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Robina Matyal
- 5. Department of Anesthesia and Critical Care, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Yunping Li
- 5. Department of Anesthesia and Critical Care, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Zhisheng Jiang
- 1. Post-doctoral Mobile Stations for Basic Medicine, Institute of Cardiovascular Disease and Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang, Hunan, 421001, China
| |
Collapse
|
11
|
Müller L, Kollár E, Balogh L, Pöstényi Z, Márián T, Garai I, Balkay L, Trencsényi G, Thuróczy J. Body fat distribution and metabolic consequences - Examination opportunities in dogs. Acta Vet Hung 2014; 62:169-79. [PMID: 24334077 DOI: 10.1556/avet.2013.057] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The relationship between metabolic disorders and the distribution of fat in different body regions is not clearly understood in humans. The aim of this study was to develop a suitable method for assessing the regional distribution of fat deposits and their metabolic effects in dogs. Twenty-five dogs were subjected to computed tomographic (CT) imaging and blood sampling in order to characterise their metabolic status. The different fat areas were measured on a cross-sectional scan, and the animals' metabolic status was evaluated by measuring fasting glucose, insulin and leptin levels. The volume of visceral adipose tissue is the main determinant of leptin levels. The correlation of visceral fat volume and leptin concentration was found to be independent of insulin levels or the degree of insulin resistance. There was a positive correlation between the visceral to subcutaneous fat volume ratio and serum insulin concentration, and a similar trend was observed in the relationship of fat ratio and insulin resistance. The distribution of body fat essentially influences the metabolic parameters in dogs, but the effects of adiposity differ between humans and dogs. The findings can facilitate a possible extrapolation of results from animal studies to humans with regard to the metabolic consequences of different obesity types.
Collapse
Affiliation(s)
- Linda Müller
- 1 Szent István University Department and Clinic of Obstetrics and Animal Reproduction, Faculty of Veterinary Science István u. 2 Budapest H-1078 Hungary
| | - Eszter Kollár
- 1 Szent István University Department and Clinic of Obstetrics and Animal Reproduction, Faculty of Veterinary Science István u. 2 Budapest H-1078 Hungary
| | - Lajos Balogh
- 2 National Frédéric Joliot-Curie Institute of Radiobiology and Radiohygiene Budapest Hungary
| | - Zita Pöstényi
- 2 National Frédéric Joliot-Curie Institute of Radiobiology and Radiohygiene Budapest Hungary
| | - Teréz Márián
- 3 University of Debrecen Department of Nuclear Medicine, Faculty of Medicine Debrecen Hungary
| | - Ildikó Garai
- 3 University of Debrecen Department of Nuclear Medicine, Faculty of Medicine Debrecen Hungary
| | - László Balkay
- 3 University of Debrecen Department of Nuclear Medicine, Faculty of Medicine Debrecen Hungary
| | - György Trencsényi
- 3 University of Debrecen Department of Nuclear Medicine, Faculty of Medicine Debrecen Hungary
| | - Julianna Thuróczy
- 1 Szent István University Department and Clinic of Obstetrics and Animal Reproduction, Faculty of Veterinary Science István u. 2 Budapest H-1078 Hungary
| |
Collapse
|
12
|
Mazaki-Tovi M, Abood SK, Schenck PA. Fish oil supplementation increases concentration of adiponectin in healthy dogs. J Small Anim Pract 2014; 55:247-53. [DOI: 10.1111/jsap.12194] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- M. Mazaki-Tovi
- Diagnostic Center for Population and Animal Health; Michigan State University; East Lansing MI 48824 USA
| | - S. K. Abood
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine; Michigan State University; East Lansing MI 48824 USA
| | | |
Collapse
|
13
|
|
14
|
de Godoy MRC, Swanson KS. COMPANION ANIMALS SYMPOSIUM: Nutrigenomics: Using gene expression and molecular biology data to understand pet obesity1. J Anim Sci 2013; 91:2949-64. [DOI: 10.2527/jas.2012-5860] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- M. R. C. de Godoy
- Department of Animal Sciences, University of Illinois, Urbana, IL 61801
| | - K. S. Swanson
- Department of Animal Sciences, University of Illinois, Urbana, IL 61801
- Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801
- Department of Veterinary Clinical Medicine, University of Illinois, Urbana, IL 61801
| |
Collapse
|
15
|
Grant RW, Vester Boler BM, Ridge TK, Graves TK, Swanson KS. Subcutaneous and gonadal adipose tissue transcriptome differences in lean and obese female dogs. Anim Genet 2013; 44:728-35. [PMID: 23713485 DOI: 10.1111/age.12060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2013] [Indexed: 01/15/2023]
Abstract
Canine obesity leads to shortened life span and increased disease incidence. Adipose tissue depots are known to have unique metabolic and gene expression profiles in rodents and humans, but few comparisons of depot gene expression have been performed in the dog. Using microarray technology, our objective was to identify differentially expressed genes and enriched functional pathways between subcutaneous and gonadal adipose of lean and obese dogs to better understand the pathogenesis of obesity in the dog. Because no depot × body weight status interactions were identified in the microarray data, depot differences were the primary focus. A total of 946 and 703 transcripts were differentially expressed (FDR P < 0.05) between gonadal and subcutaneous adipose tissue in obese and lean dogs respectively. Of the adipose depot-specific differences in gene expression, 162 were present in both lean and obese dogs, with the majority (85%) expressed in the same direction. Both lean and obese dog gene lists had enrichment of the complement and coagulation cascade and systemic lupus erythematosus pathways. Obese dogs had enrichment of lysosome, extracellular matrix-receptor interaction, renin-angiotensin system and hematopoietic cell lineage pathways. Lean dogs had enrichment of glutathione metabolism and synthesis and degradation of ketone bodies. We have identified a core set of genes differentially expressed between subcutaneous and gonadal adipose tissue in dogs regardless of body weight. These genes contribute to depot-specific differences in immune function, extracellular matrix remodeling and lysosomal function and may contribute to the physiological differences noted between depots.
Collapse
Affiliation(s)
- Ryan W Grant
- Division of Nutritional Sciences, University of Illinois, Urbana, IL, 61801, USA
| | | | | | | | | |
Collapse
|
16
|
Tvarijonaviciute A, Ceron JJ, Tecles F. Acetylcholinesterase and butyrylcholinesterase activities in obese Beagle dogs before and after weight loss. Vet Clin Pathol 2013; 42:207-11. [DOI: 10.1111/vcp.12032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Asta Tvarijonaviciute
- Department of Animal Medicine and Surgery; Faculty of Veterinary Medicine; Regional Campus of International Excellence “Campus Mare Nostrum; University of Murcia; Murcia; Spain
| | - Jose J. Ceron
- Department of Animal Medicine and Surgery; Faculty of Veterinary Medicine; Regional Campus of International Excellence “Campus Mare Nostrum; University of Murcia; Murcia; Spain
| | - Fernando Tecles
- Department of Animal Medicine and Surgery; Faculty of Veterinary Medicine; Regional Campus of International Excellence “Campus Mare Nostrum; University of Murcia; Murcia; Spain
| |
Collapse
|
17
|
Ramsay TG, Stoll MJ, Conde-Aguilera JA, Caperna TJ. Peripheral tumor necrosis factor α regulation of adipose tissue metabolism and adipokine gene expression in neonatal pigs. Vet Res Commun 2012; 37:1-10. [PMID: 23090779 DOI: 10.1007/s11259-012-9540-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2012] [Indexed: 01/21/2023]
Abstract
The neonatal pig is susceptible to stress and infection, conditions which favor tumor necrosis factor α (TNFα) secretion. This study examined whether TNFα can alter metabolic activity and cytokine gene expression within neonatal pig adipose tissue. Cell cultures were prepared from neonatal subcutaneous adipose tissue using standard procedures. Cultures (5 experiments) were incubated with medium containing (14)C-glucose for 4 h to measure glucose conversion to lipid in the presence of combinations of TNFα (10 ng), insulin (10 nM) and an anti-pig TNFα antibody (5 μg). Basal lipogenesis was not affected by TNFα treatment (P > 0.05). However, insulin stimulated lipogenesis was reduced by TNFα (P < 0.02). For gene expression studies, cultures were incubated with 0, 2.5, 5.0 or 10 ng TNFα for 2, 4 or 24 h (n = 4 experiments). Interleukin 6 and TNFα gene expression were acutely (2-4 h) stimulated by exogenous TNFα treatment (P < 0.05), as analyzed by real-time PCR. Adiponectin mRNA abundance was reduced (P < 0.001) while monocyte chemotactic gene expression was increased by TNFα treatment at all time points (P < 0.001). Chronic treatment (24 h) was required to increase monocyte multiplication inhibitory factor or suppress lipoprotein lipase gene expression (P < 0.02). These data suggest conditions which increase serum TNFα, like sepsis, could suppress lipid accumulation within adipose tissue at a time of critical need in the neonate and induce a variety of adipose derived cytokines which may function to alter adipose physiology.
Collapse
Affiliation(s)
- T G Ramsay
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, USDA/ARS, BARC-East, Beltsville, MD 20705, USA.
| | | | | | | |
Collapse
|
18
|
Mazaki-Tovi M, Abood SK, Schenck PA. Effect of omega-3 polyunsaturated fatty acids and body condition on serum concentrations of adipokines in healthy dogs. Am J Vet Res 2012; 73:1273-81. [DOI: 10.2460/ajvr.73.8.1273] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
19
|
Packer MJ, German AJ, Hunter L, Trayhurn P, Proudman CJ. Adipose tissue-derived adiponectin expression is significantly associated with increased post operative mortality in horses undergoing emergency abdominal surgery. Equine Vet J 2012:26-33. [PMID: 21790751 DOI: 10.1111/j.2042-3306.2011.00404.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
REASONS FOR PERFORMING STUDY Adipose tissue is an important source of inflammatory cytokines (adipokines) and adiposity has been identified as having a significant effect on human morbidity and mortality. Obesity is also an emerging welfare problem in the UK horse population, but the role that it plays in secondary diseases is unclear. OBJECTIVES To examine the expression of inflammation-related adipokine genes in retroperitoneal adipose tissue of horses undergoing emergency abdominal surgery and to explore associations with adiposity and post operative survival. METHODS Retroperitoneal adipose tissue samples were obtained from 76 horses undergoing emergency abdominal surgery. Real-time PCR was used to measure gene expression for leptin, adiponectin, tumour necrosis factor-alpha, macrophage chemoattractant protein-1, macrophage inhibitory factor, serum amyloid A, haptoglobin and interleukin-1. Multivariate patterns of adipokine expression were explored with principal component analysis (PCA), whilst univariable associations with post operative survival were tested in a Cox proportional hazards model. RESULTS Leptin gene expression was higher in overweight and obese horses than in lean animals. Expression of mRNA encoding adiponectin mRNA in visceral adipose tissue was positively associated with increased post operative mortality (hazard ratio 1.31, 95% CI 1.05-1.65). However, PCA did not demonstrate multivariable patterns of adipokine gene expression from visceral adipose tissue associated with body mass index or with survival. CONCLUSIONS In horses presented with acute intestinal disease, increased adiponectin gene expression from retroperitoneal adipose tissue is associated with an increased risk of mortality. Obesity assessed by BMI had no association with increased post operative mortality in horses with primary gastrointestinal disease. POTENTIAL RELEVANCE Further study is warranted on the expression and effects of adipokines, particularly adiponectin, and correlation with postoperative outcome.
Collapse
Affiliation(s)
- M J Packer
- School of Veterinary Science, Faculty of Health and Life Sciences, University of Liverpool, UK.
| | | | | | | | | |
Collapse
|
20
|
Abstract
Maintenance of energy metabolism and glucose homeostasis is achieved by the regulatory effects of many hormones and their interactions. Glucocorticoids produced from adrenal cortex and adiponectin produced by adipose tissue play important roles in the production, distribution, storage, and utilization of energy substrates. Glucocorticoids are involved in the activation of a number of catabolic processes by affecting the expression of a plethora of genes, while adiponectin acts primarily as an insulin sensitizer. Both are regulated by a number of physiological and pharmacological factors. Although the effects of glucocorticoids on adiponectin expression have been extensively studied in different in vitro, animal and clinical study settings, no consensus has been reached. This report reviews the primary literature concerning the effects of glucocorticoids on adiponectin expression and identifies potential reasons for the contradictory results between different studies. In addition, methods to gain better insights pertaining to the regulation of adiponectin expression are discussed.
Collapse
|
21
|
Ryan VH, Trayhurn P, Hunter L, Morris PJ, German AJ. 11-Hydroxy-β-steroid dehydrogenase gene expression in canine adipose tissue and adipocytes: stimulation by lipopolysaccharide and tumor necrosis factor α. Domest Anim Endocrinol 2011; 41:150-61. [PMID: 21798686 DOI: 10.1016/j.domaniend.2011.06.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 06/01/2011] [Accepted: 06/02/2011] [Indexed: 11/29/2022]
Abstract
The enzyme 11β-hydroxysteroid dehydrogenase 1 (11β-HSD-1) is expressed in a number of tissues in rodents and humans and is responsible for the reactivation of inert cortisone into cortisol. Its gene expression and activity are increased in white adipose tissue (WAT) from obese humans and may contribute to the adverse metabolic consequences of obesity and the metabolic syndrome. The extent to which 11β-HSD-1 contributes to adipose tissue function in dogs is unknown; the aim of the present study was to examine 11β-HSD-1 gene expression and its regulation by proinflammatory and anti-inflammatory agents in canine adipocytes. Real-time PCR was used to examine the expression of 11β-HSD-1 in canine adipose tissue and canine adipocytes differentiated in culture. The mRNA encoding 11β-HSD-1 was identified in all the major WAT depots in dogs and also in liver, kidney, and spleen. Quantification by real-time PCR showed that 11β-HSD-1 mRNA was least in perirenal and falciform depots and greatest in subcutaneous, omental, and gonadal depots. Greater expression was seen in the omental depot in female than in male dogs (P=0.05). Gene expression for 11β-HSD-1 was also seen in adipocytes, from both subcutaneous and visceral depots, differentiated in culture; expression was evident throughout differentiation but was generally greatest in preadipocytes and during early differentiation, declining as cells progressed to maturity. The inflammatory mediators lipopolysaccharide and tumor necrosis factor α had a main stimulatory effect on 11β-HSD-1 gene expression in canine subcutaneous adipocytes, but IL-6 had no significant effect. Treatment with dexamethasone resulted in a significant time- and dose-dependent increase in 11β-HSD-1 gene expression, with greatest effects seen at 24 h (2 nM: approximately 4-fold; 20 nM: approximately 14-fold; P=0.010 for both). When subcutaneous adipocytes were treated with the peroxisome proliferator activated receptor γ agonist rosiglitazone, similar dose- and time-dependent effects were noted. However, no effects were seen when adipocytes from the gonadal WAT depot were treated with rosiglitazone. The induction of 11β-HSD-1 expression, by the pro-inflammatory cytokine tumor necrosis factor α and by lipopolysaccharide may have implications for the pathogenesis of obesity and its associated diseases in the dog.
Collapse
Affiliation(s)
- V H Ryan
- Department of Obesity and Endocrinology, School of Veterinary Science, University of Liverpool, Liverpool L69 3GA, United Kingdom
| | | | | | | | | |
Collapse
|
22
|
Tvarijonaviciute A, Eralp O, Kocaturk M, Yilmaz Z, Ceron JJ. Adiponectin and IGF-1 are negative acute phase proteins in a dog model of acute endotoxaemia. Vet Immunol Immunopathol 2011; 140:147-51. [DOI: 10.1016/j.vetimm.2010.11.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Revised: 11/09/2010] [Accepted: 11/10/2010] [Indexed: 10/18/2022]
|
23
|
Grant RW, Vester Boler BM, Ridge TK, Graves TK, Swanson KS. Adipose tissue transcriptome changes during obesity development in female dogs. Physiol Genomics 2011; 43:295-307. [PMID: 21224421 DOI: 10.1152/physiolgenomics.00190.2010] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
During the development of obesity, adipose tissue undergoes major expansion and remodeling, but the biological processes involved in this transition are not well understood. The objective of this study was to analyze global gene expression profiles of adipose tissue in dogs, fed a high-fat diet, during the transition from a lean to obese phenotype. Nine female beagles (4.09 ± 0.64 yr; 8.48 ± 0.35 kg) were randomized to ad libitum feeding or body weight maintenance. Subcutaneous adipose tissue biopsy, blood, and dual x-ray absorptiometry measurements were collected at 0, 4, 8, 12, and 24 wk of feeding. Serum was analyzed for glucose, insulin, fructosamine, triglycerides, free fatty acids, adiponectin, and leptin. Formalin-fixed adipose tissue was used for determination of adipocyte size. Adipose RNA samples were hybridized to Affymetrix Canine 2.0 microarrays. Statistical analysis, using repeated-measures ANOVA, showed ad libitum feeding increased (P < 0.05) body weight (0 wk, 8.36 ± 0.34 kg; 24 wk, 14.64 ± 0.34 kg), body fat mass (0 wk, 1.36 ± 0.24 kg; 24 wk, 6.52 ± 0.24 kg), adipocyte size (0 wk, 114.66 ± 17.38 μm(2); 24 wk, 320.97 ± 0.18.17 μm(2)), and leptin (0 wk, 0.8 ± 1.0 ng/ml; 24 wk, 12.9 ± 1.0 ng/ml). Microarrays displayed 1,665 differentially expressed genes in adipose tissue as weight increased. Alterations were seen in adipose tissue homeostatic processes including metabolism, oxidative stress, mitochondrial homeostasis, and extracellular matrix. Adipose transcriptome changes highlight the dynamic and adaptive response to ad libitum feeding and obesity development.
Collapse
Affiliation(s)
- Ryan W Grant
- Division of Nutritional Sciences, University of Illinois, Urbana, Illinois, USA
| | | | | | | | | |
Collapse
|