1
|
Harvey BJ, McElvaney NG. Sex differences in airway disease: estrogen and airway surface liquid dynamics. Biol Sex Differ 2024; 15:56. [PMID: 39026347 PMCID: PMC11264786 DOI: 10.1186/s13293-024-00633-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 07/03/2024] [Indexed: 07/20/2024] Open
Abstract
Biological sex differences exist for many airway diseases in which females have either worse or better health outcomes. Inflammatory airway diseases such as cystic fibrosis (CF) and asthma display a clear male advantage in post-puberty while a female benefit is observed in asthma during the pre-puberty years. The influence of menstrual cycle stage and pregnancy on the frequency and severity of pulmonary exacerbations in CF and asthma point to a role for sex steroid hormones, particularly estrogen, in underpinning biological sex differences in these diseases. There are many ways by which estrogen may aggravate asthma and CF involving disturbances in airway surface liquid (ASL) dynamics, inappropriate hyper-immune and allergenic responses, as well as exacerbation of pathogen virulence. The deleterious effect of estrogen on pulmonary function in CF and asthma contrasts with the female advantage observed in airway diseases characterised by pulmonary edema such as pneumonia, acute respiratory distress syndrome (ARDS) and COVID-19. Airway surface liquid hypersecretion and alveolar flooding are hallmarks of ARDS and COVID-19, and contribute to the morbidity and mortality of severe forms of these diseases. ASL dynamics encompasses the intrinsic features of the thin lining of fluid covering the airway epithelium which regulate mucociliary clearance (ciliary beat, ASL height, volume, pH, viscosity, mucins, and channel activating proteases) in addition to innate defence mechanisms (pathogen virulence, cytokines, defensins, specialised pro-resolution lipid mediators, and metabolism). Estrogen regulation of ASL dynamics contributing to biological sex differences in CF, asthma and COVID-19 is a major focus of this review.
Collapse
Affiliation(s)
- Brian J Harvey
- Faculty of Medicine and Health Sciences, Royal College of Surgeons in Ireland, 126 St Stephens Green, Dublin 2, Ireland.
- Department of Medicine, RCSI ERC, Beaumont Hospital, Dublin 2, Ireland.
| | - Noel G McElvaney
- Faculty of Medicine and Health Sciences, Royal College of Surgeons in Ireland, 126 St Stephens Green, Dublin 2, Ireland
| |
Collapse
|
2
|
Padín JF, Pérez-Ortiz JM, Redondo-Calvo FJ. Aprotinin (II): Inhalational Administration for the Treatment of COVID-19 and Other Viral Conditions. Int J Mol Sci 2024; 25:7209. [PMID: 39000315 PMCID: PMC11241800 DOI: 10.3390/ijms25137209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024] Open
Abstract
Aprotinin is a broad-spectrum inhibitor of human proteases that has been approved for the treatment of bleeding in single coronary artery bypass surgery because of its potent antifibrinolytic actions. Following the outbreak of the COVID-19 pandemic, there was an urgent need to find new antiviral drugs. Aprotinin is a good candidate for therapeutic repositioning as a broad-spectrum antiviral drug and for treating the symptomatic processes that characterise viral respiratory diseases, including COVID-19. This is due to its strong pharmacological ability to inhibit a plethora of host proteases used by respiratory viruses in their infective mechanisms. The proteases allow the cleavage and conformational change of proteins that make up their viral capsid, and thus enable them to anchor themselves by recognition of their target in the epithelial cell. In addition, the activation of these proteases initiates the inflammatory process that triggers the infection. The attraction of the drug is not only its pharmacodynamic characteristics but also the possibility of administration by the inhalation route, avoiding unwanted systemic effects. This, together with the low cost of treatment (≈2 Euro/dose), makes it a good candidate to reach countries with lower economic means. In this article, we will discuss the pharmacodynamic, pharmacokinetic, and toxicological characteristics of aprotinin administered by the inhalation route; analyse the main advances in our knowledge of this medication; and the future directions that should be taken in research in order to reposition this medication in therapeutics.
Collapse
Affiliation(s)
- Juan-Fernando Padín
- Department of Medical Sciences, School of Medicine at Ciudad Real, University of Castilla-La Mancha, 13971 Ciudad Real, Spain
| | - José Manuel Pérez-Ortiz
- Facultad HM de Ciencias de la Salud, Universidad Camilo José Cela, 28692 Madrid, Spain
- Instituto de Investigación Sanitaria HM Hospitales, 28015 Madrid, Spain
| | - Francisco Javier Redondo-Calvo
- Department of Medical Sciences, School of Medicine at Ciudad Real, University of Castilla-La Mancha, 13971 Ciudad Real, Spain
- Department of Anaesthesiology and Critical Care Medicine, University General Hospital, 13005 Ciudad Real, Spain
- Translational Research Unit, University General Hospital and Research Institute of Castilla-La Mancha (IDISCAM), 13005 Ciudad Real, Spain
| |
Collapse
|
3
|
Harvey BJ. Molecular mechanisms of dexamethasone actions in COVID-19: Ion channels and airway surface liquid dynamics. Steroids 2024; 202:109348. [PMID: 38049079 DOI: 10.1016/j.steroids.2023.109348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/23/2023] [Accepted: 11/28/2023] [Indexed: 12/06/2023]
Abstract
The COVID-19 pandemic has been a global health crisis of unprecedented magnitude. In the battle against the SARS-CoV-2 coronavirus, dexamethasone, a widely used corticosteroid with potent anti-inflammatory properties, has emerged as a promising therapy in the fight against severe COVID-19. Dexamethasone is a synthetic glucocorticoid that exerts its therapeutic effects by suppressing the immune system and reducing inflammation. In the context of COVID-19, the severe form of the disease is often characterized by a hyperactive immune response, known as a cytokine storm. Dexamethasone anti-inflammatory properties make it a potent tool in modulating this exaggerated immune response. Lung inflammation may lead to excessive fluid accumulation in the airways which can reduce gas exchange and mucociliary clearance. Pulmonary oedema and flooding of the airways are hallmarks of severe COVID-19 lung disease. The volume of airway surface liquid is determined by a delicate balance of salt and water secretion and absorption across the airway epithelium. In addition to its anti-inflammatory actions, dexamethasone modulates the activity of ion channels which regulate electrolyte and water transport across the airway epithelium. The observations of dexamethasone activation of sodium ion absorption via ENaC Na+ channels and inhibition of chloride ion secretion via CFTR Cl- channels to decrease airway surface liquid volume indicate a novel therapeutic action of the glucocorticoid to reverse airway flooding. This brief review delves into the early non-genomic and late genomic signaling mechanisms of dexamethasone regulation of ion channels and airway surface liquid dynamics, shedding light on the molecular mechanisms underpinning the action of the glucocorticoid in managing COVID-19.
Collapse
Affiliation(s)
- Brian J Harvey
- Faculty of Medicine, Royal College of Surgeons in Ireland, RCSI University of Medicine and Health Sciences, Dublin 2, Ireland; Centro de Estudios Cientificos, Valdivia, Chile.
| |
Collapse
|
4
|
Sure F, Bertog M, Afonso S, Diakov A, Rinke R, Madej MG, Wittmann S, Gramberg T, Korbmacher C, Ilyaskin AV. Transmembrane serine protease 2 (TMPRSS2) proteolytically activates the epithelial sodium channel (ENaC) by cleaving the channel's γ-subunit. J Biol Chem 2022; 298:102004. [PMID: 35504352 PMCID: PMC9163703 DOI: 10.1016/j.jbc.2022.102004] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 04/21/2022] [Accepted: 04/27/2022] [Indexed: 01/09/2023] Open
Abstract
The epithelial sodium channel (ENaC) is a heterotrimer consisting of α-, β-, and γ-subunits. Channel activation requires proteolytic release of inhibitory tracts from the extracellular domains of α-ENaC and γ-ENaC; however, the proteases involved in the removal of the γ-inhibitory tract remain unclear. In several epithelial tissues, ENaC is coexpressed with the transmembrane serine protease 2 (TMPRSS2). Here, we explored the effect of human TMPRSS2 on human αβγ-ENaC heterologously expressed in Xenopus laevis oocytes. We found that coexpression of TMPRSS2 stimulated ENaC-mediated whole-cell currents by approximately threefold, likely because of an increase in average channel open probability. Furthermore, TMPRSS2-dependent ENaC stimulation was not observed using a catalytically inactive TMPRSS2 mutant and was associated with fully cleaved γ-ENaC in the intracellular and cell surface protein fractions. This stimulatory effect of TMPRSS2 on ENaC was partially preserved when inhibiting its proteolytic activity at the cell surface using aprotinin but was abolished when the γ-inhibitory tract remained attached to its binding site following introduction of two cysteine residues (S155C–Q426C) to form a disulfide bridge. In addition, computer simulations and site-directed mutagenesis experiments indicated that TMPRSS2 can cleave γ-ENaC at sites both proximal and distal to the γ-inhibitory tract. This suggests a dual role of TMPRSS2 in the proteolytic release of the γ-inhibitory tract. Finally, we demonstrated that TMPRSS2 knockdown in cultured human airway epithelial cells (H441) reduced baseline proteolytic activation of endogenously expressed ENaC. Thus, we conclude that TMPRSS2 is likely to contribute to proteolytic ENaC activation in epithelial tissues in vivo.
Collapse
Affiliation(s)
- Florian Sure
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Institute of Cellular and Molecular Physiology, Erlangen, Germany
| | - Marko Bertog
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Institute of Cellular and Molecular Physiology, Erlangen, Germany
| | - Sara Afonso
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Institute of Cellular and Molecular Physiology, Erlangen, Germany
| | - Alexei Diakov
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Institute of Cellular and Molecular Physiology, Erlangen, Germany
| | - Ralf Rinke
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Institute of Cellular and Molecular Physiology, Erlangen, Germany
| | - M Gregor Madej
- Department of Biophysics II/Structural Biology, University of Regensburg, Regensburg, Germany
| | - Sabine Wittmann
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen, Institute of Clinical and Molecular Virology, Erlangen, Germany
| | - Thomas Gramberg
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen, Institute of Clinical and Molecular Virology, Erlangen, Germany
| | - Christoph Korbmacher
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Institute of Cellular and Molecular Physiology, Erlangen, Germany.
| | - Alexandr V Ilyaskin
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Institute of Cellular and Molecular Physiology, Erlangen, Germany
| |
Collapse
|
5
|
Selo MA, Sake JA, Kim KJ, Ehrhardt C. In vitro and ex vivo models in inhalation biopharmaceutical research - advances, challenges and future perspectives. Adv Drug Deliv Rev 2021; 177:113862. [PMID: 34256080 DOI: 10.1016/j.addr.2021.113862] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/02/2021] [Accepted: 07/06/2021] [Indexed: 12/11/2022]
Abstract
Oral inhalation results in pulmonary drug targeting and thereby reduces systemic side effects, making it the preferred means of drug delivery for the treatment of respiratory disorders such as asthma, chronic obstructive pulmonary disease or cystic fibrosis. In addition, the high alveolar surface area, relatively low enzymatic activity and rich blood supply of the distal airspaces offer a promising pathway to the systemic circulation. This is particularly advantageous when a rapid onset of pharmacological action is desired or when the drug is suffering from stability issues or poor biopharmaceutical performance following oral administration. Several cell and tissue-based in vitro and ex vivo models have been developed over the years, with the intention to realistically mimic pulmonary biological barriers. It is the aim of this review to critically discuss the available models regarding their advantages and limitations and to elaborate further which biopharmaceutical questions can and cannot be answered using the existing models.
Collapse
|
6
|
Petit A, Knabe L, Khelloufi K, Jory M, Gras D, Cabon Y, Begg M, Richard S, Massiera G, Chanez P, Vachier I, Bourdin A. Bronchial Epithelial Calcium Metabolism Impairment in Smokers and Chronic Obstructive Pulmonary Disease. Decreased ORAI3 Signaling. Am J Respir Cell Mol Biol 2019; 61:501-511. [DOI: 10.1165/rcmb.2018-0228oc] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Aurelie Petit
- Department of Respiratory Diseases and Addictology, Hôpital Arnaud de Villeneuve, Centre Hospitalier Universitaire Montpellier, Montpellier, France
| | - Lucie Knabe
- Department of Respiratory Diseases and Addictology, Hôpital Arnaud de Villeneuve, Centre Hospitalier Universitaire Montpellier, Montpellier, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1046, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 9214, University of Montpellier, Montpellier, France
| | - Kamel Khelloufi
- CNRS, Centre Interdisciplinaire de Nanoscience de Marseille UMR 7325, and
| | - Myriam Jory
- UMR 5221 CNRS, Laboratoire Charles Coulomb (L2C), Montpellier, France
| | - Delphine Gras
- Assistance Publique Hôpitaux de Marseille (APHM), Centre de recherche en CardioVasculaire et Nutrition, INSERM U1263 Institut National de la Recherche Agronomique (INRA) 1260, Clinique des Bronches Allergies et Sommeil, Aix Marseille University, Marseille, France
| | - Yann Cabon
- Department of Medical Information, Montpellier University Hospital, Montpellier, France; and
| | - Malcolm Begg
- Refractory Respiratory Inflammation Data Processing Unit, Respiratory TAU, GlaxoSmithKline, Stevenage, United Kingdom
| | - Sylvain Richard
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1046, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 9214, University of Montpellier, Montpellier, France
| | - Gladys Massiera
- UMR 5221 CNRS, Laboratoire Charles Coulomb (L2C), Montpellier, France
| | - Pascal Chanez
- Assistance Publique Hôpitaux de Marseille (APHM), Centre de recherche en CardioVasculaire et Nutrition, INSERM U1263 Institut National de la Recherche Agronomique (INRA) 1260, Clinique des Bronches Allergies et Sommeil, Aix Marseille University, Marseille, France
| | - Isabelle Vachier
- Department of Respiratory Diseases and Addictology, Hôpital Arnaud de Villeneuve, Centre Hospitalier Universitaire Montpellier, Montpellier, France
| | - Arnaud Bourdin
- Department of Respiratory Diseases and Addictology, Hôpital Arnaud de Villeneuve, Centre Hospitalier Universitaire Montpellier, Montpellier, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1046, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 9214, University of Montpellier, Montpellier, France
| |
Collapse
|
7
|
Schmidt H, Michel C, Braubach P, Fauler M, Neubauer D, Thompson KE, Frick M, Mizaikoff B, Dietl P, Wittekindt OH. Water Permeability Adjusts Resorption in Lung Epithelia to Increased Apical Surface Liquid Volumes. Am J Respir Cell Mol Biol 2017; 56:372-382. [DOI: 10.1165/rcmb.2016-0161oc] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- Hanna Schmidt
- Institute of General Physiology, Ulm University, Ulm, Germany
| | | | - Peter Braubach
- Institute of Pathology, Medizinische Hochschule Hannover, Hannover, Germany
| | - Michael Fauler
- Institute of General Physiology, Ulm University, Ulm, Germany
| | - Daniel Neubauer
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Ulm, Germany; and
| | - Kristin E. Thompson
- Institute of General Physiology, Ulm University, Ulm, Germany
- Institute de la Santé et de la Recherche Médicale, UMR_S938, Sorbonne Universités, Paris, France
| | - Manfred Frick
- Institute of General Physiology, Ulm University, Ulm, Germany
| | - Boris Mizaikoff
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Ulm, Germany; and
| | - Paul Dietl
- Institute of General Physiology, Ulm University, Ulm, Germany
| | | |
Collapse
|
8
|
Krause NC, Kutsche HS, Santangelo F, DeLeon ER, Dittrich NP, Olson KR, Althaus M. Hydrogen sulfide contributes to hypoxic inhibition of airway transepithelial sodium absorption. Am J Physiol Regul Integr Comp Physiol 2016; 311:R607-17. [DOI: 10.1152/ajpregu.00177.2016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 07/13/2016] [Indexed: 01/23/2023]
Abstract
In lung epithelial cells, hypoxia decreases the expression and activity of sodium-transporting molecules, thereby reducing the rate of transepithelial sodium absorption. The mechanisms underlying the sensing of hypoxia and subsequent coupling to sodium-transporting molecules remain unclear. Hydrogen sulfide (H2S) has recently been recognized as a cellular signaling molecule whose intracellular concentrations critically depend on oxygen levels. Therefore, it was questioned whether endogenously produced H2S contributes to hypoxic inhibition of sodium transport. In electrophysiological Ussing chamber experiments, hypoxia was established by decreasing oxygen concentrations in the chambers. Hypoxia concentration dependently and reversibly decreased amiloride-sensitive sodium absorption by cultured H441 monolayers and freshly dissected porcine tracheal epithelia due to inhibition of basolateral Na+/K+-ATPase. Exogenous application of H2S by the sulfur salt Na2S mimicked the effect of hypoxia and inhibited amiloride-sensitive sodium absorption by both tissues in an oxygen-dependent manner. Hypoxia increased intracellular concentrations of H2S and decreased the concentration of polysulfides. Pretreatment with the cystathionine-γ-lyase inhibitor d/l-propargylglycine (PAG) decreased hypoxic inhibition of sodium transport by H441 monolayers, whereas inhibition of cystathionine-β-synthase (with aminooxy-acetic acid; AOAA) or 3-mercaptopyruvate sulfurtransferase (with aspartate) had no effect. Inhibition of all of these H2S-generating enzymes with a combination of AOAA, PAG, and aspartate decreased the hypoxic inhibition of sodium transport by H441 cells and pig tracheae and decreased H2S production by tracheae. These data suggest that airway epithelial cells endogenously produce H2S during hypoxia, and this contributes to hypoxic inhibition of transepithelial sodium absorption.
Collapse
Affiliation(s)
- Nicole C. Krause
- Institute for Animal Physiology, Justus-Liebig-University, Giessen, Germany; and
| | - Hanna S. Kutsche
- Institute for Animal Physiology, Justus-Liebig-University, Giessen, Germany; and
| | - Fabrizio Santangelo
- Institute for Animal Physiology, Justus-Liebig-University, Giessen, Germany; and
| | - Eric R. DeLeon
- Department of Physiology, Indiana University School of Medicine-South Bend, South Bend, Indiana
| | - Nikolaus P. Dittrich
- Institute for Animal Physiology, Justus-Liebig-University, Giessen, Germany; and
| | - Kenneth R. Olson
- Department of Physiology, Indiana University School of Medicine-South Bend, South Bend, Indiana
| | - Mike Althaus
- Institute for Animal Physiology, Justus-Liebig-University, Giessen, Germany; and
| |
Collapse
|
9
|
Patel A, Keir SD, Brown MB, Hider R, Jones SA, Page CP. Using Salt Counterions to Modify β2-Agonist Behavior in Vivo. Mol Pharm 2016; 13:3439-3448. [DOI: 10.1021/acs.molpharmaceut.6b00448] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Aateka Patel
- Sackler Institute of Pulmonary Pharmacology, Faculty of Life Sciences & Medicine, King’s College London, 150 Stamford Street, London SE1 9NH, U.K
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King’s College London, 150 Stamford Street, London SE1 9NH, U.K
| | - Sandra D. Keir
- Sackler Institute of Pulmonary Pharmacology, Faculty of Life Sciences & Medicine, King’s College London, 150 Stamford Street, London SE1 9NH, U.K
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King’s College London, 150 Stamford Street, London SE1 9NH, U.K
| | - Marc B. Brown
- MedPharm Ltd, Units 1 and 3, Chancellor Court, 50 Occam Road, Surrey Science Park, Guildford, Surrey GU2 7AB, U.K
- School
of Pharmacy, University of Hertfordshire, College Lane, Hatfield, Hertfordshire AL10 9AB, U.K
| | - Robert Hider
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King’s College London, 150 Stamford Street, London SE1 9NH, U.K
| | - Stuart A. Jones
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King’s College London, 150 Stamford Street, London SE1 9NH, U.K
| | - Clive P. Page
- Sackler Institute of Pulmonary Pharmacology, Faculty of Life Sciences & Medicine, King’s College London, 150 Stamford Street, London SE1 9NH, U.K
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King’s College London, 150 Stamford Street, London SE1 9NH, U.K
| |
Collapse
|
10
|
Nickel S, Clerkin CG, Selo MA, Ehrhardt C. Transport mechanisms at the pulmonary mucosa: implications for drug delivery. Expert Opin Drug Deliv 2016; 13:667-90. [DOI: 10.1517/17425247.2016.1140144] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Sabrina Nickel
- School of Pharmacy and Pharmaceutical Sciences and Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Caoimhe G. Clerkin
- School of Pharmacy and Pharmaceutical Sciences and Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Mohammed Ali Selo
- School of Pharmacy and Pharmaceutical Sciences and Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- Faculty of Pharmacy, Kufa University, Al-Najaf, Iraq
| | - Carsten Ehrhardt
- School of Pharmacy and Pharmaceutical Sciences and Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
11
|
Zheng H, Liu X, Sharma NM, Li Y, Pliquett RU, Patel KP. Urinary Proteolytic Activation of Renal Epithelial Na+ Channels in Chronic Heart Failure. Hypertension 2015; 67:197-205. [PMID: 26628676 DOI: 10.1161/hypertensionaha.115.05838] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 10/30/2015] [Indexed: 12/31/2022]
Abstract
One of the key mechanisms involved in renal Na(+) retention in chronic heart failure (CHF) is activation of epithelial Na(+) channels (ENaC) in collecting tubules. Proteolytic cleavage has an important role in activating ENaC. We hypothesized that enhanced levels of proteases in renal tubular fluid activate ENaC, resulting in renal Na(+) retention in rats with CHF. CHF was produced by left coronary artery ligation in rats. By immunoblotting, we found that several urinary serine proteases were significantly increased in CHF rats compared with sham rats (fold increases: furin 6.7, prostasin 23.6, plasminogen 2.06, and plasmin 3.57 versus sham). Similar increases were observed in urinary samples from patients with CHF. Whole-cell patch clamp was conducted in cultured renal collecting duct M-1 cells to record Na(+) currents. Protease-rich urine (from rats and patients with CHF) significantly increased the Na(+) inward current in M-1 cells. Two weeks of protease inhibitor treatment significantly abrogated the enhanced diuretic and natriuretic responses to ENaC inhibitor benzamil in rats with CHF. Increased podocyte lesions were observed in the kidneys of rats with CHF by transmission electron microscopy. Consistent with these results, podocyte damage markers desmin and podocin expressions were also increased in rats with CHF (increased ≈2-folds). These findings suggest that podocyte damage may lead to increased proteases in the tubular fluid, which in turn contributes to the enhanced renal ENaC activity, providing a novel mechanistic insight for Na(+) retention commonly observed in CHF.
Collapse
Affiliation(s)
- Hong Zheng
- From the Department of Cellular and Integrative Physiology (H.Z., X.L., N.M.S., K.P.P.) and Department of Emergency Medicine (Y.L.), University of Nebraska Medical Center, Omaha; and Department of Internal Medicine II, University Hospital Halle, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany (R.U.P.)
| | - Xuefei Liu
- From the Department of Cellular and Integrative Physiology (H.Z., X.L., N.M.S., K.P.P.) and Department of Emergency Medicine (Y.L.), University of Nebraska Medical Center, Omaha; and Department of Internal Medicine II, University Hospital Halle, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany (R.U.P.)
| | - Neeru M Sharma
- From the Department of Cellular and Integrative Physiology (H.Z., X.L., N.M.S., K.P.P.) and Department of Emergency Medicine (Y.L.), University of Nebraska Medical Center, Omaha; and Department of Internal Medicine II, University Hospital Halle, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany (R.U.P.)
| | - Yulong Li
- From the Department of Cellular and Integrative Physiology (H.Z., X.L., N.M.S., K.P.P.) and Department of Emergency Medicine (Y.L.), University of Nebraska Medical Center, Omaha; and Department of Internal Medicine II, University Hospital Halle, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany (R.U.P.)
| | - Rainer U Pliquett
- From the Department of Cellular and Integrative Physiology (H.Z., X.L., N.M.S., K.P.P.) and Department of Emergency Medicine (Y.L.), University of Nebraska Medical Center, Omaha; and Department of Internal Medicine II, University Hospital Halle, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany (R.U.P.)
| | - Kaushik P Patel
- From the Department of Cellular and Integrative Physiology (H.Z., X.L., N.M.S., K.P.P.) and Department of Emergency Medicine (Y.L.), University of Nebraska Medical Center, Omaha; and Department of Internal Medicine II, University Hospital Halle, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany (R.U.P.).
| |
Collapse
|
12
|
Azizi F, Arredouani A, Mohammad RM. Airway surface liquid volume expansion induces rapid changes in amiloride-sensitive Na+ transport across upper airway epithelium-Implications concerning the resolution of pulmonary edema. Physiol Rep 2015; 3:e12453. [PMID: 26333829 PMCID: PMC4600371 DOI: 10.14814/phy2.12453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 06/11/2015] [Accepted: 06/12/2015] [Indexed: 12/29/2022] Open
Abstract
During airway inflammation, airway surface liquid volume (ASLV) expansion may result from the movement of plasma proteins and excess liquid into the airway lumen due to extravasation and elevation of subepithelial hydrostatic pressure. We previously demonstrated that elevation of submucosal hydrostatic pressure increases airway epithelium permeability resulting in ASLV expansion by 500 μL cm(-2) h(-1). Liquid reabsorption by healthy airway epithelium is regulated by active Na(+) transport at a rate of 5 μL cm(-2) h(-1). Thus, during inflammation the airway epithelium may be submerged by a large volume of luminal liquid. Here, we have investigated the mechanism by which ASLV expansion alters active epithelial Na(+) transport, and we have characterized the time course of the change. We used primary cultures of tracheal airway epithelium maintained under air interface (basal ASLV, depth is 7 ± 0.5 μm). To mimic airway flooding, ASLV was expanded to a depth of 5 mm. On switching from basal to expanded ASLV conditions, short-circuit current (Isc, a measure of total transepithelial active ion transport) declined by 90% with a half-time (t1/2) of 1 h. 24 h after the switch, there was no significant change in ATP concentration nor in the number of functional sodium pumps as revealed by [(3)H]-ouabain binding. However, amiloride-sensitive uptake of (22)Na(+) was reduced by 70% upon ASLV expansion. This process is reversible since after returning cells back to air interface, Isc recovered with a t1/2 of 5-10 h. These results may have important clinical implications concerning the development of Na(+) channels activators and resolution of pulmonary edema.
Collapse
Affiliation(s)
- Fouad Azizi
- Interim Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | | | - Ramzi M Mohammad
- Interim Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| |
Collapse
|
13
|
Salomon JJ, Hagos Y, Petzke S, Kühne A, Gausterer JC, Hosoya KI, Ehrhardt C. Beta-2 Adrenergic Agonists Are Substrates and Inhibitors of Human Organic Cation Transporter 1. Mol Pharm 2015; 12:2633-41. [PMID: 25751092 DOI: 10.1021/mp500854e] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Beta-2-adrenergic agonists are first line therapeutics in the treatment of asthma and chronic obstructive pulmonary disease (COPD). Upon inhalation, bronchodilation is achieved after binding to β2-receptors, which are primarily localized on airway smooth muscle cells. Given that β2-adrenergic agonists chemically are bases, they carry net positive charge at physiologic pH value in the lungs (i.e., pH 7.4). Here, we studied whether β2-agonists interact with organic cation transporters (OCT) and whether this interaction exerted an influence on their passage across the respiratory epithelium to their target receptors. [14C]-TEA uptake into proximal (i.e., Calu-3) and distal (i.e., A549 and NCI-H441) lung epithelial cells was significantly reduced in the presence of salbutamol sulfate, formoterol fumarate, and salmeterol xinafoate in vitro. Expression of all five members of the OCT/N family has been confirmed in human pulmonary epithelial cells in situ and in vitro, which makes the identification of the transporter(s) responsible for the β2-agonist interaction challenging. Thus, additional experiments were carried out in HEK-293 cells transfected with hOCT1-3. The most pronounced inhibition of organic cation uptake by β2-agonists was observed in hOCT1 overexpressing HEK-293 cells. hOCT3 transfected HEK-293 cells were affected to a lesser extent, and in hOCT2 transfectants only marginal inhibition of organic cation uptake by β2-agonists was observed. Bidirectional transport studies across confluent NCI-H441 cell monolayers revealed a net absorptive transport of [3H]-salbutamol, which was sensitive to inhibition by the OCT1 modulator, verapamil. Accordingly, salbutamol uptake into hOCT1 overexpressing HEK-293 cells was time- and concentration-dependent and could be completely blocked by decynium-22. Taken together, our data suggest that β2-agonists are specific substrates and inhibitors of OCT1 in human respiratory epithelial cells and that this transporter might play a role in the pulmonary disposition of drugs of this class.
Collapse
Affiliation(s)
- Johanna J Salomon
- †School of Pharmacy and Pharmaceutical Sciences and Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Yohannes Hagos
- ‡Zentrum für Physiologie und Pathophysiologie, Georg-August-Universität, 37073 Göttingen, Germany.,§PortaCellTec Biosciences GmbH, 37073 Göttingen, Germany
| | - Sören Petzke
- ‡Zentrum für Physiologie und Pathophysiologie, Georg-August-Universität, 37073 Göttingen, Germany
| | - Annett Kühne
- §PortaCellTec Biosciences GmbH, 37073 Göttingen, Germany
| | - Julia C Gausterer
- †School of Pharmacy and Pharmaceutical Sciences and Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Ken-ichi Hosoya
- ∥Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 930-0887 Toyama, Japan
| | - Carsten Ehrhardt
- †School of Pharmacy and Pharmaceutical Sciences and Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
14
|
Tan CD, Hobbs C, Sameni M, Sloane BF, Stutts MJ, Tarran R. Cathepsin B contributes to Na+ hyperabsorption in cystic fibrosis airway epithelial cultures. J Physiol 2014; 592:5251-68. [PMID: 25260629 DOI: 10.1113/jphysiol.2013.267286] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In cystic fibrosis (CF) lung disease, the absence of functional CF transmembrane conductance regulator results in Cl(-)/HCO3 (-) hyposecretion and triggers Na(+) hyperabsorption through the epithelial Na(+) channel (ENaC), which contribute to reduced airway surface liquid (ASL) pH and volume. Prostasin, a membrane-anchored serine protease with trypsin-like substrate specificity has previously been shown to activate ENaC in CF airways. However, prostasin is typically inactive below pH 7.0, suggesting that it may be less relevant in acidic CF airways. Cathepsin B (CTSB) is present in both normal and CF epithelia and is secreted into ASL, but little is known about its function in the airways. We hypothesized that the acidic ASL seen in CF airways may stimulate CTSB to activate ENaC, contributing to Na(+) hyperabsorption and depletion of CF ASL volume. In Xenopus laevis oocytes, CTSB triggered α- and γENaC cleavage and induced an increase in ENaC activity. In bronchial epithelia from both normal and CF donor lungs, CTSB localized to the apical membrane. In normal and CF human bronchial epithelial cultures, CTSB was detected at the apical plasma membrane and in the ASL. CTSB activity was significantly elevated in acidic ASL, which correlated with increased abundance of ENaC in the plasma membrane and a reduction in ASL volume. This acid/CTSB-dependent activation of ENaC was ameliorated with the cell impermeable, CTSB-selective inhibitor CA074, suggesting that CTSB inhibition may have therapeutic relevance. Taken together, our data suggest that CTSB is a pathophysiologically relevant protease that activates ENaC in CF airways.
Collapse
Affiliation(s)
- Chong Da Tan
- Cystic Fibrosis/Pulmonary Research and Treatment Center, University of North Carolina, Chapel Hill, NC, USA
| | - Carey Hobbs
- Cystic Fibrosis/Pulmonary Research and Treatment Center, University of North Carolina, Chapel Hill, NC, USA
| | - Mansoureh Sameni
- Department of Pharmacology, Wayne State University, School of Medicine, Detroit, MI, USA
| | - Bonnie F Sloane
- Department of Pharmacology, Wayne State University, School of Medicine, Detroit, MI, USA
| | - M Jackson Stutts
- Cystic Fibrosis/Pulmonary Research and Treatment Center, University of North Carolina, Chapel Hill, NC, USA
| | - Robert Tarran
- Cystic Fibrosis/Pulmonary Research and Treatment Center, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
15
|
Haerteis S, Krappitz A, Krappitz M, Murphy JE, Bertog M, Krueger B, Nacken R, Chung H, Hollenberg MD, Knecht W, Bunnett NW, Korbmacher C. Proteolytic activation of the human epithelial sodium channel by trypsin IV and trypsin I involves distinct cleavage sites. J Biol Chem 2014; 289:19067-78. [PMID: 24841206 DOI: 10.1074/jbc.m113.538470] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Proteolytic activation is a unique feature of the epithelial sodium channel (ENaC). However, the underlying molecular mechanisms and the physiologically relevant proteases remain to be identified. The serine protease trypsin I can activate ENaC in vitro but is unlikely to be the physiologically relevant activating protease in ENaC-expressing tissues in vivo. Herein, we investigated whether human trypsin IV, a form of trypsin that is co-expressed in several extrapancreatic epithelial cells with ENaC, can activate human ENaC. In Xenopus laevis oocytes, we monitored proteolytic activation of ENaC currents and the appearance of γENaC cleavage products at the cell surface. We demonstrated that trypsin IV and trypsin I can stimulate ENaC heterologously expressed in oocytes. ENaC cleavage and activation by trypsin IV but not by trypsin I required a critical cleavage site (Lys-189) in the extracellular domain of the γ-subunit. In contrast, channel activation by trypsin I was prevented by mutating three putative cleavage sites (Lys-168, Lys-170, and Arg-172) in addition to mutating previously described prostasin (RKRK(178)), plasmin (Lys-189), and neutrophil elastase (Val-182 and Val-193) sites. Moreover, we found that trypsin IV is expressed in human renal epithelial cells and can increase ENaC-mediated sodium transport in cultured human airway epithelial cells. Thus, trypsin IV may regulate ENaC function in epithelial tissues. Our results show, for the first time, that trypsin IV can stimulate ENaC and that trypsin IV and trypsin I activate ENaC by cleavage at distinct sites. The presence of distinct cleavage sites may be important for ENaC regulation by tissue-specific proteases.
Collapse
Affiliation(s)
- Silke Haerteis
- From the Institut für Zelluläre und Molekulare Physiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Waldstrasse 6, 91054 Erlangen, Germany
| | - Annabel Krappitz
- From the Institut für Zelluläre und Molekulare Physiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Waldstrasse 6, 91054 Erlangen, Germany
| | - Matteus Krappitz
- From the Institut für Zelluläre und Molekulare Physiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Waldstrasse 6, 91054 Erlangen, Germany
| | - Jane E Murphy
- the UCSF Center for the Neurobiology of Digestive Diseases, Department of Surgery, University of California, San Francisco, California
| | - Marko Bertog
- From the Institut für Zelluläre und Molekulare Physiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Waldstrasse 6, 91054 Erlangen, Germany
| | - Bettina Krueger
- From the Institut für Zelluläre und Molekulare Physiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Waldstrasse 6, 91054 Erlangen, Germany
| | - Regina Nacken
- From the Institut für Zelluläre und Molekulare Physiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Waldstrasse 6, 91054 Erlangen, Germany
| | - Hyunjae Chung
- the Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Morley D Hollenberg
- the Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Wolfgang Knecht
- Bioscience, CVGI iMed, AstraZeneca Research and Development, 43181 Mölndal, Sweden
| | - Nigel W Bunnett
- the Monash Institute of Pharmaceutical Sciences, 381 Royal Parade, Parkville, Victoria 3052, Australia, and the Department of Pharmacology, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Christoph Korbmacher
- From the Institut für Zelluläre und Molekulare Physiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Waldstrasse 6, 91054 Erlangen, Germany,
| |
Collapse
|
16
|
Wang Q, Schultz BD. Cholera toxin enhances Na(+) absorption across MCF10A human mammary epithelia. Am J Physiol Cell Physiol 2013; 306:C471-84. [PMID: 24371040 DOI: 10.1152/ajpcell.00181.2013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cellular mechanisms to account for the low Na(+) concentration in human milk are poorly defined. MCF10A cells, which were derived from human mammary epithelium and grown on permeable supports, exhibit amiloride- and benzamil-sensitive short-circuit current (Isc; a sensitive indicator of net ion transport), suggesting activity of the epithelial Na(+) channel ENaC. When cultured in the presence of cholera toxin (Ctx), MCF10A cells exhibit greater amiloride-sensitive Isc at all time points tested (2 h to 7 days), an effect that is not reduced with Ctx washout for 12 h. Amiloride-sensitive Isc remains elevated by Ctx in the presence of inhibitors for PKA (H-89, Rp-cAMP), PI3K (LY294002), and protein trafficking (brefeldin A). Additionally, the Ctx B subunit, alone, does not replicate these effects. RT-PCR and Western blot analyses indicate no significant increase in either the mRNA or protein expression for α-, β-, or, γ-ENaC subunits. Ctx increases the abundance of both β- and γ-ENaC in the apical membrane. Additionally, Ctx increases both phosphorylated and nonphosphorylated Nedd4-2 expression. These results demonstrate that human mammary epithelia express ENaC, which can account for the low Na(+) concentration in milk. Importantly, the results suggest that Ctx increases the expression but reduces the activity of the E3 ubiquitin ligase Nedd4-2, which would tend to reduce the ENaC retrieval and increase steady-state membrane residency. The results reveal a novel mechanism in human mammary gland epithelia by which Ctx regulates ENaC-mediated Na(+) transport, which may have inferences for epithelial ion transport regulation in other tissues throughout the body.
Collapse
Affiliation(s)
- Qian Wang
- Department of Anatomy and Physiology, Kansas State University, Manhattan, Kansas
| | | |
Collapse
|
17
|
Greenlee MM, Mitzelfelt JD, Yu L, Yue Q, Duke BJ, Harrell CS, Neigh GN, Eaton DC. Estradiol activates epithelial sodium channels in rat alveolar cells through the G protein-coupled estrogen receptor. Am J Physiol Lung Cell Mol Physiol 2013; 305:L878-89. [PMID: 24097558 DOI: 10.1152/ajplung.00008.2013] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Female sex predisposes individuals to poorer outcomes during respiratory disorders like cystic fibrosis and influenza-associated pneumonia. A common link between these disorders is dysregulation of alveolar fluid clearance via disruption of epithelial sodium channel (ENaC) activity. Recent evidence suggests that female sex hormones directly regulate expression and activity of alveolar ENaC. In our study, we identified the mechanism by which estradiol (E2) or progesterone (P4) independently regulates alveolar ENaC. Using cell-attached patch clamp, we measured ENaC single-channel activity in a rat alveolar cell line (L2) in response to overnight exposure to either E2 or P4. In contrast to P4, E2 increased ENaC channel activity (NPo) through an increase in channel open probability (Po) and an increased number of patches with observable channel activity. Apical plasma membrane abundance of the ENaC α-subunit (αENaC) more than doubled in response to E2 as determined by cell surface biotinylation. αENaC membrane abundance was approximately threefold greater in lungs from female rats in proestrus, when serum E2 is greatest, compared with diestrus, when it is lowest. Our results also revealed a significant role for the G protein-coupled estrogen receptor (Gper) to mediate E2's effects on ENaC. Overall, our results demonstrate that E2 signaling through Gper selectively activates alveolar ENaC through an effect on channel gating and channel density, the latter via greater trafficking of channels to the plasma membrane. The results presented herein implicate E2-mediated regulation of alveolar sodium channels in the sex differences observed in the pathogenesis of several pulmonary diseases.
Collapse
Affiliation(s)
- Megan M Greenlee
- Dept. of Physiology, Emory Univ. School of Medicine, 615 Michael St., Ste. 655B, Atlanta, GA 30322.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Hobbs CA, Da Tan C, Tarran R. Does epithelial sodium channel hyperactivity contribute to cystic fibrosis lung disease? J Physiol 2013; 591:4377-87. [PMID: 23878362 DOI: 10.1113/jphysiol.2012.240861] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Airway epithelia absorb Na+ through the epithelial Na+ channel (ENaC) and secrete Cl- through the cystic fibrosis transmembrane conductance regulator (CFTR) anion channel. This balance maintains sufficient airway surface liquid hydration to permit efficient mucus clearance, which is needed to maintain sterility of the lung. Cystic fibrosis (CF) is a common autosomal recessive inherited disease caused by mutations in the CFTR gene that lead to the reduction or elimination of the CFTR protein. CF is a multi-organ disease that affects epithelia lining the intestines, lungs, pancreas, sweat ducts and vas deferens, among others. CF lungs are characterized by viscous, dehydrated mucus, persistent neutrophilia and chronic infections. ENaC is negatively regulated by CFTR and, in patients with CF, the absence of CFTR results in a double hit of reduced Cl-/HCO3- and H2O secretion as well as ENaC hyperactivity and increased Na+ and H2O absorption. Together, these effects are hypothesized to trigger mucus dehydration, resulting in a failure to clear mucus. Rehydrating CF mucus has become a recent clinical focus and yields important end-points for clinical trials. However, while ENaC hyperactivity in CF airways has been detected in vivo and in vitro, recent data have brought the role of ENaC in CF lung disease pathogenesis into question. This review will focus on our current understanding of the contribution of ENaC to CF pathogenesis.
Collapse
Affiliation(s)
- Carey A Hobbs
- R. Tarran: 7125 Thurston Bowles Building, UNC, Chapel Hill, NC 27599-7248, USA.
| | | | | |
Collapse
|
19
|
Tarran R, Sabater JR, Clarke TC, Tan CD, Davies CM, Liu J, Yeung A, Garland AL, Stutts MJ, Abraham WM, Phillips G, Baker WR, Wright CD, Wilbert S. Nonantibiotic macrolides prevent human neutrophil elastase-induced mucus stasis and airway surface liquid volume depletion. Am J Physiol Lung Cell Mol Physiol 2013; 304:L746-56. [PMID: 23542952 DOI: 10.1152/ajplung.00292.2012] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Mucus clearance is an important component of the lung's innate defense system. A failure of this system brought on by mucus dehydration is common to both cystic fibrosis (CF) and chronic obstructive pulmonary disease (COPD). Mucus clearance rates are regulated by the volume of airway surface liquid (ASL) and by ciliary beat frequency (CBF). Chronic treatment with macrolide antibiotics is known to be beneficial to both CF and COPD patients. However, chronic macrolide usage may induce bacterial resistance. We have developed a novel macrolide, 2'-desoxy-9-(S)-erythromycylamine (GS-459755), that has significantly diminished antibiotic activity against Staphylococcus aureus, Streptococcus pneumonia, Moraxella catarrhalis, and Haemophilus influenzae. Since neutrophilia frequently occurs in chronic lung disease and human neutrophil elastase (HNE) induces mucus stasis by activating the epithelial sodium channel (ENaC), we tested the ability of GS-459755 to protect against HNE-induced mucus stasis. GS-459755 had no effect on HNE activity. However, GS-459755 pretreatment protected against HNE-induced ASL volume depletion in human bronchial epithelial cells (HBECs). The effect of GS-459755 on ASL volume was dose dependent (IC₅₀ ~3.9 μM) and comparable to the antibacterial macrolide azithromycin (IC₅₀ ~2.4 μM). Macrolides had no significant effect on CBF or on transepithelial water permeability. However, the amiloride-sensitive transepithelial voltage, a marker of ENaC activity, was diminished by macrolide pretreatment. We conclude that GS-459755 may limit HNE-induced activation of ENaC and may be useful for the treatment of mucus dehydration in CF and COPD without inducing bacterial resistance.
Collapse
Affiliation(s)
- Robert Tarran
- Cystic Fibrosis/Pulmonary Research and Treatment Center, University of North Carolina, Chapel Hill, NC 27516, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Downs CA, Trac DQ, Kreiner LH, Eaton AF, Johnson NM, Brown LA, Helms MN. Ethanol alters alveolar fluid balance via Nadph oxidase (NOX) signaling to epithelial sodium channels (ENaC) in the lung. PLoS One 2013; 8:e54750. [PMID: 23382956 PMCID: PMC3558518 DOI: 10.1371/journal.pone.0054750] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 12/14/2012] [Indexed: 02/02/2023] Open
Abstract
Chronic alcohol consumption is associated with increased incidence of ICU-related morbidity and mortality, primarily from acute respiratory distress syndrome (ARDS). However, the mechanisms involved are unknown. One explanation is that alcohol regulates epithelial sodium channels (ENaC) via oxidant signaling to promote a pro- injury environment. We used small rodent models to mimic acute and chronic alcohol consumption and tested the hypothesis that ethanol (EtOH) would affect lung fluid clearance by up-regulating ENaC activity in the lung. Fluorescence labeling of rat lung slices and in vivo mouse lung revealed an increase in ROS production in response to acute EtOH exposure. Using western blots and fluorescein-5-maleimide labeling, we conclude that EtOH exposure modifies cysteines of α-ENaC while data from single channel patch clamp analysis confirm that 0.16% EtOH increased ENaC activity in rat alveolar cells. In vivo lung fluid clearance demonstrated a latent increase in fluid clearance in mice receiving EtOH diet. Ethanol mice given a tracheal instillation of LPS demonstrated early lung fluid clearance compared to caloric control mice and C57Bl/6 mice. Standard biochemical techniques reveal that chronic EtOH consumption resulted in greater protein expression of the catalytic gp91phox subunit and the obligate Rac1 protein. Collectively these data suggest that chronic EtOH consumption may lead to altered regulation of ENaC, contributing to a ‘pro-injury’ environment in the alcohol lung.
Collapse
Affiliation(s)
- Charles A Downs
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, Georgia, USA.
| | | | | | | | | | | | | |
Collapse
|
21
|
Downs CA, Kumar A, Kreiner LH, Johnson NM, Helms MN. H2O2 regulates lung epithelial sodium channel (ENaC) via ubiquitin-like protein Nedd8. J Biol Chem 2013; 288:8136-8145. [PMID: 23362276 DOI: 10.1074/jbc.m112.389536] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Redundancies in both the ubiquitin and epithelial sodium transport pathways allude to their importance of proteolytic degradation and ion transport in maintaining normal cell function. The classical pathway implicated in ubiquitination of the epithelial sodium channel (ENaC) involves Nedd4-2 regulation of sodium channel subunit expression and has been studied extensively studied. However, less attention has been given to the role of the ubiquitin-like protein Nedd8. Here we show that Nedd8 plays an important role in the ubiquitination of ENaC in alveolar epithelial cells. We report that the Nedd8 pathway is redox-sensitive and that under oxidizing conditions Nedd8 conjugation to Cullin-1 is attenuated, resulting in greater surface expression of α-ENaC. This observation was confirmed in our electrophysiology studies in which we inhibited Nedd8-activating enzyme using MLN4924 (a specific Nedd8-activating enzyme inhibitor) and observed a marked increase in ENaC activity (measured as the product of the number of channels (N) and the open probability (Po) of a channel). These results suggest that ubiquitination of lung ENaC is redox-sensitive and may have significant implications for our understanding of the role of ENaC in pulmonary conditions where oxidative stress occurs, such as pulmonary edema and acute lung injury.
Collapse
Affiliation(s)
- Charles A Downs
- Nell Hodgson Woodruff School of Nursing, Emory University School of Medicine, Atlanta, Georgia 30322; Department of Physiology, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Amrita Kumar
- Department of Physiology, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Lisa H Kreiner
- Department of Physiology, Emory University School of Medicine, Atlanta, Georgia 30322; Department of Pediatrics Center for Developmental Lung Biology, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Nicholle M Johnson
- Department of Physiology, Emory University School of Medicine, Atlanta, Georgia 30322; Department of Pediatrics Center for Developmental Lung Biology, Emory University School of Medicine, Atlanta, Georgia 30322
| | - My N Helms
- Department of Physiology, Emory University School of Medicine, Atlanta, Georgia 30322; Department of Pediatrics Center for Developmental Lung Biology, Emory University School of Medicine, Atlanta, Georgia 30322.
| |
Collapse
|
22
|
Tan CD, Smolenski RT, Harhun MI, Patel HK, Ahmed SG, Wanisch K, Yáñez-Muñoz RJ, Baines DL. AMP-activated protein kinase (AMPK)-dependent and -independent pathways regulate hypoxic inhibition of transepithelial Na+ transport across human airway epithelial cells. Br J Pharmacol 2013; 167:368-82. [PMID: 22509822 DOI: 10.1111/j.1476-5381.2012.01993.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND AND PURPOSE Pulmonary transepithelial Na(+) transport is reduced by hypoxia, but in the airway the regulatory mechanisms remain unclear. We investigated the role of AMPK and ROS in the hypoxic regulation of apical amiloride-sensitive Na(+) channels and basolateral Na(+) K(+) ATPase activity. EXPERIMENTAL APPROACH H441 human airway epithelial cells were used to examine the effects of hypoxia on Na(+) transport, AMP : ATP ratio and AMPK activity. Lentiviral constructs were used to modify cellular AMPK abundance and activity; pharmacological agents were used to modify cellular ROS. KEY RESULTS AMPK was activated by exposure to 3% or 0.2% O(2) for 60 min in cells grown in submerged culture or when fluid (0.1 mL·cm(-2) ) was added to the apical surface of cells grown at the air-liquid interface. Only 0.2% O(2) activated AMPK in cells grown at the air-liquid interface. AMPK activation was associated with elevation of cellular AMP:ATP ratio and activity of the upstream kinase LKB1. Hypoxia inhibited basolateral ouabain-sensitive I(sc) (I(ouabain) ) and apical amiloride-sensitive Na(+) conductance (G(Na+) ). Modification of AMPK activity prevented the effect of hypoxia on I(ouabain) (Na(+) K(+) ATPase) but not apical G(Na+) . Scavenging of superoxide and inhibition of NADPH oxidase prevented the effect of hypoxia on apical G(Na+) (epithelial Na(+) channels). CONCLUSIONS AND IMPLICATIONS Hypoxia activates AMPK-dependent and -independent pathways in airway epithelial cells. Importantly, these pathways differentially regulate apical Na(+) channels and basolateral Na(+) K(+) ATPase activity to decrease transepithelial Na(+) transport. Luminal fluid potentiated the effect of hypoxia and activated AMPK, which could have important consequences in lung disease conditions.
Collapse
Affiliation(s)
- C D Tan
- Pharmacology and Cell Physiology Research Group, Division of Biomedical Sciences, St George's University of London, Cranmer Terrace, London, UK
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Althaus M, Urness KD, Clauss WG, Baines DL, Fronius M. The gasotransmitter hydrogen sulphide decreases Na⁺ transport across pulmonary epithelial cells. Br J Pharmacol 2012; 166:1946-63. [PMID: 22352810 DOI: 10.1111/j.1476-5381.2012.01909.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND AND PURPOSE The transepithelial absorption of Na(+) in the lungs is crucial for the maintenance of the volume and composition of epithelial lining fluid. The regulation of Na(+) transport is essential, because hypo- or hyperabsorption of Na(+) is associated with lung diseases such as pulmonary oedema or cystic fibrosis. This study investigated the effects of the gaseous signalling molecule hydrogen sulphide (H(2) S) on Na(+) absorption across pulmonary epithelial cells. EXPERIMENTAL APPROACH Ion transport processes were electrophysiologically assessed in Ussing chambers on H441 cells grown on permeable supports at air/liquid interface and on native tracheal preparations of pigs and mice. The effects of H(2)S were further investigated on Na(+) channels expressed in Xenopus oocytes and Na(+) /K(+)-ATPase activity in vitro. Membrane abundance of Na(+) /K(+)-ATPase was determined by surface biotinylation and Western blot. Cellular ATP concentrations were measured colorimetrically, and cytosolic Ca(2+) concentrations were measured with Fura-2. KEY RESULTS H(2)S rapidly and reversibly inhibited Na(+) transport in all the models employed. H(2)S had no effect on Na(+) channels, whereas it decreased Na(+) /K(+)-ATPase currents. H(2)S did not affect the membrane abundance of Na(+) /K(+)-ATPase, its metabolic or calcium-dependent regulation, or its direct activity. However, H(2)S inhibited basolateral calcium-dependent K(+) channels, which consequently decreased Na(+) absorption by H441 monolayers. CONCLUSIONS AND IMPLICATIONS H(2) S impairs pulmonary transepithelial Na(+) absorption, mainly by inhibiting basolateral Ca(2+)-dependent K(+) channels. These data suggest that the H(2)S signalling system might represent a novel pharmacological target for modifying pulmonary transepithelial Na(+) transport.
Collapse
Affiliation(s)
- M Althaus
- Institute of Animal Physiology, Justus-Liebig University of Giessen, Giessen, Germany.
| | | | | | | | | |
Collapse
|
24
|
Butterworth MB, Zhang L, Heidrich EM, Myerburg MM, Thibodeau PH. Activation of the epithelial sodium channel (ENaC) by the alkaline protease from Pseudomonas aeruginosa. J Biol Chem 2012; 287:32556-65. [PMID: 22859302 DOI: 10.1074/jbc.m112.369520] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that significantly contributes to the mortality of patients with cystic fibrosis. Chronic infection by Pseudomonas induces sustained immune and inflammatory responses and damage to the airway. The ability of Pseudomonas to resist host defenses is aided, in part, by secreted proteases, which act as virulence factors in multiple modes of infection. Recent studies suggest that misregulation of protease activity in the cystic fibrosis lung may alter fluid secretion and pathogen clearance by proteolytic activation of the epithelial sodium channel (ENaC). To evaluate the possibility that proteolytic activation of ENaC may contribute to the virulence of Pseudomonas, primary human bronchial epithelial cells were exposed to P. aeruginosa and ENaC function was assessed by short circuit current measurements. Apical treatment with a strain known to express high levels of alkaline protease (AP) resulted in an increase in basal ENaC current and a loss of trypsin-inducible ENaC current, consistent with sustained activation of ENaC. To further characterize this AP-induced ENaC activation, AP was purified, and its folding, activity, and ability to activate ENaC were assessed. AP folding was efficient under pH and calcium conditions thought to exist in the airway surface liquid of normal and cystic fibrosis (CF) lungs. Short circuit measurements of ENaC in polarized monolayers indicated that AP activated ENaC in immortalized cell lines as well as post-transplant, primary human bronchial epithelial cells from both CF and non-CF patients. This activation was mapped to the γ-subunit of ENaC. Based on these data, patho-mechanisms associated with AP in the CF lung are proposed wherein secretion of AP leads to decreased airway surface liquid volume and a corresponding decrease in mucocilliary clearance of pulmonary pathogens.
Collapse
Affiliation(s)
- Michael B Butterworth
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | | | |
Collapse
|
25
|
Watt GB, Ismail NAS, Caballero AG, Land SC, Wilson SM. Epithelial Na⁺ channel activity in human airway epithelial cells: the role of serum and glucocorticoid-inducible kinase 1. Br J Pharmacol 2012; 166:1272-89. [PMID: 22250980 PMCID: PMC3417446 DOI: 10.1111/j.1476-5381.2012.01860.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Revised: 11/24/2011] [Accepted: 12/05/2011] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND AND PURPOSE Glucocorticoids appear to control Na⁺ absorption in pulmonary epithelial cells via a mechanism dependent upon serum and glucocorticoid-inducible kinase 1 (SGK1), a kinase that allows control over the surface abundance of epithelial Na⁺ channel subunits (α-, β- and γ-ENaC). However, not all data support this model and the present study re-evaluates this hypothesis in order to clarify the mechanism that allows glucocorticoids to control ENaC activity. EXPERIMENTAL APPROACH Electrophysiological studies explored the effects of agents that suppress SGK1 activity upon glucocorticoid-induced ENaC activity in H441 human airway epithelial cells, whilst analyses of extracted proteins explored the associated changes to the activities of endogenous protein kinase substrates and the overall/surface expression of ENaC subunits. KEY RESULTS Although dexamethasone-induced (24 h) ENaC activity was dependent upon SGK1, prolonged exposure to this glucocorticoid did not cause sustained activation of this kinase and neither did it induce a coordinated increase in the surface abundance of α-, β- and γ-ENaC. Brief (3 h) exposure to dexamethasone, on the other hand, did not evoke Na⁺ current but did activate SGK1 and cause SGK1-dependent increases in the surface abundance of α-, β- and γ-ENaC. CONCLUSIONS AND IMPLICATIONS Although glucocorticoids activated SGK1 and increased the surface abundance of α-, β- and γ-ENaC, these responses were transient and could not account for the sustained activation of ENaC. The maintenance of ENaC activity did, however, depend upon SGK1 and this protein kinase must therefore play an important but permissive role in glucocorticoid-induced ENaC activation.
Collapse
Affiliation(s)
- Gordon B Watt
- Centre for Cardiovascular and Lung Research, Division of Medical Sciences, College of Medicine, Dentistry & Nursing, University of Dundee, Dundee, UK
| | | | | | | | | |
Collapse
|
26
|
Thibodeau PH, Butterworth MB. Proteases, cystic fibrosis and the epithelial sodium channel (ENaC). Cell Tissue Res 2012; 351:309-23. [PMID: 22729487 DOI: 10.1007/s00441-012-1439-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 04/20/2012] [Indexed: 02/06/2023]
Abstract
Proteases perform a diverse array of biological functions. From simple peptide digestion for nutrient absorption to complex signaling cascades, proteases are found in organisms from prokaryotes to humans. In the human airway, proteases are associated with the regulation of the airway surface liquid layer, tissue remodeling, host defense and pathogenic infection and inflammation. A number of proteases are released in the airways under both physiological and pathophysiological states by both the host and invading pathogens. In airway diseases such as cystic fibrosis, proteases have been shown to be associated with increased morbidity and airway disease progression. In this review, we focus on the regulation of proteases and discuss specifically those proteases found in human airways. Attention then shifts to the epithelial sodium channel (ENaC), which is regulated by proteolytic cleavage and that is considered to be an important component of cystic fibrosis disease. Finally, we discuss bacterial proteases, in particular, those of the most prevalent bacterial pathogen found in cystic fibrosis, Pseudomonas aeruginosa.
Collapse
Affiliation(s)
- P H Thibodeau
- Department of Cell Biology, University of Pittsburgh School of Medicine, 3500 Terrace Street, S327 Biomedical Science Tower, Pittsburgh, PA 15261, USA
| | | |
Collapse
|