1
|
Sun XD, Wang A, Ma P, Gong S, Tao J, Yu XM, Jiang X. Regulation of the firing activity by PKA-PKC-Src family kinases in cultured neurons of hypothalamic arcuate nucleus. J Neurosci Res 2019; 98:384-403. [PMID: 31407399 PMCID: PMC6916362 DOI: 10.1002/jnr.24516] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 07/18/2019] [Accepted: 07/30/2019] [Indexed: 12/19/2022]
Abstract
The cAMP‐dependent protein kinase A family (PKAs), protein kinase C family (PKCs), and Src family kinases (SFKs) are found to play important roles in pain hypersensitivity. However, more detailed investigations are still needed in order to understand the mechanisms underlying the actions of PKAs, PKCs, and SFKs. Neurons in the hypothalamic arcuate nucleus (ARC) are found to be involved in the regulation of pain hypersensitivity. Here we report that the action potential (AP) firing activity of ARC neurons in culture was up‐regulated by application of the adenylate cyclase activator forskolin or the PKC activator PMA, and that the forskolin or PMA application‐induced up‐regulation of AP firing activity could be blocked by pre‐application of the SFK inhibitor PP2. SFK activation also up‐regulated the AP firing activity and this effect could be prevented by pre‐application of the inhibitors of PKCs, but not of PKAs. Furthermore, we identified that forskolin or PMA application caused increases in the phosphorylation not only in PKAs at T197 or PKCs at S660 and PKCα/βII at T638/641, but also in SFKs at Y416. The forskolin or PMA application‐induced increase in the phosphorylation of PKAs or PKCs was not affected by pre‐treatment with PP2. The regulations of the SFK and AP firing activities by PKCs were independent upon the translocation of either PKCα or PKCβII. Thus, it is demonstrated that PKAs may act as an upstream factor(s) to enhance SFKs while PKCs and SFKs interact reciprocally, and thereby up‐regulate the AP firing activity in hypothalamic ARC neurons.
Collapse
Affiliation(s)
- Xiao-Dong Sun
- Key Laboratory of Pain Basic Research and Clinical Therapy, Department of Physiology and Neurobiology, Medical College of Soochow University, Suzhou, China
| | - Anqi Wang
- Key Laboratory of Pain Basic Research and Clinical Therapy, Department of Physiology and Neurobiology, Medical College of Soochow University, Suzhou, China
| | - Peng Ma
- Key Laboratory of Pain Basic Research and Clinical Therapy, Department of Physiology and Neurobiology, Medical College of Soochow University, Suzhou, China
| | - Shan Gong
- Key Laboratory of Pain Basic Research and Clinical Therapy, Department of Physiology and Neurobiology, Medical College of Soochow University, Suzhou, China
| | - Jin Tao
- Key Laboratory of Pain Basic Research and Clinical Therapy, Department of Physiology and Neurobiology, Medical College of Soochow University, Suzhou, China
| | - Xian-Min Yu
- Key Laboratory of Pain Basic Research and Clinical Therapy, Department of Physiology and Neurobiology, Medical College of Soochow University, Suzhou, China
| | - Xinghong Jiang
- Key Laboratory of Pain Basic Research and Clinical Therapy, Department of Physiology and Neurobiology, Medical College of Soochow University, Suzhou, China
| |
Collapse
|
2
|
Src activation in the hypothalamic arcuate nucleus may play an important role in pain hypersensitivity. Sci Rep 2019; 9:3827. [PMID: 30846840 PMCID: PMC6405746 DOI: 10.1038/s41598-019-40572-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 02/15/2019] [Indexed: 12/30/2022] Open
Abstract
Src family of kinases (SFKs) has been found to play an important role in the regulation of nociception. However, how each member of this family acts in the central nervous system (CNS) structures involved in the relay and/or modulation of nociceptive signals, and thereby contributes to the formation and maintenance of pain hypersensitivity, is still a challenge. In this work, a combined study using biochemical, genetic and behavioral approaches was conducted. We found that the expression of activated SFKs in the hypothalamic arcuate nucleus (ARC) area was significantly increased following the development of inflammation induced by injection of complete freund's adjuvant (CFA) into the hind paw of rats. Furthermore, we identified that Src, but not Fyn or Lyn in the Src family, was activated, and that Src knockdown in the ARC area blocked the inflammation-induced increases in the expression of activated SFKs, the N-Methyl-D-aspartate receptor (NMDAR) GluN2B subunit and phosphorylated GluN2B at Y1472 in this region. Moreover, the CFA injection-induced allodynia and hyperalgesia, and the analgesic effect produced by systemic application of the SFK inhibitor, SU6656, were significantly diminished. However, the Src knockdown did not induce any change in the expression of activated SFKs and the NMDAR GluN2B subunit in normal rats which were not injected with CFA. Neither the Src knockdown nor the systemic application of SU6656 affected the mechanical and thermal sensitivity of the normal rats. Thus, Src activation in the ARC may be a key event for formation and maintenance of pain hypersensitivity associated with peripheral inflammation.
Collapse
|
3
|
Qin D, Liu P, Chen H, Huang X, Ye W, Lin X, Wei F, Su J. Salicylate-Induced Ototoxicity of Spiral Ganglion Neurons: Ca 2+/CaMKII-Mediated Interaction Between NMDA Receptor and GABA A Receptor. Neurotox Res 2019; 35:838-847. [PMID: 30820888 DOI: 10.1007/s12640-019-0006-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 01/21/2019] [Accepted: 01/24/2019] [Indexed: 10/27/2022]
Abstract
Sodium salicylate (SS) is one of the nonsteroidal anti-inflammatory drugs and widely used in clinical practice. Therefore, we aimed to investigate the potential ototoxicity mechanism of sodium salicylate: the influence of Ca2+/calmodulin-dependent protein kinase II (Ca2+/CaMKII) in interaction between NMDA receptors (NMDAR) and GABAA receptors (GABAAR) in rat cochlear spiral ganglion neurons (SGNs). After treatment with SS, NMDA, and an NMDAR inhibitor (APV), the changes of GABAAR β3 (GABR β3) mRNA, surface and total protein, and GABAAR currents in SGNs were assessed by quantitative PCR, Western blot, and whole-cell patch clamp. Mechanistically, SS and/or NMDA increased the GABR β3 mRNA expression, while decreased GABR β3 surface protein levels and GABAAR-mediated currents. Moreover, application of SS and/or NMDA showed promotion in phosphorylation levels at S383 of GABR β3. Collectively, Ca2+ chelator (BAPTA) or Ca2+/CaMKII inhibitor (KN-93) reversed the effects of SS and/or NMDA on GABAAR. Therefore, we hypothesize that the interaction between NMDAR and GABAAR is involved in the SGNs damage induced by SS. In addition, the underlying molecular mechanism is related to Ca2+/CaMKII-mediated signaling pathway, which suggests that the interaction between calcium signal-regulated receptors mediates SS ototoxicity.
Collapse
Affiliation(s)
- Danxue Qin
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Peiqiang Liu
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Huiying Chen
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Xi Huang
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China.,Department of Otolaryngology-Head and Neck Surgery, Wuhan No.1 Hospital, Wuhan, 430022, Hubei, China
| | - Wenhua Ye
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Xiaoyu Lin
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Fangyu Wei
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Jiping Su
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China.
| |
Collapse
|
4
|
Erickson A, Deiteren A, Harrington AM, Garcia‐Caraballo S, Castro J, Caldwell A, Grundy L, Brierley SM. Voltage-gated sodium channels: (Na V )igating the field to determine their contribution to visceral nociception. J Physiol 2018; 596:785-807. [PMID: 29318638 PMCID: PMC5830430 DOI: 10.1113/jp273461] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 01/02/2018] [Indexed: 12/19/2022] Open
Abstract
Chronic visceral pain, altered motility and bladder dysfunction are common, yet poorly managed symptoms of functional and inflammatory disorders of the gastrointestinal and urinary tracts. Recently, numerous human channelopathies of the voltage-gated sodium (NaV ) channel family have been identified, which induce either painful neuropathies, an insensitivity to pain, or alterations in smooth muscle function. The identification of these disorders, in addition to the recent utilisation of genetically modified NaV mice and specific NaV channel modulators, has shed new light on how NaV channels contribute to the function of neuronal and non-neuronal tissues within the gastrointestinal tract and bladder. Here we review the current pre-clinical and clinical evidence to reveal how the nine NaV channel family members (NaV 1.1-NaV 1.9) contribute to abdominal visceral function in normal and disease states.
Collapse
Affiliation(s)
- Andelain Erickson
- Visceral Pain Research Group, Human Physiology, Centre for Neuroscience, College of Medicine and Public HealthFlinders UniversityBedford ParkSouth Australia5042Australia
- Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of AdelaideSouth Australian Health and Medical Research Institute (SAHMRI)North TerraceAdelaideSouth Australia 5000Australia
| | - Annemie Deiteren
- Visceral Pain Research Group, Human Physiology, Centre for Neuroscience, College of Medicine and Public HealthFlinders UniversityBedford ParkSouth Australia5042Australia
- Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of AdelaideSouth Australian Health and Medical Research Institute (SAHMRI)North TerraceAdelaideSouth Australia 5000Australia
| | - Andrea M. Harrington
- Visceral Pain Research Group, Human Physiology, Centre for Neuroscience, College of Medicine and Public HealthFlinders UniversityBedford ParkSouth Australia5042Australia
- Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of AdelaideSouth Australian Health and Medical Research Institute (SAHMRI)North TerraceAdelaideSouth Australia 5000Australia
| | - Sonia Garcia‐Caraballo
- Visceral Pain Research Group, Human Physiology, Centre for Neuroscience, College of Medicine and Public HealthFlinders UniversityBedford ParkSouth Australia5042Australia
- Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of AdelaideSouth Australian Health and Medical Research Institute (SAHMRI)North TerraceAdelaideSouth Australia 5000Australia
| | - Joel Castro
- Visceral Pain Research Group, Human Physiology, Centre for Neuroscience, College of Medicine and Public HealthFlinders UniversityBedford ParkSouth Australia5042Australia
- Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of AdelaideSouth Australian Health and Medical Research Institute (SAHMRI)North TerraceAdelaideSouth Australia 5000Australia
| | - Ashlee Caldwell
- Visceral Pain Research Group, Human Physiology, Centre for Neuroscience, College of Medicine and Public HealthFlinders UniversityBedford ParkSouth Australia5042Australia
- Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of AdelaideSouth Australian Health and Medical Research Institute (SAHMRI)North TerraceAdelaideSouth Australia 5000Australia
| | - Luke Grundy
- Visceral Pain Research Group, Human Physiology, Centre for Neuroscience, College of Medicine and Public HealthFlinders UniversityBedford ParkSouth Australia5042Australia
- Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of AdelaideSouth Australian Health and Medical Research Institute (SAHMRI)North TerraceAdelaideSouth Australia 5000Australia
| | - Stuart M. Brierley
- Visceral Pain Research Group, Human Physiology, Centre for Neuroscience, College of Medicine and Public HealthFlinders UniversityBedford ParkSouth Australia5042Australia
- Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of AdelaideSouth Australian Health and Medical Research Institute (SAHMRI)North TerraceAdelaideSouth Australia 5000Australia
| |
Collapse
|
5
|
Chen H, Zeng Q, Yao C, Cai Z, Wei T, Huang Z, Su J. Src family tyrosine kinase inhibitors suppress Nav1.1 expression in cultured rat spiral ganglion neurons. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2016; 202:185-93. [PMID: 26790420 DOI: 10.1007/s00359-016-1066-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 12/22/2015] [Accepted: 01/01/2016] [Indexed: 11/25/2022]
Abstract
Src family kinases regulate neuronal voltage-gated Na(+) channels, which generate action potentials. The mechanisms of action, however, remain poorly understood. The aim of the present study was to further elucidate the effects of Src family kinases on Nav1.1 mRNA and protein expression in spiral ganglion neurons. Immunofluorescence staining techniques detected Nav1.1 expression in the spiral ganglion neurons. Additionally, quantitative PCR and western blot techniques were used to analyze Nav1.1 mRNA and protein expression, respectively, in spiral ganglion neurons following exposure to Src family kinase inhibitors PP2 (1 and 10 μM) and SU6656 (0.1 and 1 μM) for different lengths of time (6 and 24 h). In the spiral ganglion neurons, Nav1.1 protein expression was detected in the somas and axons. The Src family kinase inhibitors PP2 and SU6665 significantly decreased Nav1.1 mRNA and protein expression (p < 0.05), respectively, in the spiral ganglion neurons, and changes in expression were not dependent on time or dose (p > 0.05).
Collapse
Affiliation(s)
- Huiying Chen
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Qingjiao Zeng
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Chen Yao
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Zheng Cai
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Tingjia Wei
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Zhihui Huang
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Jiping Su
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China.
| |
Collapse
|
6
|
SRC tyrosine kinases regulate neuronal differentiation of mouse embryonic stem cells via modulation of voltage-gated sodium channel activity. Neurochem Res 2015; 40:674-87. [PMID: 25577147 DOI: 10.1007/s11064-015-1514-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 12/10/2014] [Accepted: 01/07/2015] [Indexed: 12/19/2022]
Abstract
Voltage-gated Na(+) channel activity is vital for the proper function of excitable cells and has been indicated in nervous system development. Meanwhile, the Src family of non-receptor tyrosine kinases (SFKs) has been implicated in the regulation of Na(+) channel activity. The present investigation tests the hypothesis that Src family kinases influence neuronal differentiation via a chronic regulation of Na(+) channel functionality. In cultured mouse embryonic stem (ES) cells undergoing neural induction and terminal neuronal differentiation, SFKs showed distinct stage-specific expression patterns during the differentiation process. ES cell-derived neuronal cells expressed multiple voltage-gated Na(+) channel proteins (Nav) and underwent a gradual increase in Na(+) channel activity. While acute inhibition of SFKs using the Src family inhibitor PP2 suppressed the Na(+) current, chronic inhibition of SFKs during early neuronal differentiation of ES cells did not change Nav expression. However, a long-lasting block of SFK significantly altered electrophysiological properties of the Na(+) channels, shown as a right shift of the current-voltage relationship of the Na(+) channels, and reduced the amplitude of Na(+) currents recorded in drug-free solutions. Immunocytochemical staining of differentiated cells subjected to the chronic exposure of a SFK inhibitor, or the Na(+) channel blocker tetrodotoxin, showed no changes in the number of NeuN-positive cells; however, both treatments significantly hindered neurite outgrowth. These findings suggest that SFKs not only modulate the Na(+) channel activation acutely, but the tonic activity of SFKs is also critical for normal development of functional Na(+) channels and neuronal differentiation or maturation of ES cells.
Collapse
|