1
|
Torres-López M, González-Rodríguez P, Colinas O, Rho HS, Torres-Torrelo H, Castellano A, Gao L, Ortega-Sáenz P, López-Barneo J. Intracellular signalling in arterial chemoreceptors during acute hypoxia and glucose deprivation: role of ATP. J Physiol 2025; 603:1091-1107. [PMID: 39937745 DOI: 10.1113/jp287130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 01/27/2025] [Indexed: 02/14/2025] Open
Abstract
The carotid body (CB) is the main oxygen (O2) sensing organ that mediates reflex hyperventilation and increased cardiac output in response to hypoxaemia. Acute O2 sensing is an intrinsic property of CB glomus cells, which contain special mitochondria to generate signalling molecules (NADH and H2O2) that modulate membrane K+ channels in response to lowered O2 tension (hypoxia). In parallel with these membrane-associated events, glomus cells are highly sensitive to mitochondrial electron transport chain (ETC) inhibitors. It was suggested that a decrease in oxidative production of ATP is a critical event mediating hypoxia-induced cell depolarization. Here, we show that rotenone [an inhibitor of mitochondrial complex (MC) I] activates rat and mouse glomus cells but abolishes their responsiveness to hypoxia. Rotenone does not prevent further activation of the cells by cyanide (a blocker of MCIV) or glucose deprivation. Responsiveness to glucose deprivation is enhanced in O2-insenstive glomus cells with genetic disruption of MCI. These findings suggest that acute O2 sensing requires a functional MCI but that a decrease in intracellular ATP, presumably produced by the simultaneous inhibition of MCI and MCIV, is not involved in hypoxia signalling. In support of this concept, ATP levels in single glomus cells were unaltered by hypoxia, but rapidly declined following exposure of the cells to low glucose or to inhibitors of oxidative phosphorylation. These observations indicate that a reduction in intracellular ATP does not participate in physiological acute O2 sensing. However, local decreases in ATP of glycolytic origin may contribute to low glucose signalling in glomus cells. KEY POINTS: The carotid body contains oxygen-sensitive glomus cells with specialized mitochondria that generate signalling molecules (NADH and H2O2) to inhibit membrane K+ channels in response to hypoxia. Glomus cells are highly sensitive to electron transport chain (ETC) blockers. It was suggested that a decrease in intracellular ATP is the main signal inducing K+ channel inhibition and depolarization in response to hypoxia or ETC blockade. Rotenone, an inhibitor of mitochondrial complex (MC) I, activates glomus cells but abolishes their responsiveness to hypoxia. However, rotenone does not prevent further activation of glomus cells by cyanide (an MCIV blocker) or glucose deprivation. Single-cell ATP levels were unaltered by hypoxia, but decreased rapidly following exposure of glomus cells to 0 mM glucose or inhibitors of oxidative phosphorylation. A reduction in intracellular ATP does not participate in signalling acute hypoxia. However, it may contribute to hypoglycaemia signalling in glomus cells.
Collapse
Affiliation(s)
- María Torres-López
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
- Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Sevilla, Spain
| | - Patricia González-Rodríguez
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
- Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Sevilla, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)
| | - Olalla Colinas
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
- Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Sevilla, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)
| | - Hee-Sool Rho
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Hortensia Torres-Torrelo
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
- Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Sevilla, Spain
| | - Antonio Castellano
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
- Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Sevilla, Spain
| | - Lin Gao
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
- Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Sevilla, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)
| | - Patricia Ortega-Sáenz
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
- Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Sevilla, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)
| | - José López-Barneo
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
- Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Sevilla, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)
| |
Collapse
|
2
|
Remigante A, Spinelli S, Marino A, Pusch M, Morabito R, Dossena S. Oxidative Stress and Immune Response in Melanoma: Ion Channels as Targets of Therapy. Int J Mol Sci 2023; 24:ijms24010887. [PMID: 36614330 PMCID: PMC9821408 DOI: 10.3390/ijms24010887] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/28/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023] Open
Abstract
Oxidative stress and immune response play an important role in the development of several cancers, including melanoma. Ion channels are aberrantly expressed in tumour cells and regulate neoplastic transformation, malignant progression, and resistance to therapy. Ion channels are localized in the plasma membrane or other cellular membranes and are targets of oxidative stress, which is particularly elevated in melanoma. At the same time, ion channels are crucial for normal and cancer cell physiology and are subject to multiple layers of regulation, and therefore represent promising targets for therapeutic intervention. In this review, we analyzed the effects of oxidative stress on ion channels on a molecular and cellular level and in the context of melanoma progression and immune evasion. The possible role of ion channels as targets of alternative therapeutic strategies in melanoma was discussed.
Collapse
Affiliation(s)
- Alessia Remigante
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98122 Messina, Italy
| | - Sara Spinelli
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98122 Messina, Italy
| | - Angela Marino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98122 Messina, Italy
| | - Michael Pusch
- Biophysics Institute, National Research Council, 16149 Genova, Italy
| | - Rossana Morabito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98122 Messina, Italy
- Correspondence:
| | - Silvia Dossena
- Institute of Pharmacology and Toxicology, Paracelsus Medical University, 5020 Salzburg, Austria
| |
Collapse
|
3
|
Gao L, Ortega-Sáenz P, Moreno-Domínguez A, López-Barneo J. Mitochondrial Redox Signaling in O 2-Sensing Chemoreceptor Cells. Antioxid Redox Signal 2022; 37:274-289. [PMID: 35044243 DOI: 10.1089/ars.2021.0255] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Significance: Acute responses to hypoxia are essential for the survival of mammals. The carotid body (CB), the main arterial chemoreceptor, contains glomus cells with oxygen (O2)-sensitive K+ channels, which are inhibited during hypoxia to trigger adaptive cardiorespiratory reflexes. Recent Advances: In this review, recent advances in molecular mechanisms of acute O2 sensing in CB glomus cells are discussed, with a special focus on the signaling role of mitochondria through regulating cellular redox status. These advances have been achieved thanks to the use of genetically engineered redox-sensitive green fluorescent protein (roGFP) probes, which allowed us to monitor rapid changes in ROS production in real time in different subcellular compartments during hypoxia. This methodology was used in combination with conditional knockout mice models, pharmacological approaches, and transcriptomic studies. We have proposed a mitochondria-to-membrane signaling model of acute O2 sensing in which H2O2 released in the mitochondrial intermembrane space serves as a signaling molecule to inhibit K+ channels on the plasma membrane. Critical Issues: Changes in mitochondrial reactive oxygen species (ROS) production during acute hypoxia are highly compartmentalized in the submitochondrial regions. The use of redox-sensitive probes targeted to specific compartments is essential to fully understand the role of mitochondrial ROS in acute O2 sensing. Future Directions: Further studies are needed to specify the ROS and to characterize the target(s) of ROS in chemoreceptor cells during acute hypoxia. These data may also contribute to a more complete understanding of the implication of ROS in acute responses to hypoxia in O2-sensing cells in other organs. Antioxid. Redox Signal. 37, 274-289.
Collapse
Affiliation(s)
- Lin Gao
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain.,Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Seville, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Patricia Ortega-Sáenz
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain.,Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Seville, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Alejandro Moreno-Domínguez
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain.,Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Seville, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - José López-Barneo
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain.,Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Seville, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| |
Collapse
|
4
|
Abstract
Oxygen (O2) is essential for life and therefore the supply of sufficient O2 to the tissues is a major physiological challenge. In mammals, a deficit of O2 (hypoxia) triggers rapid cardiorespiratory reflexes (e.g. hyperventilation and increased heart output) that within a few seconds increase the uptake of O2 by the lungs and its distribution throughout the body. The prototypical acute O2-sensing organ is the carotid body (CB), which contains sensory glomus cells expressing O2-regulated ion channels. In response to hypoxia, glomus cells depolarize and release transmitters which activate afferent fibers terminating at the brainstem respiratory and autonomic centers. In this review, we summarize the basic properties of CB chemoreceptor cells and the essential role played by their specialized mitochondria in acute O2 sensing and signaling. We focus on recent data supporting a "mitochondria-to-membrane signaling" model of CB chemosensory transduction. The possibility that the differential expression of specific subunit isoforms and enzymes could allow mitochondria to play a generalized adaptive O2-sensing and signaling role in a wide variety of cells is also discussed.
Collapse
Affiliation(s)
- José López-Barneo
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain.,Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Seville, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Patricia Ortega-Sáenz
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain.,Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Seville, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| |
Collapse
|
5
|
Wang Y, Fu Z, Ma Z, Li N, Shang H. Bepridil, a class IV antiarrhythmic agent, can block the TREK-1 potassium channel. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1123. [PMID: 34430564 PMCID: PMC8350656 DOI: 10.21037/atm-20-7971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 05/17/2021] [Indexed: 11/24/2022]
Abstract
Background The TWIK-related potassium channel (TREK-1) can be regulated by different stimuli. However, it is not clear whether some antiarrhythmics affect the activity of TREK-1. In the present study, the effect of bepridil on the TREK-1 currents is investigated. Methods In a TREK-1 stably-expressed HEK-293 cell line (HEK-TREK-1), U251MG cells, and isolated mouse ventricular myocytes, the TREK-1 current and action potentials were recorded by the patch-clamp technique. The standard voltage protocol was a 200 ms constant potential at 20 mV, followed bya 500 ms ramp from –90 to +20 mV (HEK-TREK-1) or +80 mV (U251MG cells and myocytes) every 10 s. The currents at +20 mV or +80 mV were used for analysis. The docking study of bepridil’s binding model in the TREK-1 channel was performed using the Swissdock web service. Results In HEK-TREK-1 cells, BL1249 induced a significantly large outwardly rectifying current with similar baseline TREK-1 current characteristic, with a reversal potential (−70 mV). The concentration of half-maximal activation (EC50) of BL1249 was 3.45 µM. However, bepridil decreased the baseline TREK-1 currents, with a concentration of half-maximal inhibition (IC50) 0.59 µM and a Hill coefficient of 1.1. Also, bepridil inhibited BL1249-activated TREK-1 currents, with an IC50 4.08 µM and a Hill coefficient of 3.22. The outside-out patch-clamp confirmed bepridil inhibited BL1249-activated TREK-1 currents. In U251MG cells and myocytes, BL1249 activated outwardly rectifying endogenous TREK-1 currents, which could be inhibited by bepridil. BL1249 (10 µM) could decrease the peak value and reduce the duration of the action potential. Bepridil (10 µM) prolonged the duration of action potential of myocytes. The docking study revealed that bepridil might affect the K+ pore domain and the M4 modulator pocket. Conclusions Bepridil may be a blocker for the TREK-1K+channel at a clinically therapeutic concentration, providing a new mechanism of TREK-1 regulation and bepridil's antiarrhythmic effect.
Collapse
Affiliation(s)
- Ying Wang
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Department of Cardiology, Qilu Hospital, Shandong University, Jinan, China
| | - Zhijie Fu
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Department of Cardiology, Qilu Hospital, Shandong University, Jinan, China.,Department of Otorhinolaryngology, the First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Zhiyong Ma
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Department of Cardiology, Qilu Hospital, Shandong University, Jinan, China
| | - Na Li
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Department of Cardiology, Qilu Hospital, Shandong University, Jinan, China
| | - Hong Shang
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Department of Geriatrics, Qilu Hospital, Shandong University, Jinan, China
| |
Collapse
|
6
|
TRPM2 Oxidation Activates Two Distinct Potassium Channels in Melanoma Cells through Intracellular Calcium Increase. Int J Mol Sci 2021; 22:ijms22168359. [PMID: 34445066 PMCID: PMC8393965 DOI: 10.3390/ijms22168359] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/29/2021] [Accepted: 08/02/2021] [Indexed: 12/13/2022] Open
Abstract
Tumor microenvironments are often characterized by an increase in oxidative stress levels. We studied the response to oxidative stimulation in human primary (IGR39) or metastatic (IGR37) cell lines obtained from the same patient, performing patch-clamp recordings, intracellular calcium ([Ca2+]i) imaging, and RT-qPCR gene expression analysis. In IGR39 cells, chloramine-T (Chl-T) activated large K+ currents (KROS) that were partially sensitive to tetraethylammonium (TEA). A large fraction of KROS was inhibited by paxilline—a specific inhibitor of large-conductance Ca2+-activated BK channels. The TEA-insensitive component was inhibited by senicapoc—a specific inhibitor of the Ca2+-activated KCa3.1 channel. Both BK and KCa3.1 activation were mediated by an increase in [Ca2+]i induced by Chl-T. Both KROS and [Ca2+]i increase were inhibited by ACA and clotrimazole—two different inhibitors of the calcium-permeable TRPM2 channel. Surprisingly, IGR37 cells did not exhibit current increase upon the application of Chl-T. Expression analysis confirmed that the genes encoding BK, KCa3.1, and TRPM2 are much more expressed in IGR39 than in IGR37. The potassium currents and [Ca2+]i increase observed in response to the oxidizing agent strongly suggest that these three molecular entities play a major role in the progression of melanoma. Pharmacological targeting of either of these ion channels could be a new strategy to reduce the metastatic potential of melanoma cells, and could complement classical radio- or chemotherapeutic treatments.
Collapse
|
7
|
Iturriaga R, Alcayaga J, Chapleau MW, Somers VK. Carotid body chemoreceptors: physiology, pathology, and implications for health and disease. Physiol Rev 2021; 101:1177-1235. [PMID: 33570461 PMCID: PMC8526340 DOI: 10.1152/physrev.00039.2019] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The carotid body (CB) is the main peripheral chemoreceptor for arterial respiratory gases O2 and CO2 and pH, eliciting reflex ventilatory, cardiovascular, and humoral responses to maintain homeostasis. This review examines the fundamental biology underlying CB chemoreceptor function, its contribution to integrated physiological responses, and its role in maintaining health and potentiating disease. Emphasis is placed on 1) transduction mechanisms in chemoreceptor (type I) cells, highlighting the role played by the hypoxic inhibition of O2-dependent K+ channels and mitochondrial oxidative metabolism, and their modification by intracellular molecules and other ion channels; 2) synaptic mechanisms linking type I cells and petrosal nerve terminals, focusing on the role played by the main proposed transmitters and modulatory gases, and the participation of glial cells in regulation of the chemosensory process; 3) integrated reflex responses to CB activation, emphasizing that the responses differ dramatically depending on the nature of the physiological, pathological, or environmental challenges, and the interactions of the chemoreceptor reflex with other reflexes in optimizing oxygen delivery to the tissues; and 4) the contribution of enhanced CB chemosensory discharge to autonomic and cardiorespiratory pathophysiology in obstructive sleep apnea, congestive heart failure, resistant hypertension, and metabolic diseases and how modulation of enhanced CB reactivity in disease conditions may attenuate pathophysiology.
Collapse
Affiliation(s)
- Rodrigo Iturriaga
- Laboratorio de Neurobiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile, and Centro de Excelencia en Biomedicina de Magallanes, Universidad de Magallanes, Punta Arenas, Chile
| | - Julio Alcayaga
- Laboratorio de Fisiología Celular, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Mark W Chapleau
- Department of Internal Medicine, University of Iowa and Department of Veterans Affairs Medical Center, Iowa City, Iowa
| | - Virend K Somers
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
8
|
Langthaler S, Rienmüller T, Scheruebel S, Pelzmann B, Shrestha N, Zorn-Pauly K, Schreibmayer W, Koff A, Baumgartner C. A549 in-silico 1.0: A first computational model to simulate cell cycle dependent ion current modulation in the human lung adenocarcinoma. PLoS Comput Biol 2021; 17:e1009091. [PMID: 34157016 PMCID: PMC8219159 DOI: 10.1371/journal.pcbi.1009091] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 05/18/2021] [Indexed: 11/18/2022] Open
Abstract
Lung cancer is still a leading cause of death worldwide. In recent years, knowledge has been obtained of the mechanisms modulating ion channel kinetics and thus of cell bioelectric properties, which is promising for oncological biomarkers and targets. The complex interplay of channel expression and its consequences on malignant processes, however, is still insufficiently understood. We here introduce the first approach of an in-silico whole-cell ion current model of a cancer cell, in particular of the A549 human lung adenocarcinoma, including the main functionally expressed ion channels in the plasma membrane as so far known. This hidden Markov-based model represents the electrophysiology behind proliferation of the A549 cell, describing its rhythmic oscillation of the membrane potential able to trigger the transition between cell cycle phases, and it predicts membrane potential changes over the cell cycle provoked by targeted ion channel modulation. This first A549 in-silico cell model opens up a deeper insight and understanding of possible ion channel interactions in tumor development and progression, and is a valuable tool for simulating altered ion channel function in lung cancer electrophysiology.
Collapse
Affiliation(s)
- Sonja Langthaler
- Institute of Health Care Engineering with European Testing Center for Medical Devices, Graz University of Technology, Graz, Austria
| | - Theresa Rienmüller
- Institute of Health Care Engineering with European Testing Center for Medical Devices, Graz University of Technology, Graz, Austria
| | - Susanne Scheruebel
- Research Unit on Ion Channels and Cancer Biology, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Graz, Austria
| | - Brigitte Pelzmann
- Research Unit on Ion Channels and Cancer Biology, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Graz, Austria
| | - Niroj Shrestha
- Research Unit on Ion Channels and Cancer Biology, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Graz, Austria
| | - Klaus Zorn-Pauly
- Research Unit on Ion Channels and Cancer Biology, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Graz, Austria
| | - Wolfgang Schreibmayer
- Research Unit on Ion Channels and Cancer Biology, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Graz, Austria
| | - Andrew Koff
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York City, New York, United States of America
| | - Christian Baumgartner
- Institute of Health Care Engineering with European Testing Center for Medical Devices, Graz University of Technology, Graz, Austria
| |
Collapse
|
9
|
Rakoczy RJ, Wyatt CN. Acute oxygen sensing by the carotid body: a rattlebag of molecular mechanisms. J Physiol 2018; 596:2969-2976. [PMID: 29214644 PMCID: PMC6068253 DOI: 10.1113/jp274351] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 11/27/2017] [Indexed: 12/14/2022] Open
Abstract
The molecular underpinnings of the oxygen sensitivity of the carotid body Type I cells are becoming better defined as research begins to identify potential interactions between previously separate theories. Nevertheless, the field of oxygen chemoreception still presents the general observer with a bewildering array of potential signalling pathways by which a fall in oxygen levels might initiate Type I cell activation. The purpose of this brief review is to address five of the current oxygen sensing hypotheses: the lactate-Olfr 78 hypothesis of oxygen chemotransduction; the role mitochondrial ATP and metabolism may have in chemotransduction; the AMP-activated protein kinase hypothesis and its current role in oxygen sensing by the carotid body; reactive oxygen species as key transducers in the oxygen sensing cascade; and the mechanisms by which H2 S, reactive oxygen species and haem oxygenase may integrate to provide a rapid oxygen sensing transduction system. Over the previous 15 years several lines of research into acute hypoxic chemotransduction mechanisms have focused on the integration of mitochondrial and membrane signalling. This review places an emphasis on the subplasmalemmal-mitochondrial microenvironment in Type I cells and how theories of acute oxygen sensing are increasingly dependent on functional interaction within this microenvironment.
Collapse
Affiliation(s)
- Ryan J. Rakoczy
- Department of Neuroscience, Cell Biology, and PhysiologyWright State University3640 Colonel Glenn HwyDaytonOH45435USA
| | - Christopher N. Wyatt
- Department of Neuroscience, Cell Biology, and PhysiologyWright State University3640 Colonel Glenn HwyDaytonOH45435USA
| |
Collapse
|
10
|
Chang AJ. Acute oxygen sensing by the carotid body: from mitochondria to plasma membrane. J Appl Physiol (1985) 2017; 123:1335-1343. [PMID: 28819004 DOI: 10.1152/japplphysiol.00398.2017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 08/11/2017] [Accepted: 08/12/2017] [Indexed: 12/12/2022] Open
Abstract
Maintaining oxygen homeostasis is crucial to the survival of animals. Mammals respond acutely to changes in blood oxygen levels by modulating cardiopulmonary function. The major sensor of blood oxygen that regulates breathing is the carotid body (CB), a small chemosensory organ located at the carotid bifurcation. When arterial blood oxygen levels drop in hypoxia, neuroendocrine cells in the CB called glomus cells are activated to signal to afferent nerves that project to the brain stem. The mechanism by which hypoxia stimulates CB sensory activity has been the subject of many studies over the past 90 years. Two discrete models emerged that argue for the seat of oxygen sensing to lie either in the plasma membrane or mitochondria of CB cells. Recent studies are bridging the gap between these models by identifying hypoxic signals generated by changes in mitochondrial function in the CB that can be sensed by plasma membrane proteins on glomus cells. The CB is important for physiological adaptation to hypoxia, and its dysfunction contributes to sympathetic hyperactivity in common conditions such as sleep-disordered breathing, chronic heart failure, and insulin resistance. Understanding the basic mechanism of oxygen sensing in the CB could allow us to develop strategies to target this organ for therapy. In this short review, I will describe two historical models of CB oxygen sensing and new findings that are integrating these models.
Collapse
Affiliation(s)
- Andy J Chang
- Department of Physiology and Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California
| |
Collapse
|
11
|
Murtaza G, Mermer P, Goldenberg A, Pfeil U, Paddenberg R, Weissmann N, Lochnit G, Kummer W. TASK-1 potassium channel is not critically involved in mediating hypoxic pulmonary vasoconstriction of murine intra-pulmonary arteries. PLoS One 2017; 12:e0174071. [PMID: 28301582 PMCID: PMC5354433 DOI: 10.1371/journal.pone.0174071] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 03/02/2017] [Indexed: 11/26/2022] Open
Abstract
The two-pore domain potassium channel KCNK3 (TASK-1) is expressed in rat and human pulmonary artery smooth muscle cells. There, it is associated with hypoxia-induced signalling, and its dysfunction is linked to pathogenesis of human pulmonary hypertension. We here aimed to determine its role in hypoxic pulmonary vasoconstriction (HPV) in the mouse, and hence the suitability of this model for further mechanistic investigations, using appropriate inhibitors and TASK-1 knockout (KO) mice. RT-PCR revealed expression of TASK-1 mRNA in murine lungs and pre-acinar pulmonary arteries. Protein localization by immunohistochemistry and western blot was unreliable since all antibodies produced labelling also in TASK-1 KO organs/tissues. HPV was investigated by videomorphometric analysis of intra- (inner diameter: 25–40 μm) and pre-acinar pulmonary arteries (inner diameter: 41–60 μm). HPV persisted in TASK-1 KO intra-acinar arteries. Pre-acinar arteries developed initial HPV, but the response faded earlier (after 30 min) in KO vessels. This HPV pattern was grossly mimicked by the TASK-1 inhibitor anandamide in wild-type vessels. Hypoxia-provoked rise in pulmonary arterial pressure (PAP) in isolated ventilated lungs was affected neither by TASK-1 gene deficiency nor by the TASK-1 inhibitor A293. TASK-1 is dispensable for initiating HPV of murine intra-pulmonary arteries, but participates in sustained HPV specifically in pre-acinar arteries. This does not translate into abnormal rise in PAP. While there is compelling evidence that TASK-1 is involved in the pathogenesis of pulmonary arterial hypertension in humans, the mouse does not appear to serve as a suitable model to study the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Ghulam Murtaza
- Institute of Anatomy and Cell Biology, Justus-Liebig-University, Giessen, Germany
- * E-mail:
| | - Petra Mermer
- Institute of Anatomy and Cell Biology, Justus-Liebig-University, Giessen, Germany
| | - Anna Goldenberg
- Institute of Anatomy and Cell Biology, Justus-Liebig-University, Giessen, Germany
| | - Uwe Pfeil
- Institute of Anatomy and Cell Biology, Justus-Liebig-University, Giessen, Germany
| | - Renate Paddenberg
- Institute of Anatomy and Cell Biology, Justus-Liebig-University, Giessen, Germany
| | - Nobert Weissmann
- Universities of Giessen and Marburg Lung Center, Justus-Liebig-University, Giessen, Germany
- German Center for Lung Research, Excellence Cluster Cardio-Pulmonary System, Justus-Liebig-University, Giessen, Germany
| | - Guenter Lochnit
- Institute of Biochemistry, Faculty of Medicine, Justus-Liebig University, Giessen, Germany
| | - Wolfgang Kummer
- Institute of Anatomy and Cell Biology, Justus-Liebig-University, Giessen, Germany
- German Center for Lung Research, Excellence Cluster Cardio-Pulmonary System, Justus-Liebig-University, Giessen, Germany
| |
Collapse
|
12
|
Moderate inhibition of mitochondrial function augments carotid body hypoxic sensitivity. Pflugers Arch 2016; 468:143-155. [PMID: 26490460 DOI: 10.1007/s00424-015-1745-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 10/01/2015] [Accepted: 10/06/2015] [Indexed: 12/21/2022]
Abstract
A functional role for the mitochondria in acute O2 sensing in the carotid body (CB) remains undetermined. Whilst total inhibition of mitochondrial activity causes intense CB stimulation, it is unclear whether this response can be moderated such that graded impairment of oxidative phosphorylation might be a mechanism that sets and modifies the O2 sensitivity of the whole organ. We assessed NADH autofluorescence and [Ca2+]i in freshly dissociated CB type I cells and sensory chemoafferent discharge frequency in an intact CB preparation, in the presence of varying concentrations of nitrite (NO2 −), a mitochondrial nitric oxide (NO) donor and a competitive inhibitor of mitochondrial complex IV. NO2 − increased CB type I cell NADH in a manner that was dose-dependent and rapidly reversible. Similar concentrations of NO2 − raised type I cell [Ca2+]i via L-type channels in a PO2-dependent manner and increased chemoafferent discharge frequency. Moderate inhibition of the CB mitochondria by NO2 − augmented chemoafferent discharge frequency during graded hypoxia, consistent with a heightened CB O2 sensitivity. Furthermore, NO2 − also exaggerated chemoafferent excitation during hypercapnia signifying an increase in CB CO2 sensitivity. These data show that NO2 − can moderate the hypoxia sensitivity of the CB and thus suggest that O2 sensitivity could be set and modified in this organ by interactions between NO and mitochondrial complex IV.
Collapse
|
13
|
Fernández-Agüera MC, Gao L, González-Rodríguez P, Pintado CO, Arias-Mayenco I, García-Flores P, García-Pergañeda A, Pascual A, Ortega-Sáenz P, López-Barneo J. Oxygen Sensing by Arterial Chemoreceptors Depends on Mitochondrial Complex I Signaling. Cell Metab 2015; 22:825-37. [PMID: 26437605 DOI: 10.1016/j.cmet.2015.09.004] [Citation(s) in RCA: 156] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Revised: 07/17/2015] [Accepted: 09/08/2015] [Indexed: 12/30/2022]
Abstract
O2 sensing is essential for mammalian homeostasis. Peripheral chemoreceptors such as the carotid body (CB) contain cells with O2-sensitive K(+) channels, which are inhibited by hypoxia to trigger fast adaptive cardiorespiratory reflexes. How variations of O2 tension (PO2) are detected and the mechanisms whereby these changes are conveyed to membrane ion channels have remained elusive. We have studied acute O2 sensing in conditional knockout mice lacking mitochondrial complex I (MCI) genes. We inactivated Ndufs2, which encodes a protein that participates in ubiquinone binding. Ndufs2-null mice lose the hyperventilatory response to hypoxia, although they respond to hypercapnia. Ndufs2-deficient CB cells have normal functions and ATP content but are insensitive to changes in PO2. Our data suggest that chemoreceptor cells have a specialized succinate-dependent metabolism that induces an MCI state during hypoxia, characterized by the production of reactive oxygen species and accumulation of reduced pyridine nucleotides, which signal neighboring K(+) channels.
Collapse
Affiliation(s)
- M Carmen Fernández-Agüera
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Campus Hospital Universitario Virgen del Rocío, Avenida Manuel Siurot, s/n, 41013 Seville, Spain; Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Avenida Sánchez Pizjuan, 4, 41009 Seville, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Campus Hospital Universitario Virgen del Rocío, Avenida Manuel Siurot, s/n, 41013 Seville, Spain
| | - Lin Gao
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Campus Hospital Universitario Virgen del Rocío, Avenida Manuel Siurot, s/n, 41013 Seville, Spain; Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Avenida Sánchez Pizjuan, 4, 41009 Seville, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Campus Hospital Universitario Virgen del Rocío, Avenida Manuel Siurot, s/n, 41013 Seville, Spain
| | - Patricia González-Rodríguez
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Campus Hospital Universitario Virgen del Rocío, Avenida Manuel Siurot, s/n, 41013 Seville, Spain; Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Avenida Sánchez Pizjuan, 4, 41009 Seville, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Campus Hospital Universitario Virgen del Rocío, Avenida Manuel Siurot, s/n, 41013 Seville, Spain
| | - C Oscar Pintado
- Centro de Producción y Experimentación Animal, Universidad de Sevilla, Calle San Fernando, 4, 41004 Seville, Spain
| | - Ignacio Arias-Mayenco
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Campus Hospital Universitario Virgen del Rocío, Avenida Manuel Siurot, s/n, 41013 Seville, Spain; Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Avenida Sánchez Pizjuan, 4, 41009 Seville, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Campus Hospital Universitario Virgen del Rocío, Avenida Manuel Siurot, s/n, 41013 Seville, Spain
| | - Paula García-Flores
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Campus Hospital Universitario Virgen del Rocío, Avenida Manuel Siurot, s/n, 41013 Seville, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Campus Hospital Universitario Virgen del Rocío, Avenida Manuel Siurot, s/n, 41013 Seville, Spain
| | - Antonio García-Pergañeda
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Campus Hospital Universitario Virgen del Rocío, Avenida Manuel Siurot, s/n, 41013 Seville, Spain
| | - Alberto Pascual
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Campus Hospital Universitario Virgen del Rocío, Avenida Manuel Siurot, s/n, 41013 Seville, Spain
| | - Patricia Ortega-Sáenz
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Campus Hospital Universitario Virgen del Rocío, Avenida Manuel Siurot, s/n, 41013 Seville, Spain; Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Avenida Sánchez Pizjuan, 4, 41009 Seville, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Campus Hospital Universitario Virgen del Rocío, Avenida Manuel Siurot, s/n, 41013 Seville, Spain
| | - José López-Barneo
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Campus Hospital Universitario Virgen del Rocío, Avenida Manuel Siurot, s/n, 41013 Seville, Spain; Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Avenida Sánchez Pizjuan, 4, 41009 Seville, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Campus Hospital Universitario Virgen del Rocío, Avenida Manuel Siurot, s/n, 41013 Seville, Spain.
| |
Collapse
|
14
|
Veit F, Pak O, Brandes RP, Weissmann N. Hypoxia-dependent reactive oxygen species signaling in the pulmonary circulation: focus on ion channels. Antioxid Redox Signal 2015; 22:537-52. [PMID: 25545236 PMCID: PMC4322788 DOI: 10.1089/ars.2014.6234] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
SIGNIFICANCE An acute lack of oxygen in the lung causes hypoxic pulmonary vasoconstriction, which optimizes gas exchange. In contrast, chronic hypoxia triggers a pathological vascular remodeling causing pulmonary hypertension, and ischemia can cause vascular damage culminating in lung edema. RECENT ADVANCES Regulation of ion channel expression and gating by cellular redox state is a widely accepted mechanism; however, it remains a matter of debate whether an increase or a decrease in reactive oxygen species (ROS) occurs under hypoxic conditions. Ion channel redox regulation has been described in detail for some ion channels, such as Kv channels or TRPC6. However, in general, information on ion channel redox regulation remains scant. CRITICAL ISSUES AND FUTURE DIRECTIONS In addition to the debate of increased versus decreased ROS production during hypoxia, we aim here at describing and deciphering why different oxidants, under different conditions, can cause both activation and inhibition of channel activity. While the upstream pathways affecting channel gating are often well described, we need a better understanding of redox protein modifications to be able to determine the complexity of ion channel redox regulation. Against this background, we summarize the current knowledge on hypoxia-induced ROS-mediated ion channel signaling in the pulmonary circulation.
Collapse
Affiliation(s)
- Florian Veit
- 1 Excellence Cluster Cardiopulmonary System (ECCPS), Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL) , Giessen, Germany
| | | | | | | |
Collapse
|
15
|
TASK channels in arterial chemoreceptors and their role in oxygen and acid sensing. Pflugers Arch 2015; 467:1013-25. [PMID: 25623783 PMCID: PMC4428840 DOI: 10.1007/s00424-015-1689-1] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 01/06/2015] [Accepted: 01/07/2015] [Indexed: 01/05/2023]
Abstract
Arterial chemoreceptors play a vital role in cardiorespiratory control by providing the brain with information regarding blood oxygen, carbon dioxide, and pH. The main chemoreceptor, the carotid body, is composed of sensory (type 1) cells which respond to hypoxia or acidosis with a depolarising receptor potential which in turn activates voltage-gated calcium entry, neurosecretion and excitation of adjacent afferent nerves. The receptor potential is generated by inhibition of Twik-related acid-sensitive K(+) channel 1 and 3 (TASK1/TASK3) heterodimeric channels which normally maintain the cells' resting membrane potential. These channels are thought to be directly inhibited by acidosis. Oxygen sensitivity, however, probably derives from a metabolic signalling pathway. The carotid body, isolated type 1 cells, and all forms of TASK channel found in the type 1 cell, are highly sensitive to inhibitors of mitochondrial metabolism. Moreover, type1 cell TASK channels are activated by millimolar levels of MgATP. In addition to their role in the transduction of chemostimuli, type 1 cell TASK channels have also been implicated in the modulation of chemoreceptor function by a number of neurocrine/paracrine signalling molecules including adenosine, GABA, and serotonin. They may also be instrumental in mediating the depression of the acute hypoxic ventilatory response that occurs with some general anaesthetics. Modulation of TASK channel activity is therefore a key mechanism by which the excitability of chemoreceptors can be controlled. This is not only of physiological importance but may also offer a therapeutic strategy for the treatment of cardiorespiratory disorders that are associated with chemoreceptor dysfunction.
Collapse
|
16
|
Kim D, Kang D, Martin EA, Kim I, Carroll JL. Effects of modulators of AMP-activated protein kinase on TASK-1/3 and intracellular Ca(2+) concentration in rat carotid body glomus cells. Respir Physiol Neurobiol 2014; 195:19-26. [PMID: 24530802 DOI: 10.1016/j.resp.2014.01.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 01/29/2014] [Accepted: 01/30/2014] [Indexed: 01/11/2023]
Abstract
Acute hypoxia depolarizes carotid body chemoreceptor (glomus) cells and elevates intracellular Ca(2+) concentration ([Ca(2+)]i). Recent studies suggest that AMP-activated protein kinase (AMPK) mediates these effects of hypoxia by inhibiting the background K(+) channels such as TASK. Here we studied the effects of modulators of AMPK on TASK activity in cell-attached patches. Activators of AMPK (1mM AICAR and 0.1-0.5mM A769662) did not inhibit TASK activity or cause depolarization during acute (10min) or prolonged (2-3h) exposure. Hypoxia inhibited TASK activity by ∼70% in cells pretreated with AICAR or A769662. Both AICAR and A769662 (15-40min) failed to increase [Ca(2+)]i in glomus cells. Compound C (40μM), an inhibitor of AMPK, showed no effect on hypoxia-induced inhibition of TASK. AICAR and A769662 phosphorylated AMPKα in PC12 cells, and Compound C blocked the phosphorylation. Our results suggest that AMPK does not affect TASK activity and is not involved in hypoxia-induced elevation of intracellular [Ca(2+)] in isolated rat carotid body glomus cells.
Collapse
Affiliation(s)
- Donghee Kim
- Department of Physiology and Biophysics, Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064, United States.
| | - Dawon Kang
- Department of Physiology and Biophysics, Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064, United States; Department of Physiology and Institute of Health Sciences, Gyeongsang National University School of Medicine, 90 Chilam, Jinju 660-751, Republic of Korea
| | - Elizabeth A Martin
- Department of Physiology and Biophysics, Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064, United States
| | - Insook Kim
- Department of Pediatrics, University of Arkansas for Medical Sciences, Arkansas Children's Hospital Research Institute, 1 Children's Way, Little Rock, AR 72202, United States
| | - John L Carroll
- Department of Pediatrics, University of Arkansas for Medical Sciences, Arkansas Children's Hospital Research Institute, 1 Children's Way, Little Rock, AR 72202, United States.
| |
Collapse
|
17
|
Cid LP, Roa-Rojas HA, Niemeyer MI, González W, Araki M, Araki K, Sepúlveda FV. TASK-2: a K2P K(+) channel with complex regulation and diverse physiological functions. Front Physiol 2013; 4:198. [PMID: 23908634 PMCID: PMC3725403 DOI: 10.3389/fphys.2013.00198] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 07/10/2013] [Indexed: 11/13/2022] Open
Abstract
TASK-2 (K2P5.1) is a two-pore domain K(+) channel belonging to the TALK subgroup of the K2P family of proteins. TASK-2 has been shown to be activated by extra- and intracellular alkalinization. Extra- and intracellular pH-sensors reside at arginine 224 and lysine 245 and might affect separate selectivity filter and inner gates respectively. TASK-2 is modulated by changes in cell volume and a regulation by direct G-protein interaction has also been proposed. Activation by extracellular alkalinization has been associated with a role of TASK-2 in kidney proximal tubule bicarbonate reabsorption, whilst intracellular pH-sensitivity might be the mechanism for its participation in central chemosensitive neurons. In addition to these functions TASK-2 has been proposed to play a part in apoptotic volume decrease in kidney cells and in volume regulation of glial cells and T-lymphocytes. TASK-2 is present in chondrocytes of hyaline cartilage, where it is proposed to play a central role in stabilizing the membrane potential. Additional sites of expression are dorsal root ganglion neurons, endocrine and exocrine pancreas and intestinal smooth muscle cells. TASK-2 has been associated with the regulation of proliferation of breast cancer cells and could become target for breast cancer therapeutics. Further work in native tissues and cells together with genetic modification will no doubt reveal the details of TASK-2 functions that we are only starting to suspect.
Collapse
Affiliation(s)
- L Pablo Cid
- Centro de Estudios Científicos Valdivia, Chile
| | | | | | | | | | | | | |
Collapse
|