1
|
Dilmen E, Olde Hanhof CJA, Yousef Yengej FA, Ammerlaan CME, Rookmaaker MB, Orhon I, Jansen J, Verhaar MC, Hoenderop JG. A semi-permeable insert culture model for the distal part of the nephron with human and mouse tubuloid epithelial cells. Exp Cell Res 2025; 444:114342. [PMID: 39566879 DOI: 10.1016/j.yexcr.2024.114342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 11/14/2024] [Accepted: 11/16/2024] [Indexed: 11/22/2024]
Abstract
Tubuloids are advanced in vitro models obtained from adult human or mouse kidney cells with great potential for modelling kidney function in health and disease. Here, we developed a polarized human and mouse tubuloid epithelium on cell culture inserts, namely Transwell™ filters, as a model of the distal nephron with an accessible apical and basolateral side that allow for characterization of epithelial properties such as leak-tightness and epithelial resistance. Tubuloids formed a leak-tight and confluent epithelium on Transwells™ and the human tubuloids were differentiated towards the distal part of the nephron. Differentiation induced a significant upregulation of mRNA and protein expression of crucial segment transporters/channels NKCC2 (thick ascending limb of the loop of Henle), NCC (distal convoluted tubule), AQP2 (connecting tubule and collecting duct) and Na+/K+-ATPase (all segments) in a polarized fashion. In conclusion, this study illustrates the potential of human and mouse tubuloid epithelium on Transwells™ for studies of tubuloid epithelium formation and tubuloid differentiation towards the distal nephron. This approach holds great promise for assisting future research towards kidney (patho)physiology and transport function.
Collapse
Affiliation(s)
- E Dilmen
- Department of Medical BioSciences, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, the Netherlands
| | - C J A Olde Hanhof
- Department of Medical BioSciences, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, the Netherlands
| | - F A Yousef Yengej
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, Utrecht, the Netherlands; Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, the Netherlands
| | - C M E Ammerlaan
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, Utrecht, the Netherlands; Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, the Netherlands
| | - M B Rookmaaker
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, the Netherlands
| | - I Orhon
- Department of Medical BioSciences, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, the Netherlands
| | - J Jansen
- Department of Internal Medicine, Nephrology, and Transplantation, Erasmus Medical Center, Rotterdam, the Netherlands; Department for Renal and Hypertensive Diseases, Rheumatological and Immunological Diseases, Uniklinik RWTH Aachen, Aachen, Germany
| | - M C Verhaar
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, the Netherlands
| | - J G Hoenderop
- Department of Medical BioSciences, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, the Netherlands.
| |
Collapse
|
2
|
Roskosch J, Huynh-Do U, Rudloff S. Lectin-mediated, time-efficient, and high-yield sorting of different morphologically intact nephron segments. Pflugers Arch 2024; 476:379-393. [PMID: 38091061 PMCID: PMC10847228 DOI: 10.1007/s00424-023-02894-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 11/20/2023] [Accepted: 11/24/2023] [Indexed: 02/08/2024]
Abstract
The kidney is a highly complex organ equipped with a multitude of miniscule filter-tubule units called nephrons. Each nephron can be subdivided into multiple segments, each with its own morphology and physiological function. To date, conventional manual approaches to isolate specific nephron segments are very laborious, time-consuming, often limited to only a specific segment, and typically have low yield. Here, we describe a novel, unconventional method that is superior in many aspects to previous protocols by combining low-cost fluorophore-conjugated lectins or agglutinins (Flaggs) with flow sorting. This allows the simultaneous separation of different nephron segments with preserved 3D morphology from mouse or human samples in under 3 h. Using a 200-µm nozzle and 5 psi, glomeruli, proximal, or distal convoluted tubules are sorted with Cy3-labeled Sambucus Nigra agglutinin (SNA-Cy3), Fluorescein-labeled Lotus Tetragonolobus lectin (LTL-FITC), or Pacific Blue-labeled soybean agglutinin (SBA-PB), respectively. Connecting tubules and collecting ducts are sorted by double-positive SBA-PB and SNA-Cy3 signals, while thick ascending limb segments are characterized by the absence of any Flaggs labeling. From two mouse kidneys, this yields 37-521 ng protein/s or 0.71-16.71 ng RNA/s, depending on the specific nephron segment. The purity of sorted segments, as assessed by mRNA expression level profiling of 15 genes, is very high with a 96.1-fold median enrichment across all genes and sorted segments. In summary, our method represents a simple, straightforward, cost-effective, and widely applicable tool yielding high amounts of pure and morphologically largely intact renal tubule materials with the potential to propel nephron segment-specific research.
Collapse
Affiliation(s)
- Jessica Roskosch
- Division of Nephrology and Hypertension, University of Bern and University Hospital Bern, Freiburgstrasse 15, CH-3010, Bern, Switzerland
| | - Uyen Huynh-Do
- Division of Nephrology and Hypertension, University of Bern and University Hospital Bern, Freiburgstrasse 15, CH-3010, Bern, Switzerland
| | - Stefan Rudloff
- Division of Nephrology and Hypertension, University of Bern and University Hospital Bern, Freiburgstrasse 15, CH-3010, Bern, Switzerland.
| |
Collapse
|
3
|
Schiano G, Lake J, Mariniello M, Schaeffer C, Harvent M, Rampoldi L, Olinger E, Devuyst O. Allelic effects on uromodulin aggregates drive autosomal dominant tubulointerstitial kidney disease. EMBO Mol Med 2023; 15:e18242. [PMID: 37885358 PMCID: PMC10701617 DOI: 10.15252/emmm.202318242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/29/2023] [Accepted: 10/05/2023] [Indexed: 10/28/2023] Open
Abstract
Missense mutations in the uromodulin (UMOD) gene cause autosomal dominant tubulointerstitial kidney disease (ADTKD), one of the most common monogenic kidney diseases. The unknown impact of the allelic and gene dosage effects and fate of mutant uromodulin leaves open the gap between postulated gain-of-function mutations, end-organ damage and disease progression in ADTKD. Based on two prevalent missense UMOD mutations with divergent disease progression, we generated UmodC171Y and UmodR186S knock-in mice that showed strong allelic and gene dosage effects on uromodulin aggregates and activation of ER stress and unfolded protein and immune responses, leading to variable kidney damage. Deletion of the wild-type Umod allele in heterozygous UmodR186S mice increased the formation of uromodulin aggregates and ER stress. Studies in kidney tubular cells confirmed differences in uromodulin aggregates, with activation of mutation-specific quality control and clearance mechanisms. Enhancement of autophagy by starvation and mTORC1 inhibition decreased uromodulin aggregates. These studies substantiate the role of toxic aggregates as driving progression of ADTKD-UMOD, relevant for therapeutic strategies to improve clearance of mutant uromodulin.
Collapse
Affiliation(s)
- Guglielmo Schiano
- Mechanisms of Inherited Kidney Disorders, Institute of PhysiologyUniversity of ZurichZurichSwitzerland
| | - Jennifer Lake
- Mechanisms of Inherited Kidney Disorders, Institute of PhysiologyUniversity of ZurichZurichSwitzerland
| | - Marta Mariniello
- Mechanisms of Inherited Kidney Disorders, Institute of PhysiologyUniversity of ZurichZurichSwitzerland
| | - Céline Schaeffer
- Molecular Genetics of Renal Disorders, Division of Genetics and Cell BiologyIRCCS San Raffaele Scientific InstituteMilanItaly
| | - Marianne Harvent
- Mechanisms of Inherited Kidney Disorders, Institute of PhysiologyUniversity of ZurichZurichSwitzerland
- Institut de Recherche Expérimentale et CliniqueUCLouvainBrusselsBelgium
| | - Luca Rampoldi
- Molecular Genetics of Renal Disorders, Division of Genetics and Cell BiologyIRCCS San Raffaele Scientific InstituteMilanItaly
| | - Eric Olinger
- Mechanisms of Inherited Kidney Disorders, Institute of PhysiologyUniversity of ZurichZurichSwitzerland
- Translational and Clinical Research InstituteNewcastle UniversityNewcastle upon TyneUK
- Center for Human GeneticsCliniques Universitaires Saint‐Luc, UCLouvainBrusselsBelgium
| | - Olivier Devuyst
- Mechanisms of Inherited Kidney Disorders, Institute of PhysiologyUniversity of ZurichZurichSwitzerland
- Institut de Recherche Expérimentale et CliniqueUCLouvainBrusselsBelgium
| |
Collapse
|
4
|
Joseph CB, Mariniello M, Yoshifuji A, Schiano G, Lake J, Marten J, Richmond A, Huffman JE, Campbell A, Harris SE, Troyanov S, Cocca M, Robino A, Thériault S, Eckardt KU, Wuttke M, Cheng Y, Corre T, Kolcic I, Black C, Bruat V, Concas MP, Sala C, Aeschbacher S, Schaefer F, Bergmann S, Campbell H, Olden M, Polasek O, Porteous DJ, Deary IJ, Madore F, Awadalla P, Girotto G, Ulivi S, Conen D, Wuehl E, Olinger E, Wilson JF, Bochud M, Köttgen A, Hayward C, Devuyst O. Meta-GWAS Reveals Novel Genetic Variants Associated with Urinary Excretion of Uromodulin. J Am Soc Nephrol 2022; 33:511-529. [PMID: 35228297 PMCID: PMC8975067 DOI: 10.1681/asn.2021040491] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 12/27/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Uromodulin, the most abundant protein excreted in normal urine, plays major roles in kidney physiology and disease. The mechanisms regulating the urinary excretion of uromodulin remain essentially unknown. METHODS We conducted a meta-analysis of genome-wide association studies for raw (uUMOD) and indexed to creatinine (uUCR) urinary levels of uromodulin in 29,315 individuals of European ancestry from 13 cohorts. We tested the distribution of candidate genes in kidney segments and investigated the effects of keratin-40 (KRT40) on uromodulin processing. RESULTS Two genome-wide significant signals were identified for uUMOD: a novel locus (P 1.24E-08) over the KRT40 gene coding for KRT40, a type 1 keratin expressed in the kidney, and the UMOD-PDILT locus (P 2.17E-88), with two independent sets of single nucleotide polymorphisms spread over UMOD and PDILT. Two genome-wide significant signals for uUCR were identified at the UMOD-PDILT locus and at the novel WDR72 locus previously associated with kidney function. The effect sizes for rs8067385, the index single nucleotide polymorphism in the KRT40 locus, were similar for both uUMOD and uUCR. KRT40 colocalized with uromodulin and modulating its expression in thick ascending limb (TAL) cells affected uromodulin processing and excretion. CONCLUSIONS Common variants in KRT40, WDR72, UMOD, and PDILT associate with the levels of uromodulin in urine. The expression of KRT40 affects uromodulin processing in TAL cells. These results, although limited by lack of replication, provide insights into the biology of uromodulin, the role of keratins in the kidney, and the influence of the UMOD-PDILT locus on kidney function.
Collapse
Affiliation(s)
- Christina B Joseph
- Medical Research Council Human Genetics Unit, University of Edinburgh, Edinburgh, United Kingdom
| | - Marta Mariniello
- Mechanisms of Inherited Kidney Disorders Group, Institute of Physiology Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Ayumi Yoshifuji
- Mechanisms of Inherited Kidney Disorders Group, Institute of Physiology Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Guglielmo Schiano
- Mechanisms of Inherited Kidney Disorders Group, Institute of Physiology Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Jennifer Lake
- Mechanisms of Inherited Kidney Disorders Group, Institute of Physiology Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Jonathan Marten
- Medical Research Council Human Genetics Unit, University of Edinburgh, Edinburgh, United Kingdom
| | - Anne Richmond
- Medical Research Council Human Genetics Unit, University of Edinburgh, Edinburgh, United Kingdom
| | - Jennifer E Huffman
- Center for Population Genomics,VA Boston Healthcare System, Jamaica Plain, Massachusetts
- The Framingham Heart Study, Framingham, Massachusetts
| | - Archie Campbell
- Centre for Genomic & Experimental Medicine, University of Edinburgh, Edinburgh, United Kingdom
- Generation Scotland, Centre for Genomic and Experimental Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Sarah E Harris
- Lothian Birth Cohorts, Department of Psychology, University of Edinburgh, Edinburgh, United Kingdom
| | - Stephan Troyanov
- Division of Nephrology, Hôpital du Sacre-Coeur de Montreal, Montreal, Canada
| | - Massimiliano Cocca
- Institute for Maternal and Child Health IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico) "Burlo Garofolo" 34127 Trieste, Italy
| | - Antonietta Robino
- Institute for Maternal and Child Health IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico) "Burlo Garofolo" 34127 Trieste, Italy
| | - Sébastien Thériault
- Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University, Quebec City, Canada
- Population Health Research Institute, McMaster University, Hamilton, Canada
| | - Kai-Uwe Eckardt
- Department of Nephrology and Hypertension, University of Erlangen-Nürnberg, Erlangen, Germany
- Department of Nephrology and Medical Intensive Care, Charite Universitätsmedizin Berlin, Berlin, Germany
| | - Matthias Wuttke
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Yurong Cheng
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Tanguy Corre
- Center for Primary Care and Public Health (Unisante), University of Lausanne, Lausanne, Switzerland
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Ivana Kolcic
- Department of Public Health, Faculty of Medicine, University of Split, Split, Croatia
| | - Corrinda Black
- Aberdeen Centre for Health Data Science, School of Medicine, Medical Science and Nutrition, University of Aberdeen, Aberdeen, United Kingdom
| | - Vanessa Bruat
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Maria Pina Concas
- Institute for Maternal and Child Health IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico) "Burlo Garofolo" 34127 Trieste, Italy
| | - Cinzia Sala
- Genetics of Common Disorders Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Franz Schaefer
- Division of Pediatric Nephrology, Center for Pediatrics and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Sven Bergmann
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, South Africa
| | - Harry Campbell
- Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, United Kingdom
| | - Matthias Olden
- Department of Genetic Epidemiology, Institute of Epidemiology and Preventive Medicine, University of Regensburg, Regensburg, Germany
| | - Ozren Polasek
- Department of Public Health, Faculty of Medicine, University of Split, Split, Croatia
| | - David J Porteous
- Centre for Genomic & Experimental Medicine, University of Edinburgh, Edinburgh, United Kingdom
- Generation Scotland, Centre for Genomic and Experimental Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Ian J Deary
- Lothian Birth Cohorts, Department of Psychology, University of Edinburgh, Edinburgh, United Kingdom
| | - Francois Madore
- Division of Nephrology, Hôpital du Sacre-Coeur de Montreal, Montreal, Canada
| | - Philip Awadalla
- Division of Nephrology, Hôpital du Sacre-Coeur de Montreal, Montreal, Canada
| | - Giorgia Girotto
- Institute for Maternal and Child Health IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico) "Burlo Garofolo" 34127 Trieste, Italy
- Department of Medicine, Surgery and Health Sciences, University of Trieste, 34149, Trieste, Italy
| | - Sheila Ulivi
- Institute for Maternal and Child Health IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico) "Burlo Garofolo" 34127 Trieste, Italy
| | - David Conen
- Population Health Research Institute, McMaster University, Hamilton, Canada
| | - Elke Wuehl
- Cardiology Division, University Hospital Basel, Basel, Switzerland
| | - Eric Olinger
- Mechanisms of Inherited Kidney Disorders Group, Institute of Physiology Institute of Physiology, University of Zurich, Zurich, Switzerland
- Translational and Clinical Research Institute, Newcastle upon Tyne, Newcastle, United Kingdom
| | - James F Wilson
- Medical Research Council Human Genetics Unit, University of Edinburgh, Edinburgh, United Kingdom
- Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, United Kingdom
| | - Murielle Bochud
- Center for Primary Care and Public Health (Unisante), University of Lausanne, Lausanne, Switzerland
| | - Anna Köttgen
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Caroline Hayward
- Medical Research Council Human Genetics Unit, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Genomic & Experimental Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Olivier Devuyst
- Mechanisms of Inherited Kidney Disorders Group, Institute of Physiology Institute of Physiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
5
|
Schlingmann KP, Renigunta A, Hoorn EJ, Forst AL, Renigunta V, Atanasov V, Mahendran S, Barakat TS, Gillion V, Godefroid N, Brooks AS, Lugtenberg D, Lake J, Debaix H, Rudin C, Knebelmann B, Tellier S, Rousset-Rouvière C, Viering D, de Baaij JHF, Weber S, Palygin O, Staruschenko A, Kleta R, Houillier P, Bockenhauer D, Devuyst O, Vargas-Poussou R, Warth R, Zdebik AA, Konrad M. Defects in KCNJ16 Cause a Novel Tubulopathy with Hypokalemia, Salt Wasting, Disturbed Acid-Base Homeostasis, and Sensorineural Deafness. J Am Soc Nephrol 2021; 32:1498-1512. [PMID: 33811157 PMCID: PMC8259640 DOI: 10.1681/asn.2020111587] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 02/04/2021] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND The transepithelial transport of electrolytes, solutes, and water in the kidney is a well-orchestrated process involving numerous membrane transport systems. Basolateral potassium channels in tubular cells not only mediate potassium recycling for proper Na+,K+-ATPase function but are also involved in potassium and pH sensing. Genetic defects in KCNJ10 cause EAST/SeSAME syndrome, characterized by renal salt wasting with hypokalemic alkalosis associated with epilepsy, ataxia, and sensorineural deafness. METHODS A candidate gene approach and whole-exome sequencing determined the underlying genetic defect in eight patients with a novel disease phenotype comprising a hypokalemic tubulopathy with renal salt wasting, disturbed acid-base homeostasis, and sensorineural deafness. Electrophysiologic studies and surface expression experiments investigated the functional consequences of newly identified gene variants. RESULTS We identified mutations in the KCNJ16 gene encoding KCNJ16, which along with KCNJ15 and KCNJ10, constitutes the major basolateral potassium channel of the proximal and distal tubules, respectively. Coexpression of mutant KCNJ16 together with KCNJ15 or KCNJ10 in Xenopus oocytes significantly reduced currents. CONCLUSIONS Biallelic variants in KCNJ16 were identified in patients with a novel disease phenotype comprising a variable proximal and distal tubulopathy associated with deafness. Variants affect the function of heteromeric potassium channels, disturbing proximal tubular bicarbonate handling as well as distal tubular salt reabsorption.
Collapse
Affiliation(s)
- Karl P. Schlingmann
- Department of General Pediatrics, Pediatric Nephrology, University Children’s Hospital, Munster, Germany
| | - Aparna Renigunta
- Department of Pediatric Nephrology, Marburg Kidney Research Center, Philipps University, Marburg, Germany
| | - Ewout J. Hoorn
- Division of Nephrology and Transplantation, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Anna-Lena Forst
- Department of Physiology, Medical Cell Biology, University of Regensburg, Regensburg, Germany
| | - Vijay Renigunta
- Department of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps University, Marburg, Germany
| | - Velko Atanasov
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| | - Sinthura Mahendran
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| | | | - Valentine Gillion
- Division of Nephrology, Saint-Luc Academic Hospital, Université Catholique Louvain, Brussels, Belgium
| | - Nathalie Godefroid
- Division of Pediatric Nephrology, Saint-Luc Academic Hospital, Université Catholique Louvain, Brussels, Belgium
| | - Alice S. Brooks
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Dorien Lugtenberg
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jennifer Lake
- Department of Physiology, Mechanism of Inherited Kidney Disorders, University of Zurich, Zurich, Switzerland
| | - Huguette Debaix
- Department of Physiology, Mechanism of Inherited Kidney Disorders, University of Zurich, Zurich, Switzerland
| | - Christoph Rudin
- Department of Pediatric Nephrology, University Children’s Hospital, Basel, Switzerland
| | - Bertrand Knebelmann
- Department of Nephrology-Transplantation, Assistance Publique Hôpitaux de Paris, Hôpital Necker, Paris, France,Reference Center for Hereditary Kidney and Childhood Diseases (MAladies Renales Hereditaires de l'Enfant et de l'Adulte), Paris, France
| | - Stephanie Tellier
- Department of Pediatric Nephrology, and Rheumatology, French Reference Center of Rare Renal Diseases (SORARE), CHU Toulouse, Toulouse, France,Division of Rheumatology, Department of Pediatrics, Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - Caroline Rousset-Rouvière
- Department of Multidisciplinary Pediatrics, Pediatric Nephrology Unit, La Timone, University Hospital of Marseille, Marseille, France
| | - Daan Viering
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jeroen H. F. de Baaij
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Stefanie Weber
- Department of Pediatric Nephrology, Marburg Kidney Research Center, Philipps University, Marburg, Germany
| | - Oleg Palygin
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Alexander Staruschenko
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin,Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, Wisconsin
| | - Robert Kleta
- Department of Renal Medicine, University College London, London, United Kingdom,Department of Paediatric Nephrology, Great Ormond Street Hospital for Children National Health Service Foundation Trust, London, United Kingdom
| | - Pascal Houillier
- Reference Center for Hereditary Kidney and Childhood Diseases (MAladies Renales Hereditaires de l'Enfant et de l'Adulte), Paris, France,Department of Physiology, Assistance Publique Hôpitaux de Paris, Hôpital Européen Georges-Pompidou, Paris, France,Department of Renal Physiology, Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale, Sorbonne Université, Université de Paris, Centre National de la Recherche Scientifique, Paris, France
| | - Detlef Bockenhauer
- Department of Renal Medicine, University College London, London, United Kingdom,Department of Paediatric Nephrology, Great Ormond Street Hospital for Children National Health Service Foundation Trust, London, United Kingdom
| | - Olivier Devuyst
- Division of Nephrology, Saint-Luc Academic Hospital, Université Catholique Louvain, Brussels, Belgium,Department of Physiology, Mechanism of Inherited Kidney Disorders, University of Zurich, Zurich, Switzerland
| | - Rosa Vargas-Poussou
- Reference Center for Hereditary Kidney and Childhood Diseases (MAladies Renales Hereditaires de l'Enfant et de l'Adulte), Paris, France,Department of Renal Physiology, Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale, Sorbonne Université, Université de Paris, Centre National de la Recherche Scientifique, Paris, France,Department of Genetics, Assistance Publique Hôpitaux de Paris, Hôpital Européen Georges-Pompidou, Paris, France
| | - Richard Warth
- Department of Physiology, Medical Cell Biology, University of Regensburg, Regensburg, Germany
| | - Anselm A. Zdebik
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom,Department of Renal Medicine, University College London, London, United Kingdom
| | - Martin Konrad
- Department of General Pediatrics, Pediatric Nephrology, University Children’s Hospital, Munster, Germany
| |
Collapse
|
6
|
Micanovic R, LaFavers K, Garimella PS, Wu XR, El-Achkar TM. Uromodulin (Tamm-Horsfall protein): guardian of urinary and systemic homeostasis. Nephrol Dial Transplant 2020; 35:33-43. [PMID: 30649494 DOI: 10.1093/ndt/gfy394] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 11/27/2018] [Indexed: 12/21/2022] Open
Abstract
Biology has taught us that a protein as abundantly made and conserved among species as Tamm-Horsfall protein (THP or uromodulin) cannot just be a waste product serving no particular purpose. However, for many researchers, THP is merely a nuisance during urine proteome profiling or exosome purification and for clinicians an enigmatic entity without clear disease implications. Thanks to recent human genetic and correlative studies and animal modeling, we now have a renewed appreciation of this highly prevalent protein in not only guarding urinary homeostasis, but also serving as a critical mediator in systemic inter-organ signaling. Beyond a mere barrier that lines the tubules, or a surrogate for nephron mass, mounting evidence suggests that THP is a multifunctional protein critical for modulating renal ion channel activity, salt/water balance, renal and systemic inflammatory response, intertubular communication, mineral crystallization and bacterial adhesion. Indeed, mutations in THP cause a group of inherited kidney diseases, and altered THP expression is associated with increased risks of urinary tract infection, kidney stone, hypertension, hyperuricemia and acute and chronic kidney diseases. Despite the recent surge of information surrounding THP's physiological functions and disease involvement, our knowledge remains incomplete regarding how THP is normally regulated by external and intrinsic factors, how precisely THP deficiency leads to urinary and systemic pathophysiology and in what clinical settings THP can be used as a theranostic biomarker and a target for modulation to improve patient outcomes.
Collapse
Affiliation(s)
- Radmila Micanovic
- Department of Medicine, Division of Nephrology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kaice LaFavers
- Department of Medicine, Division of Nephrology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Pranav S Garimella
- Department of Medicine, Division of Nephrology-Hypertension, University of California, San Diego, San Diego, CA, USA
| | - Xue-Ru Wu
- Departments of Urology and Pathology, New York University School of Medicine, New York, NY, USA.,Veterans Affairs New York Harbor Healthcare System, New York City, NY, USA
| | - Tarek M El-Achkar
- Department of Medicine, Division of Nephrology, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA.,Roudebush VA Medical Center, Indianapolis, IN, USA
| |
Collapse
|
7
|
Jomura R, Tanno Y, Akanuma SI, Kubo Y, Tachikawa M, Hosoya KI. Monocarboxylate transporter 12 as a guanidinoacetate efflux transporter in renal proximal tubular epithelial cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183434. [PMID: 32781157 DOI: 10.1016/j.bbamem.2020.183434] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 12/12/2022]
Abstract
Guanidinoacetate (GAA), which is a precursor of creatine, is mainly biosynthesized in the renal proximal tubular epithelial cells (RPTECs). Plasma concentration of GAA has been reported to be reduced in patients with monocarboxylate transporter 12 (MCT12) mutation (p.Q215X). However, the mechanism underlying GAA release from the RPTECs remains unclear. Therefore, to elucidate the role of MCT12 in renal GAA release, MCT12-mediated GAA transport was evaluated using the human and rat MCT12-expressing Xenopus laevis oocytes and primary-cultured rat RPTECs. [14C]GAA uptake by the human and rat MCT12-expressing oocytes was significantly higher than that by the water-injected oocytes. Rat MCT12-mediated uptake of [14C]GAA by the oocytes was found to be sodium ion (Na+)-independent and exhibited saturable kinetics with a Michaelis-Menten constant of 3.38 mM. Transport activities of rat MCT12 tend to increase along with increasing of extracellular pH. In addition, the efflux transport of [14C]GAA from the human and rat MCT12-expressing oocytes was significantly higher than that from the water-injected oocytes. These results suggest that both the influx and efflux transport of GAA is mediated by MCT12. In the primary-cultured rat RPTECs, [14C]GAA efflux transport was significantly reduced by the transfection of MCT12-specific siRNAs, suggesting that MCT12 participates in GAA efflux transport in rat RPTECs. Therefore, it suggests that MCT12 is involved in GAA release from RPTECs to the circulating blood, since MCT12 is known to be localized on the basal membrane of RPTECs.
Collapse
Affiliation(s)
- Ryuta Jomura
- Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.
| | - Yu Tanno
- Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.
| | - Shin-Ichi Akanuma
- Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.
| | - Yoshiyuki Kubo
- Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.
| | - Masanori Tachikawa
- Graduate School of Biomedical Sciences, Tokushima University, 1-78-1 Shomachi, Tokushima 770-8505, Japan.
| | - Ken-Ichi Hosoya
- Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.
| |
Collapse
|
8
|
The Urinary Excretion of Uromodulin is Regulated by the Potassium Channel ROMK. Sci Rep 2019; 9:19517. [PMID: 31863061 PMCID: PMC6925250 DOI: 10.1038/s41598-019-55771-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 11/28/2019] [Indexed: 12/20/2022] Open
Abstract
Uromodulin, the most abundant protein in normal urine, is produced by cells lining the thick ascending limb (TAL) of the loop of Henle. Uromodulin regulates the activity of the potassium channel ROMK in TAL cells. Common variants in KCNJ1, the gene encoding ROMK, are associated with urinary levels of uromodulin in population studies. Here, we investigated the functional link between ROMK and uromodulin in Kcnj1 knock-out mouse models, in primary cultures of mouse TAL (mTAL) cells, and in patients with Bartter syndrome due to KCNJ1 mutations. Both global and kidney-specific Kcnj1 knock-out mice showed reduced urinary levels of uromodulin paralleled by increased levels in the kidney, compared to wild-type controls. Pharmacological inhibition and genetic deletion of ROMK in mTAL cells caused a reduction in apical uromodulin excretion, reflected by cellular accumulation. In contrast, NKCC2 inhibition showed no effect on uromodulin processing. Patients with Bartter syndrome type 2 showed reduced urinary uromodulin levels compared to age and gender matched controls. These results demonstrate that ROMK directly regulates processing and release of uromodulin by TAL cells, independently from NKCC2. They support the functional link between transport activity and uromodulin in the TAL, relevant for blood pressure control and urinary concentrating ability.
Collapse
|
9
|
Hepsin-mediated Processing of Uromodulin is Crucial for Salt-sensitivity and Thick Ascending Limb Homeostasis. Sci Rep 2019; 9:12287. [PMID: 31444371 PMCID: PMC6707305 DOI: 10.1038/s41598-019-48300-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 06/13/2019] [Indexed: 12/27/2022] Open
Abstract
Uromodulin is a zona pellucida-type protein essentially produced in the thick ascending limb (TAL) of the mammalian kidney. It is the most abundant protein in normal urine. Defective uromodulin processing is associated with various kidney disorders. The luminal release and subsequent polymerization of uromodulin depend on its cleavage mediated by the serine protease hepsin. The biological relevance of a proper cleavage of uromodulin remains unknown. Here we combined in vivo testing on hepsin-deficient mice, ex vivo analyses on isolated tubules and in vitro studies on TAL cells to demonstrate that hepsin influence on uromodulin processing is an important modulator of salt transport via the sodium cotransporter NKCC2 in the TAL. At baseline, hepsin-deficient mice accumulate uromodulin, along with hyperactivated NKCC2, resulting in a positive sodium balance and a better adaptation to water deprivation. In conditions of high salt intake, defective uromodulin processing predisposes hepsin-deficient mice to a salt-wasting phenotype, with a decreased salt sensitivity. These modifications are associated with intracellular accumulation of uromodulin, endoplasmic reticulum-stress and signs of tubular damage. These studies expand the physiological role of hepsin and uromodulin and highlight the importance of hepsin-mediated processing of uromodulin for kidney tubule homeostasis and salt sensitivity.
Collapse
|
10
|
Tokonami N, Olinger E, Debaix H, Houillier P, Devuyst O. The excretion of uromodulin is modulated by the calcium-sensing receptor. Kidney Int 2019; 94:882-886. [PMID: 30348305 DOI: 10.1016/j.kint.2018.07.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 06/28/2018] [Accepted: 07/05/2018] [Indexed: 11/16/2022]
Abstract
Uromodulin is produced in the thick ascending limb, but little is known about regulation of its excretion in urine. Using mouse and cellular models, we demonstrate that excretion of uromodulin by thick ascending limb cells is increased or decreased upon inactivation or activation of the calcium-sensing receptor (CaSR), respectively. These effects reflect changes in uromodulin trafficking and likely involve alterations in intracellular cyclic adenosine monophosphate (cAMP) levels. Administration of the CaSR agonist cinacalcet led to a rapid reduction of urinary uromodulin excretion in healthy subjects. Modulation of uromodulin excretion by the CaSR may be clinically relevant considering the increasing use of CaSR modulators.
Collapse
Affiliation(s)
- Natsuko Tokonami
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Eric Olinger
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Huguette Debaix
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Pascal Houillier
- Sorbonne Université, UPMC Univ Paris 06, INSERM, Université Paris Descartes, UMR_S 1138 Team 3, Centre de Recherche des Cordeliers, Paris, France
| | - Olivier Devuyst
- Institute of Physiology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
11
|
Tokonami N, Takata T, Beyeler J, Ehrbar I, Yoshifuji A, Christensen EI, Loffing J, Devuyst O, Olinger EG. Uromodulin is expressed in the distal convoluted tubule, where it is critical for regulation of the sodium chloride cotransporter NCC. Kidney Int 2018; 94:701-715. [DOI: 10.1016/j.kint.2018.04.021] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 04/03/2018] [Accepted: 04/19/2018] [Indexed: 12/22/2022]
|
12
|
Edwards N, Olinger E, Adam J, Kelly M, Schiano G, Ramsbottom SA, Sandford R, Devuyst O, Sayer JA. A novel homozygous UMOD mutation reveals gene dosage effects on uromodulin processing and urinary excretion. Nephrol Dial Transplant 2018; 32:1994-1999. [PMID: 28605509 PMCID: PMC5837645 DOI: 10.1093/ndt/gfx066] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 03/19/2017] [Indexed: 01/08/2023] Open
Abstract
Heterozygous mutations in UMOD encoding the urinary protein uromodulin are the most common genetic cause of autosomal dominant tubulointerstitial kidney disease (ADTKD). We describe the exceptional case of a patient from a consanguineous family carrying a novel homozygous UMOD mutation (p.C120Y) affecting a conserved cysteine residue within the EGF-like domain III of uromodulin. Comparison of heterozygote and homozygote mutation carriers revealed a gene dosage effect with unprecedented low levels of uromodulin and aberrant uromodulin fragments in the urine of the homozygote proband. Despite an amplified biological effect of the homozygote mutation, the proband did not show a strikingly more severe clinical evolution nor was the near absence of urinary uromodulin associated with urinary tract infections or kidney stones.
Collapse
Affiliation(s)
- Noel Edwards
- Institute for Cell and Molecular Biosciences, Newcastle University Medical School, Newcastle upon Tyne, UK
| | - Eric Olinger
- Institute of Physiology, University of Zurich, CH-8057 Zurich, Switzerland
| | - Jennifer Adam
- Renal Unit, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Michael Kelly
- Renal Unit, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Guglielmo Schiano
- Institute of Physiology, University of Zurich, CH-8057 Zurich, Switzerland
| | - Simon A Ramsbottom
- Institute for Cell and Molecular Biosciences, Newcastle University Medical School, Newcastle upon Tyne, UK
| | - Richard Sandford
- Academic Department of Medical Genetics, Cambridge Biomedical Campus, Cambridge, UK
| | - Olivier Devuyst
- Institute of Physiology, University of Zurich, CH-8057 Zurich, Switzerland
| | - John A Sayer
- Renal Unit, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK.,Institute of Genetic Medicine, Newcastle University, International Centre for Life, Newcastle upon Tyne, UK
| |
Collapse
|
13
|
Devuyst O, Olinger E, Rampoldi L. Uromodulin: from physiology to rare and complex kidney disorders. Nat Rev Nephrol 2017; 13:525-544. [PMID: 28781372 DOI: 10.1038/nrneph.2017.101] [Citation(s) in RCA: 215] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Uromodulin (also known as Tamm-Horsfall protein) is exclusively produced in the kidney and is the most abundant protein in normal urine. The function of uromodulin remains elusive, but the available data suggest that this protein might regulate salt transport, protect against urinary tract infection and kidney stones, and have roles in kidney injury and innate immunity. Interest in uromodulin was boosted by genetic studies that reported involvement of the UMOD gene, which encodes uromodulin, in a spectrum of rare and common kidney diseases. Rare mutations in UMOD cause autosomal dominant tubulointerstitial kidney disease (ADTKD), which leads to chronic kidney disease (CKD). Moreover, genome-wide association studies have identified common variants in UMOD that are strongly associated with risk of CKD and also with hypertension and kidney stones in the general population. These findings have opened up a new field of kidney research. In this Review we summarize biochemical, physiological, genetic and pathological insights into the roles of uromodulin; the mechanisms by which UMOD mutations cause ADTKD, and the association of common UMOD variants with complex disorders.
Collapse
Affiliation(s)
- Olivier Devuyst
- Institute of Physiology, University of Zurich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Eric Olinger
- Institute of Physiology, University of Zurich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Luca Rampoldi
- Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan, Italy
| |
Collapse
|
14
|
Piret SE, Olinger E, Reed AAC, Nesbit MA, Hough TA, Bentley L, Devuyst O, Cox RD, Thakker RV. A mouse model for inherited renal fibrosis associated with endoplasmic reticulum stress. Dis Model Mech 2017; 10:773-786. [PMID: 28325753 PMCID: PMC5483009 DOI: 10.1242/dmm.029488] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 03/02/2017] [Indexed: 12/12/2022] Open
Abstract
Renal fibrosis is a common feature of renal failure resulting from multiple etiologies, including diabetic nephropathy, hypertension and inherited renal disorders. However, the mechanisms of renal fibrosis are incompletely understood and we therefore explored these by establishing a mouse model for a renal tubular disorder, referred to as autosomal dominant tubulointerstitial kidney disease (ADTKD) due to missense uromodulin (UMOD) mutations (ADTKD-UMOD). ADTKD-UMOD, which is associated with retention of mutant uromodulin in the endoplasmic reticulum (ER) of renal thick ascending limb cells, is characterized by hyperuricemia, interstitial fibrosis, inflammation and renal failure, and we used targeted homologous recombination to generate a knock-in mouse model with an ADTKD-causing missense cysteine to arginine uromodulin mutation (C125R). Heterozygous and homozygous mutant mice developed reduced uric acid excretion, renal fibrosis, immune cell infiltration and progressive renal failure, with decreased maturation and excretion of uromodulin, due to its retention in the ER. The ER stress marker 78 kDa glucose-regulated protein (GRP78) was elevated in cells expressing mutant uromodulin in heterozygous and homozygous mutant mice, and this was accompanied, both in vivo and ex vivo, by upregulation of two unfolded protein response pathways in primary thick ascending limb cells from homozygous mutant mice. However, this did not lead to an increase in apoptosis in vivo. Thus, we have developed a novel mouse model for renal fibrosis, which will be a valuable resource to decipher the mechanisms linking uromodulin mutations with ER stress and renal fibrosis. Summary: A mouse model for renal fibrosis caused by uromodulin mutations reveals roles for ER stress and the unfolded protein response.
Collapse
Affiliation(s)
- Sian E Piret
- Academic Endocrine Unit, University of Oxford, Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, Headington, Oxford OX3 7LJ, UK
| | - Eric Olinger
- Institute of Physiology, University of Zurich, Zurich CH-8057, Switzerland
| | - Anita A C Reed
- Academic Endocrine Unit, University of Oxford, Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, Headington, Oxford OX3 7LJ, UK
| | - M Andrew Nesbit
- Academic Endocrine Unit, University of Oxford, Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, Headington, Oxford OX3 7LJ, UK.,School of Biomedical Sciences, University of Ulster, Coleraine BT52 1SA, UK
| | - Tertius A Hough
- MRC Mammalian Genetics Unit and Mary Lyon Centre, MRC Harwell Institute, Harwell Science and Innovation Campus, Oxfordshire OX11 0RD, UK
| | - Liz Bentley
- MRC Mammalian Genetics Unit and Mary Lyon Centre, MRC Harwell Institute, Harwell Science and Innovation Campus, Oxfordshire OX11 0RD, UK
| | - Olivier Devuyst
- Institute of Physiology, University of Zurich, Zurich CH-8057, Switzerland
| | - Roger D Cox
- MRC Mammalian Genetics Unit and Mary Lyon Centre, MRC Harwell Institute, Harwell Science and Innovation Campus, Oxfordshire OX11 0RD, UK
| | - Rajesh V Thakker
- Academic Endocrine Unit, University of Oxford, Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, Headington, Oxford OX3 7LJ, UK
| |
Collapse
|
15
|
Corre T, Olinger E, Harris SE, Traglia M, Ulivi S, Lenarduzzi S, Belge H, Youhanna S, Tokonami N, Bonny O, Houillier P, Polasek O, Deary IJ, Starr JM, Toniolo D, Gasparini P, Vollenweider P, Hayward C, Bochud M, Devuyst O. Common variants in CLDN14 are associated with differential excretion of magnesium over calcium in urine. Pflugers Arch 2016; 469:91-103. [DOI: 10.1007/s00424-016-1913-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 11/22/2016] [Indexed: 12/17/2022]
|
16
|
Brunati M, Perucca S, Han L, Cattaneo A, Consolato F, Andolfo A, Schaeffer C, Olinger E, Peng J, Santambrogio S, Perrier R, Li S, Bokhove M, Bachi A, Hummler E, Devuyst O, Wu Q, Jovine L, Rampoldi L. The serine protease hepsin mediates urinary secretion and polymerisation of Zona Pellucida domain protein uromodulin. eLife 2015; 4:e08887. [PMID: 26673890 PMCID: PMC4755741 DOI: 10.7554/elife.08887] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Accepted: 11/02/2015] [Indexed: 12/28/2022] Open
Abstract
Uromodulin is the most abundant protein in the urine. It is exclusively produced by renal epithelial cells and it plays key roles in kidney function and disease. Uromodulin mainly exerts its function as an extracellular matrix whose assembly depends on a conserved, specific proteolytic cleavage leading to conformational activation of a Zona Pellucida (ZP) polymerisation domain. Through a comprehensive approach, including extensive characterisation of uromodulin processing in cellular models and in specific knock-out mice, we demonstrate that the membrane-bound serine protease hepsin is the enzyme responsible for the physiological cleavage of uromodulin. Our findings define a key aspect of uromodulin biology and identify the first in vivo substrate of hepsin. The identification of hepsin as the first protease involved in the release of a ZP domain protein is likely relevant for other members of this protein family, including several extracellular proteins, as egg coat proteins and inner ear tectorins. DOI:http://dx.doi.org/10.7554/eLife.08887.001 Several proteins in humans and other animals contain a region called a 'zona pellucida domain'. This domain enables these proteins to associate with each other and form long filaments. Uromodulin is one such protein that was first identified more than fifty years ago. This protein is known to play a role in human diseases such as hypertension and kidney failure, but uromodulin’s biological purpose still remains elusive. Uromodulin is only made in the kidney and it is the most abundant protein in the urine of healthy individuals. Uromodulin also contains a so-called 'external hydrophobic patch' that must be removed before the zona pellucida domain can start to form filaments. This hydrophobic patch is removed when uromodulin is cut by an unknown enzyme; this cutting releases the rest of the uromodulin protein from the surface of the cells that line the kidney into the urine. Brunati et al. have now tested a panel of candidate enzymes and identified that one called hepsin is able to cut uromodulin. Hepsin is embedded in the cell membrane of the cells that line the kidney. When the level of hepsin was artificially reduced in cells grown in the laboratory, uromodulin remained anchored to the cell surface, its processing was altered and it did not form filaments. Brunati et al. next analysed mice in which the gene encoding hepsin had been deleted. While these animals did not have any major defects in their internal organs, they had much lower levels of uromodulin in their urine. Furthermore, this residual urinary protein was not cut properly and it did not assemble into filaments. Thus, these findings reveal that hepsin is the enzyme that is responsible for releasing uromodulin in the urine. This discovery could be exploited to alter the levels of uromodulin release, and further studies using mice lacking hepsin may also help to understand uromodulin’s biological role. Finally, it will be important to understand if hepsin, or a similar enzyme, is also responsible for the release of other proteins containing the zona pellucida domain. DOI:http://dx.doi.org/10.7554/eLife.08887.002
Collapse
Affiliation(s)
- Martina Brunati
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
| | - Simone Perucca
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
| | - Ling Han
- Department of Biosciences and Nutrition & Center for Innovative Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Angela Cattaneo
- Functional Proteomics, FIRC Institute of Molecular Oncology, Milan, Italy.,Protein Microsequencing Facility, San Raffaele Scientific Institute, Milan, Italy
| | - Francesco Consolato
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
| | - Annapaola Andolfo
- Protein Microsequencing Facility, San Raffaele Scientific Institute, Milan, Italy
| | - Céline Schaeffer
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
| | - Eric Olinger
- Institute of Physiology, Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Jianhao Peng
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland, United States
| | - Sara Santambrogio
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
| | - Romain Perrier
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland
| | - Shuo Li
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland, United States
| | - Marcel Bokhove
- Department of Biosciences and Nutrition & Center for Innovative Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Angela Bachi
- Functional Proteomics, FIRC Institute of Molecular Oncology, Milan, Italy.,Protein Microsequencing Facility, San Raffaele Scientific Institute, Milan, Italy
| | - Edith Hummler
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland
| | - Olivier Devuyst
- Institute of Physiology, Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Qingyu Wu
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland, United States
| | - Luca Jovine
- Department of Biosciences and Nutrition & Center for Innovative Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Luca Rampoldi
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
17
|
Di Chiara M, Glaudemans B, Loffing-Cueni D, Odermatt A, Al-Hasani H, Devuyst O, Faresse N, Loffing J. Rab-GAP TBC1D4 (AS160) is dispensable for the renal control of sodium and water homeostasis but regulates GLUT4 in mouse kidney. Am J Physiol Renal Physiol 2015; 309:F779-90. [PMID: 26336159 DOI: 10.1152/ajprenal.00139.2015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 08/29/2015] [Indexed: 12/17/2022] Open
Abstract
The Rab GTPase-activating protein TBC1D4 (AS160) controls trafficking of the glucose transporter GLUT4 in adipocytes and skeletal muscle cells. TBC1D4 is also highly abundant in the renal distal tubule, although its role in this tubule is so far unknown. In vitro studies suggest that it is involved in the regulation of renal transporters and channels such as the epithelial sodium channel (ENaC), aquaporin-2 (AQP2), and the Na+-K+-ATPase. To assess the physiological role of TBC1D4 in the kidney, wild-type (TBC1D4+/+) and TBC1D4-deficient (TBC1D4-/-) mice were studied. Unexpectedly, neither under standard nor under challenging conditions (low Na+/high K+, water restriction) did TBC1D4-/- mice show any difference in urinary Na+ and K+ excretion, urine osmolarity, plasma ion and aldosterone levels, and blood pressure compared with TBC1D4+/+ mice. Also, immunoblotting did not reveal any change in the abundance of major renal sodium- and water-transporting proteins [Na-K-2Cl cotransporter (NKCC2) NKCC2, NaCl cotransporter (NCC), ENaC, AQP2, and the Na+-K+-ATPase]. However, the abundance of GLUT4, which colocalizes with TBC1D4 along the distal nephron of TBC1D4+/+ mice, was lower in whole kidney lysates of TBC1D4-/- mice than in TBC1D4+/+ mice. Likewise, primary thick ascending limb (TAL) cells isolated from TBC1D4-/- mice showed an increased basal glucose uptake and an abrogated insulin response compared with TAL cells from TBC1D4+/+ mice. Thus, TBC1D4 is dispensable for the regulation of renal Na+ and water transport, but may play a role for GLUT4-mediated basolateral glucose uptake in distal tubules. The latter may contribute to the known anaerobic glycolytic capacity of distal tubules during renal ischemia.
Collapse
Affiliation(s)
- Marianna Di Chiara
- Institute of Anatomy, University of Zurich, Zurich, Switzerland; Zurich Center of Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Bob Glaudemans
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | | | - Alex Odermatt
- Division of Molecular and Systems Toxicology, Pharmacenter, University of Basel, Basel, Switzerland; National Center of Competence in Research "Kidney.CH," Switzerland; and
| | - Hadi Al-Hasani
- German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich-Heine-University and German Center for Diabetes Research, Düsseldorf, Germany
| | - Olivier Devuyst
- Zurich Center of Integrative Human Physiology, University of Zurich, Zurich, Switzerland; Institute of Physiology, University of Zurich, Zurich, Switzerland; National Center of Competence in Research "Kidney.CH," Switzerland; and
| | - Nourdine Faresse
- Institute of Anatomy, University of Zurich, Zurich, Switzerland; Zurich Center of Integrative Human Physiology, University of Zurich, Zurich, Switzerland; National Center of Competence in Research "Kidney.CH," Switzerland; and
| | - Johannes Loffing
- Institute of Anatomy, University of Zurich, Zurich, Switzerland; Zurich Center of Integrative Human Physiology, University of Zurich, Zurich, Switzerland; National Center of Competence in Research "Kidney.CH," Switzerland; and
| |
Collapse
|
18
|
Guetg A, Mariotta L, Bock L, Herzog B, Fingerhut R, Camargo SMR, Verrey F. Essential amino acid transporter Lat4 (Slc43a2) is required for mouse development. J Physiol 2015; 593:1273-89. [PMID: 25480797 DOI: 10.1113/jphysiol.2014.283960] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 11/25/2014] [Indexed: 12/23/2022] Open
Abstract
Amino acid (AA) uniporter Lat4 (Slc43a2) mediates facilitated diffusion of branched-chain AAs, methionine and phenylalanine, although its physiological role and subcellular localization are not known. We report that Slc43a2 knockout mice were born at expected Mendelian frequency but displayed an ∼10% intrauterine growth retardation and low amniotic fluid AAs, suggesting defective transplacental transport. Postnatal growth was strongly reduced, with premature death occurring within 9 days such that further investigations were made within 3 days of birth. Lat4 immunofluorescence showed a strong basolateral signal in the small intestine, kidney proximal tubule and thick ascending limb epithelial cells of wild-type but not Slc43a2 null littermates and no signal in liver and skeletal muscle. Experiments using Xenopus laevis oocytes demonstrated that Lat4 functioned as a symmetrical low affinity uniporter with a K₀.₅ of ∼5 mm for both in- and efflux. Plasma AA concentration was decreased in Slc43a2 null pups, in particular that of non-essential AAs alanine, serine, histidine and proline. Together with an increased level of plasma long chain acylcarnitines and a strong alteration of liver gene expression, this indicates malnutrition. Attempts to rescue pups by decreasing the litter size or by nutrients injected i.p. did not succeed. Radioactively labelled leucine but not lysine given per os accumulated in the small intestine of Slc43a2null pups, suggesting the defective transcellular transport of Lat4 substrates. In summary, Lat4 is a symmetrical uniporter for neutral essential AAs localizing at the basolateral side of (re)absorbing epithelia and is necessary for early nutrition and development.
Collapse
Affiliation(s)
- Adriano Guetg
- Institute of Physiology and Zurich Center of Integrative Human Physiology, University of Zurich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
19
|
Olden M, Corre T, Hayward C, Toniolo D, Ulivi S, Gasparini P, Pistis G, Hwang SJ, Bergmann S, Campbell H, Cocca M, Gandin I, Girotto G, Glaudemans B, Hastie ND, Loffing J, Polasek O, Rampoldi L, Rudan I, Sala C, Traglia M, Vollenweider P, Vuckovic D, Youhanna S, Weber J, Wright AF, Kutalik Z, Bochud M, Fox CS, Devuyst O. Common variants in UMOD associate with urinary uromodulin levels: a meta-analysis. J Am Soc Nephrol 2014; 25:1869-82. [PMID: 24578125 DOI: 10.1681/asn.2013070781] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Uromodulin is expressed exclusively in the thick ascending limb and is the most abundant protein excreted in normal urine. Variants in UMOD, which encodes uromodulin, are associated with renal function, and urinary uromodulin levels may be a biomarker for kidney disease. However, the genetic factors regulating uromodulin excretion are unknown. We conducted a meta-analysis of urinary uromodulin levels to identify associated common genetic variants in the general population. We included 10,884 individuals of European descent from three genetic isolates and three urban cohorts. Each study measured uromodulin indexed to creatinine and conducted linear regression analysis of approximately 2.5 million single nucleotide polymorphisms using an additive model. We also tested whether variants in genes expressed in the thick ascending limb associate with uromodulin levels. rs12917707, located near UMOD and previously associated with renal function and CKD, had the strongest association with urinary uromodulin levels (P<0.001). In all cohorts, carriers of a G allele of this variant had higher uromodulin levels than noncarriers did (geometric means 10.24, 14.05, and 17.67 μg/g creatinine for zero, one, or two copies of the G allele). rs12446492 in the adjacent gene PDILT (protein disulfide isomerase-like, testis expressed) also reached genome-wide significance (P<0.001). Regarding genes expressed in the thick ascending limb, variants in KCNJ1, SORL1, and CAB39 associated with urinary uromodulin levels. These data indicate that common variants in the UMOD promoter region may influence urinary uromodulin levels. They also provide insights into uromodulin biology and the association of UMOD variants with renal function.
Collapse
Affiliation(s)
- Matthias Olden
- National Heart, Lung, and Blood Institute's Framingham Heart Study, Framingham, Massachusetts; Department of Genetic Epidemiology, Institute of Epidemiology and Preventive Medicine, University of Regensburg, Regensburg, Germany
| | - Tanguy Corre
- Department of Medical Genetics, University of Lausanne, Lausanne, Switzerland; Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Caroline Hayward
- Institute of Genetics and Molecular Medicine, Western General Hospital, and
| | - Daniela Toniolo
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milano, Italy; Institute of Molecular Genetics, National Research Council, Pavia, Italy
| | - Sheila Ulivi
- Institute for Maternal and Child Health, Burlo Garofolo Pediatric Institute Trieste, Italy
| | - Paolo Gasparini
- Institute for Maternal and Child Health, Burlo Garofolo Pediatric Institute Trieste, Italy; Department of Medical Sciences, University of Trieste, Trieste, Italy
| | - Giorgio Pistis
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milano, Italy
| | - Shih-Jen Hwang
- National Heart, Lung, and Blood Institute's Framingham Heart Study, Framingham, Massachusetts
| | - Sven Bergmann
- Department of Medical Genetics, University of Lausanne, Lausanne, Switzerland; Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Harry Campbell
- Dulbecco Telethon Institute, San Raffaele Scientific Institute, Milan, Italy
| | - Massimiliano Cocca
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milano, Italy
| | - Ilaria Gandin
- Institute for Maternal and Child Health, Burlo Garofolo Pediatric Institute Trieste, Italy; Department of Medical Sciences, University of Trieste, Trieste, Italy
| | - Giorgia Girotto
- Institute for Maternal and Child Health, Burlo Garofolo Pediatric Institute Trieste, Italy; Department of Medical Sciences, University of Trieste, Trieste, Italy
| | - Bob Glaudemans
- Institute of Physiology, Zurich Center for Integrative Human Physiology, and
| | - Nicholas D Hastie
- Institute of Genetics and Molecular Medicine, Western General Hospital, and
| | | | - Ozren Polasek
- Department of Public Health, Faculty of Medicine, University of Split, Croatia
| | - Luca Rampoldi
- Dulbecco Telethon Institute, San Raffaele Scientific Institute, Milan, Italy
| | - Igor Rudan
- Department of Genetic Epidemiology, Institute of Epidemiology and Preventive Medicine, University of Regensburg, Regensburg, Germany
| | - Cinzia Sala
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milano, Italy
| | - Michela Traglia
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milano, Italy
| | | | - Dragana Vuckovic
- Institute for Maternal and Child Health, Burlo Garofolo Pediatric Institute Trieste, Italy; Department of Medical Sciences, University of Trieste, Trieste, Italy
| | - Sonia Youhanna
- Institute of Physiology, Zurich Center for Integrative Human Physiology, and Division of Nephrology, Catholic University of Louvain Medical School, Brussels, Belgium
| | - Julien Weber
- Institute of Physiology, Zurich Center for Integrative Human Physiology, and Division of Nephrology, Catholic University of Louvain Medical School, Brussels, Belgium
| | - Alan F Wright
- Institute of Genetics and Molecular Medicine, Western General Hospital, and
| | - Zoltán Kutalik
- Department of Medical Genetics, University of Lausanne, Lausanne, Switzerland; Swiss Institute of Bioinformatics, Lausanne, Switzerland; Institute of Social and Preventive Medicine, Lausanne University Hospital, Lausanne, Switzerland; and
| | - Murielle Bochud
- Institute of Social and Preventive Medicine, Lausanne University Hospital, Lausanne, Switzerland; and
| | - Caroline S Fox
- National Heart, Lung, and Blood Institute's Framingham Heart Study, Framingham, Massachusetts; Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Olivier Devuyst
- Institute of Physiology, Zurich Center for Integrative Human Physiology, and Division of Nephrology, Catholic University of Louvain Medical School, Brussels, Belgium;
| |
Collapse
|
20
|
Jennings P, Aschauer L, Wilmes A, Gstraunthaler G. Renal Cell Culture. METHODS IN PHARMACOLOGY AND TOXICOLOGY 2014. [DOI: 10.1007/978-1-4939-0521-8_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
21
|
Trudu M, Janas S, Lanzani C, Debaix H, Schaeffer C, Ikehata M, Citterio L, Demaretz S, Trevisani F, Ristagno G, Glaudemans B, Laghmani K, Dell'Antonio G, Loffing J, Rastaldi MP, Manunta P, Devuyst O, Rampoldi L. Common noncoding UMOD gene variants induce salt-sensitive hypertension and kidney damage by increasing uromodulin expression. Nat Med 2013; 19:1655-1660. [PMID: 24185693 PMCID: PMC3856354 DOI: 10.1038/nm.3384] [Citation(s) in RCA: 288] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 09/19/2013] [Indexed: 12/21/2022]
Abstract
Hypertension and chronic kidney disease (CKD) are complex traits representing major global health problems. Multiple genome-wide association studies have identified common variants in the promoter of the UMOD gene, which encodes uromodulin, the major protein secreted in normal urine, that cause independent susceptibility to CKD and hypertension. Despite compelling genetic evidence for the association between UMOD risk variants and disease susceptibility in the general population, the underlying biological mechanism is not understood. Here, we demonstrate that UMOD risk variants increased UMOD expression in vitro and in vivo. Uromodulin overexpression in transgenic mice led to salt-sensitive hypertension and to the presence of age-dependent renal lesions similar to those observed in elderly individuals homozygous for UMOD promoter risk variants. The link between uromodulin and hypertension is due to activation of the renal sodium cotransporter NKCC2. We demonstrated the relevance of this mechanism in humans by showing that pharmacological inhibition of NKCC2 was more effective in lowering blood pressure in hypertensive patients who are homozygous for UMOD promoter risk variants than in other hypertensive patients. Our findings link genetic susceptibility to hypertension and CKD to the level of uromodulin expression and uromodulin's effect on salt reabsorption in the kidney. These findings point to uromodulin as a therapeutic target for lowering blood pressure and preserving renal function.
Collapse
Affiliation(s)
- Matteo Trudu
- Dulbecco Telethon Institute, c/o Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
| | - Sylvie Janas
- Institute of Physiology, Zurich Centre for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
- Division of Nephrology, UCL Medical School, Brussels, Belgium
| | - Chiara Lanzani
- Division of Nephrology and Dialysis, San Raffaele Scientific Institute, Milan, Italy
| | - Huguette Debaix
- Institute of Physiology, Zurich Centre for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
- Division of Nephrology, UCL Medical School, Brussels, Belgium
| | - Céline Schaeffer
- Dulbecco Telethon Institute, c/o Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
| | - Masami Ikehata
- Renal Research Laboratory, Fondazione IRCCS Ospedale Maggiore Policlinico & Fondazione D'Amico per la Ricerca sulle Malattie Renali, Milan, Italy
| | - Lorena Citterio
- Division of Nephrology and Dialysis, San Raffaele Scientific Institute, Milan, Italy
| | | | | | - Giuseppe Ristagno
- Department of Cardiovascular Research, Istituto di Ricerca Farmacologica Mario Negri, Milan, Italy
| | - Bob Glaudemans
- Institute of Physiology, Zurich Centre for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | | | | | - Johannes Loffing
- Institute of Anatomy, Zurich Centre for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Maria P Rastaldi
- Renal Research Laboratory, Fondazione IRCCS Ospedale Maggiore Policlinico & Fondazione D'Amico per la Ricerca sulle Malattie Renali, Milan, Italy
| | | | - Olivier Devuyst
- Institute of Physiology, Zurich Centre for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Luca Rampoldi
- Dulbecco Telethon Institute, c/o Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
22
|
Common noncoding UMOD gene variants induce salt-sensitive hypertension and kidney damage by increasing uromodulin expression. Nat Med 2013. [PMID: 24185693 DOI: 10.1038/nm.3384.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Hypertension and chronic kidney disease (CKD) are complex traits representing major global health problems. Multiple genome-wide association studies have identified common variants in the promoter of the UMOD gene, which encodes uromodulin, the major protein secreted in normal urine, that cause independent susceptibility to CKD and hypertension. Despite compelling genetic evidence for the association between UMOD risk variants and disease susceptibility in the general population, the underlying biological mechanism is not understood. Here, we demonstrate that UMOD risk variants increased UMOD expression in vitro and in vivo. Uromodulin overexpression in transgenic mice led to salt-sensitive hypertension and to the presence of age-dependent renal lesions similar to those observed in elderly individuals homozygous for UMOD promoter risk variants. The link between uromodulin and hypertension is due to activation of the renal sodium cotransporter NKCC2. We demonstrated the relevance of this mechanism in humans by showing that pharmacological inhibition of NKCC2 was more effective in lowering blood pressure in hypertensive patients who are homozygous for UMOD promoter risk variants than in other hypertensive patients. Our findings link genetic susceptibility to hypertension and CKD to the level of uromodulin expression and uromodulin's effect on salt reabsorption in the kidney. These findings point to uromodulin as a therapeutic target for lowering blood pressure and preserving renal function.
Collapse
|