1
|
Wu Y, Zhang Y, Zheng Q, Wang Q, Fang X, Zhu Z, Lu J, Sun D. Myocardial dysfunction caused by MyBPC3 P459fs mutation in hypertrophic cardiomyopathy: evidence from multi-omics approaches and super-resolution imaging. Front Cardiovasc Med 2025; 12:1529921. [PMID: 40083819 PMCID: PMC11903464 DOI: 10.3389/fcvm.2025.1529921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 02/07/2025] [Indexed: 03/16/2025] Open
Abstract
Introduction Mutations in the sarcomere protein, particularly in cardiac myosin binding protein C gene (MyBPC3), were the most frequent genetic cause of hypertrophic cardiomyopathy (HCM). The pathogenic MyBPC3 P459fs mutation has been reported in HCM patients. However, there was limited knowledge of the structure-function relationships and potential pathways in clinical HCM with MyBPC3 P459fs mutation. Methods We used multi-omics approaches and super-resolution imaging to explore the effects of MyBPC3 P459fs mutation on humans and cells. HCM patients carrying MyBPC3 P459fs mutation (MyBPC3-P459fs HCMs) and healthy controls (HCs) were evaluated for myocardial function using both conventional and advanced echocardiography. In parallel, H9C2 myocardial cells infected with either MyBPC3 P459fs mutation (P459fs cells) or its wild type (WT cells) were investigated for myocardial fiber formation and the potential pathways behind this using super-resolution imaging and metabolomics and proteomics. Results First, conventional and advanced echocardiography showed that MyBPC3-P459fs HCMs exhibited left ventricular diastolic and systolic dysfunction. Subsequently, super-resolution imaging indicated that P459fs cells formed fewer and shorter myocardial fibers in the cytoplasm compared to WT cells. Moreover, our metabolomic and proteomic data suggested several key components of mitochondrial membrane integrity, myocardial remodeling, myocardial energy metabolism, oxidative stress, inflammation, and actin binding capacity were significantly altered in response to P459fs mutation. Conclusions This investigation indicated myocardial dysfunction and myocardial fiber disarray in clinical HCMs with MyBPC3 P459fs mutation and added potential pathways underlying this. These findings provided a link between the observed structural and functional disorders in MyBPC3 P459fs mutation and its onset of HCM pathogenesis and might have a significant translational contribution to effective treatment in HCM patients with MyBPC3 P459fs mutation.
Collapse
Affiliation(s)
- Yupeng Wu
- Department of Ultrasound, The People’s Hospital of China Medical University, The People’s Hospital of Liaoning Province, Shenyang, China
- Department of Neurosurgery, The People’s Hospital of China Medical University, The People’s Hospital of Liaoning Province, Shenyang, China
| | - Yuzhu Zhang
- Department of Ultrasound, The People’s Hospital of China Medical University, The People’s Hospital of Liaoning Province, Shenyang, China
- Shenyang Clinical Medical Research Center for Ultrasound, The People’s Hospital of China Medical University, The People’s Hospital of Liaoning Province, Shenyang, China
| | - Qirui Zheng
- Department of Ultrasound, The People’s Hospital of China Medical University, The People’s Hospital of Liaoning Province, Shenyang, China
- Shenyang Clinical Medical Research Center for Ultrasound, The People’s Hospital of China Medical University, The People’s Hospital of Liaoning Province, Shenyang, China
| | - Qiyuan Wang
- Department of Ultrasound, The People’s Hospital of China Medical University, The People’s Hospital of Liaoning Province, Shenyang, China
- Shenyang Clinical Medical Research Center for Ultrasound, The People’s Hospital of China Medical University, The People’s Hospital of Liaoning Province, Shenyang, China
| | - Xingyu Fang
- Department of Ultrasound, The People’s Hospital of China Medical University, The People’s Hospital of Liaoning Province, Shenyang, China
- Shenyang Clinical Medical Research Center for Ultrasound, The People’s Hospital of China Medical University, The People’s Hospital of Liaoning Province, Shenyang, China
| | - Zaihan Zhu
- Department of Ultrasound, The People’s Hospital of China Medical University, The People’s Hospital of Liaoning Province, Shenyang, China
- Shenyang Clinical Medical Research Center for Ultrasound, The People’s Hospital of China Medical University, The People’s Hospital of Liaoning Province, Shenyang, China
| | - Jing Lu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Key Laboratory of Flavor Chemistry, School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Dandan Sun
- Department of Ultrasound, The People’s Hospital of China Medical University, The People’s Hospital of Liaoning Province, Shenyang, China
- Shenyang Clinical Medical Research Center for Ultrasound, The People’s Hospital of China Medical University, The People’s Hospital of Liaoning Province, Shenyang, China
| |
Collapse
|
2
|
Hong Y, Xi HT, Yang XY, Su WW, Li XP. Pathogenic genes and clinical prognosis in hypertrophic cardiomyopathy. World J Cardiol 2025; 17:99595. [PMID: 39866219 PMCID: PMC11755131 DOI: 10.4330/wjc.v17.i1.99595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/23/2024] [Accepted: 12/27/2024] [Indexed: 01/21/2025] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is an autosomal dominant inherited cardiomyopathy characterized by left ventricular hypertrophy. It is one of the chief causes of sudden cardiac death in younger people and athletes. Molecular-genetic studies have confirmed that the vast majority of HCM is caused by mutations in genes encoding sarcomere proteins. HCM has a relatively wide phenotypic heterogeneity, varying from asymptomatic to sudden cardiac death, because of the many different mutations and pathogenic genes underlying it. Many studies have explored the clinical symptoms and prognosis of HCM, emphasizing the importance of genotype in evaluating patient prognosis and guiding the clinical management of HCM. To elaborate the main pathogenic genes and phenotypic prognosis in HCM to promote a better understanding of this genetic disease. Retrospective analysis of literature to evaluate the association between underlying gene mutations and clinical phenotypes in HCM patients. As sequencing technology advances, the pathogenic gene mutation spectrum and phenotypic characteristics of HCM are gradually becoming clearer. HCM is a widespread inherited disease with a highly variable clinical phenotype. The precise mechanisms linking known pathogenic gene mutations and the clinical course of this heterogeneous condition remain elusive.
Collapse
Affiliation(s)
- Ying Hong
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, Sichuan Province, China
- Department of Cardiology, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, Sichuan Province, China
| | - Hu-Tao Xi
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, Sichuan Province, China
| | - Xin-Yi Yang
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, Sichuan Province, China
| | - Wilber W Su
- Department of Cardiology, Banner-University Medical Center, Phoenix, AZ 85006, United States
| | - Xiao-Ping Li
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, Sichuan Province, China.
| |
Collapse
|
3
|
Huang S, Li J, Li Q, Wang Q, Zhou X, Chen J, Chen X, Bellou A, Zhuang J, Lei L. Cardiomyopathy: pathogenesis and therapeutic interventions. MedComm (Beijing) 2024; 5:e772. [PMID: 39465141 PMCID: PMC11502724 DOI: 10.1002/mco2.772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/12/2024] [Accepted: 09/16/2024] [Indexed: 10/29/2024] Open
Abstract
Cardiomyopathy is a group of disease characterized by structural and functional damage to the myocardium. The etiologies of cardiomyopathies are diverse, spanning from genetic mutations impacting fundamental myocardial functions to systemic disorders that result in widespread cardiac damage. Many specific gene mutations cause primary cardiomyopathy. Environmental factors and metabolic disorders may also lead to the occurrence of cardiomyopathy. This review provides an in-depth analysis of the current understanding of the pathogenesis of various cardiomyopathies, highlighting the molecular and cellular mechanisms that contribute to their development and progression. The current therapeutic interventions for cardiomyopathies range from pharmacological interventions to mechanical support and heart transplantation. Gene therapy and cell therapy, propelled by ongoing advancements in overarching strategies and methodologies, has also emerged as a pivotal clinical intervention for a variety of diseases. The increasing number of causal gene of cardiomyopathies have been identified in recent studies. Therefore, gene therapy targeting causal genes holds promise in offering therapeutic advantages to individuals diagnosed with cardiomyopathies. Acting as a more precise approach to gene therapy, they are gradually emerging as a substitute for traditional gene therapy. This article reviews pathogenesis and therapeutic interventions for different cardiomyopathies.
Collapse
Affiliation(s)
- Shitong Huang
- Department of Cardiac Surgical Intensive Care UnitGuangdong Cardiovascular InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
| | - Jiaxin Li
- Department of Cardiac Surgical Intensive Care UnitGuangdong Cardiovascular InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
| | - Qiuying Li
- Department of Cardiac Surgical Intensive Care UnitGuangdong Cardiovascular InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
| | - Qiuyu Wang
- Department of Cardiac Surgical Intensive Care UnitGuangdong Cardiovascular InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
| | - Xianwu Zhou
- Department of Cardiovascular SurgeryZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Jimei Chen
- Department of Cardiovascular SurgeryGuangdong Cardiovascular InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
- Department of Cardiovascular SurgeryGuangdong Provincial Key Laboratory of South China Structural Heart DiseaseGuangzhouChina
| | - Xuanhui Chen
- Department of Medical Big Data CenterGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
| | - Abdelouahab Bellou
- Department of Emergency Medicine, Institute of Sciences in Emergency MedicineGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
- Department of Emergency MedicineWayne State University School of MedicineDetroitMichiganUSA
| | - Jian Zhuang
- Department of Cardiovascular SurgeryGuangdong Cardiovascular InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
- Department of Cardiovascular SurgeryGuangdong Provincial Key Laboratory of South China Structural Heart DiseaseGuangzhouChina
| | - Liming Lei
- Department of Cardiac Surgical Intensive Care UnitGuangdong Cardiovascular InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
- Department of Cardiovascular SurgeryGuangdong Provincial Key Laboratory of South China Structural Heart DiseaseGuangzhouChina
| |
Collapse
|
4
|
Wong FL, Bunch TA, Lepak VC, Steedman AL, Colson BA. Cardiac myosin-binding protein C N-terminal interactions with myosin and actin filaments: Opposite effects of phosphorylation and M-domain mutations. J Mol Cell Cardiol 2024; 186:125-137. [PMID: 38008210 PMCID: PMC10872421 DOI: 10.1016/j.yjmcc.2023.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 10/26/2023] [Accepted: 11/17/2023] [Indexed: 11/28/2023]
Abstract
N-terminal cardiac myosin-binding protein C (cMyBP-C) domains (C0-C2) bind to thick (myosin) and thin (actin) filaments to coordinate contraction and relaxation of the heart. These interactions are regulated by phosphorylation of the M-domain situated between domains C1 and C2. In cardiomyopathies and heart failure, phosphorylation of cMyBP-C is significantly altered. We aimed to investigate how cMyBP-C interacts with myosin and actin. We developed complementary, high-throughput, C0-C2 FRET-based binding assays for myosin and actin to characterize the effects due to 5 HCM-linked variants or functional mutations in unphosphorylated and phosphorylated C0-C2. The assays indicated that phosphorylation decreases binding to both myosin and actin, whereas the HCM mutations in M-domain generally increase binding. The effects of mutations were greatest in phosphorylated C0-C2, and some mutations had a larger effect on actin than myosin binding. Phosphorylation also altered the spatial relationship of the probes on C0-C2 and actin. The magnitude of these structural changes was dependent on C0-C2 probe location (C0, C1, or M-domain). We conclude that binding can differ between myosin and actin due to phosphorylation or mutations. Additionally, these variables can change the mode of binding, affecting which of the interactions in cMyBP-C N-terminal domains with myosin or actin take place. The opposite effects of phosphorylation and M-domain mutations is consistent with the idea that cMyBP-C phosphorylation is critical for normal cardiac function. The precision of these assays is indicative of their usefulness in high-throughput screening of drug libraries for targeting cMyBP-C as therapy.
Collapse
Affiliation(s)
- Fiona L Wong
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85724, United States
| | - Thomas A Bunch
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85724, United States
| | - Victoria C Lepak
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85724, United States
| | - Allison L Steedman
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85724, United States
| | - Brett A Colson
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85724, United States.
| |
Collapse
|
5
|
Szulik MW, Reyes-Múgica M, Marker DF, Gomez AM, Zinn MD, Walsh LK, Ochoa JP, Franklin S, Ghaloul-Gonzalez L. Identification of Two Homozygous Variants in MYBPC3 and SMYD1 Genes Associated with Severe Infantile Cardiomyopathy. Genes (Basel) 2023; 14:659. [PMID: 36980931 PMCID: PMC10048717 DOI: 10.3390/genes14030659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/15/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
Mutations in cardiac genes are one of the primary causes of infantile cardiomyopathy. In this study, we report the genetic findings of two siblings carrying variations in the MYBPC3 and SMYD1 genes. The first patient is a female proband exhibiting hypertrophic cardiomyopathy (HCM) and biventricular heart failure carrying a truncating homozygous MYBPC3 variant c.1224-52G>A (IVS13-52G>A) and a novel homozygous variant (c.302A>G; p.Asn101Ser) in the SMYD1 gene. The second patient, the proband's sibling, is a male infant diagnosed with hypertrophic cardiomyopathy and carries the same homozygous MYBPC3 variant. While this specific MYBPC3 variant (c.1224-52G>A, IVS13-52G>A) has been previously reported to be associated with adult-onset hypertrophic cardiomyopathy, this is the first report linking it to infantile cardiomyopathy. In addition, this work describes, for the first time, a novel SMYD1 variant (c.302A>G; p.Asn101Ser) that has never been reported. We performed a histopathological evaluation of tissues collected from both probands and show that these variants lead to myofibrillar disarray, reduced and irregular mitochondrial cristae and cardiac fibrosis. Together, these results provide critical insight into the molecular functionality of these genes in human cardiac physiology.
Collapse
Affiliation(s)
- Marta W. Szulik
- Nora Eccles Harrison Cardiovascular Research & Training Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Miguel Reyes-Múgica
- Division of Pediatric Pathology, Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Daniel F. Marker
- Division of Neuropathology, Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Ana M. Gomez
- Division of Pediatric Pathology, Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Matthew D. Zinn
- Division of Cardiology, Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Leslie K. Walsh
- Division of Genetic and Genomic Medicine, Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Juan Pablo Ochoa
- Biomedical Research Institute of A Coruña, 15006 A Coruña, Spain
- Cardiovascular Genetics, Health In Code, 15008 A Coruña, Spain
| | - Sarah Franklin
- Nora Eccles Harrison Cardiovascular Research & Training Institute, University of Utah, Salt Lake City, UT 84112, USA
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Lina Ghaloul-Gonzalez
- Division of Genetic and Genomic Medicine, Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA 15224, USA
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA 15224, USA
| |
Collapse
|
6
|
Zou X, Ouyang H, Lin F, Zhang H, Yang Y, Pang D, Han R, Tang X. MYBPC3 deficiency in cardiac fibroblasts drives their activation and contributes to fibrosis. Cell Death Dis 2022; 13:948. [PMID: 36357371 PMCID: PMC9649783 DOI: 10.1038/s41419-022-05403-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 11/01/2022] [Accepted: 11/03/2022] [Indexed: 11/11/2022]
Abstract
Genetic mutations in the MYBPC3 gene encoding cardiac myosin binding protein C (cMyBP-C) are the most common cause of hypertrophic cardiomyopathy (HCM). Myocardial fibrosis (MF) plays a critical role in the development of HCM. However, the mechanism for mutant MYBPC3-induced MF is not well defined. In this study, we developed a R495Q mutant pig model using cytosine base editing and observed an early-onset MF in these mutant pigs shortly after birth. Unexpectedly, we found that the "cardiac-specific" MYBPC3 gene was actually expressed in cardiac fibroblasts from different species as well as NIH3T3 fibroblasts at the transcription and protein levels. CRISPR-mediated disruption of Mybpc3 in NIH3T3 fibroblasts activated nuclear factor κB (NF-κB) signaling pathway, which increased the expression of transforming growth factor beta (TGF-β1) and other pro-inflammatory genes. The upregulation of TGF-β1 promoted the expression of hypoxia-inducible factor-1 subunit α (HIF-1α) and its downstream targets involved in glycolysis such as GLUT1, PFK, and LDHA. Consequently, the enhanced aerobic glycolysis with higher rate of ATP biosynthesis accelerated the activation of cardiac fibroblasts, contributing to the development of HCM. This work reveals an intrinsic role of MYBPC3 in maintaining cardiac fibroblast homeostasis and disruption of MYBPC3 in these cells contributes to the disease pathogenesis of HCM.
Collapse
Affiliation(s)
- Xiaodong Zou
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Hongsheng Ouyang
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, Changchun, Jilin Province, People's Republic of China
- Chongqing Research Institute of Jilin University, Chongqing, China
| | - Feng Lin
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Huanyu Zhang
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Yang Yang
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Daxin Pang
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, Changchun, Jilin Province, People's Republic of China
- Chongqing Research Institute of Jilin University, Chongqing, China
| | - Renzhi Han
- Department of Surgery, Davis Heart and Lung Research Institute, Biomedical Sciences Graduate Program, Biophysics Graduate Program, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA.
| | - Xiaochun Tang
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, Changchun, Jilin Province, People's Republic of China.
- Chongqing Research Institute of Jilin University, Chongqing, China.
| |
Collapse
|
7
|
Hou L, Kumar M, Anand P, Chen Y, El-Bizri N, Pickens CJ, Seganish WM, Sadayappan S, Swaminath G. Modulation of myosin by cardiac myosin binding protein-C peptides improves cardiac contractility in ex-vivo experimental heart failure models. Sci Rep 2022; 12:4337. [PMID: 35288601 PMCID: PMC8921245 DOI: 10.1038/s41598-022-08169-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 03/03/2022] [Indexed: 01/23/2023] Open
Abstract
Cardiac myosin binding protein-C (cMyBP-C) is an important regulator of sarcomeric function. Reduced phosphorylation of cMyBP-C has been linked to compromised contractility in heart failure patients. Here, we used previously published cMyBP-C peptides 302A and 302S, surrogates of the regulatory phosphorylation site serine 302, as a tool to determine the effects of modulating the dephosphorylation state of cMyBP-C on cardiac contraction and relaxation in experimental heart failure (HF) models in vitro. Both peptides increased the contractility of papillary muscle fibers isolated from a mouse model expressing cMyBP-C phospho-ablation (cMyBP-CAAA) constitutively. Peptide 302A, in particular, could also improve the force redevelopment rate (ktr) in papillary muscle fibers from cMyBP-CAAA (nonphosphorylated alanines) mice. Consistent with the above findings, both peptides increased ATPase rates in myofibrils isolated from rats with myocardial infarction (MI), but not from sham rats. Furthermore, in the cMyBP-CAAA mouse model, both peptides improved ATPase hydrolysis rates. These changes were not observed in non-transgenic (NTG) mice or sham rats, indicating the specific effects of these peptides in regulating the dephosphorylation state of cMyBP-C under the pathological conditions of HF. Taken together, these studies demonstrate that modulation of cMyBP-C dephosphorylation state can be a therapeutic approach to improve myosin function, sarcomere contractility and relaxation after an adverse cardiac event. Therefore, targeting cMyBP-C could potentially improve overall cardiac performance as a complement to standard-care drugs in HF patients.
Collapse
Affiliation(s)
- Luqia Hou
- Cardiometabolic Department, Merck & Co., Inc., 213 East Grand Ave., South San Francisco, CA, 94080, USA
| | - Mohit Kumar
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, Heart, Lung and Vascular Institute, University of Cincinnati, Cincinnati, OH, 45267, USA
| | - Priti Anand
- Cardiometabolic Department, Merck & Co., Inc., 213 East Grand Ave., South San Francisco, CA, 94080, USA
| | - Yinhong Chen
- Cardiometabolic Department, Merck & Co., Inc., 213 East Grand Ave., South San Francisco, CA, 94080, USA
| | - Nesrine El-Bizri
- Cardiometabolic Department, Merck & Co., Inc., 213 East Grand Ave., South San Francisco, CA, 94080, USA
| | - Chad J Pickens
- Analytical R&D, Merck & Co., Inc., South San Francisco, CA, 94080, USA
| | - W Michael Seganish
- Discovery Chemistry, Merck & Co., Inc., South San Francisco, CA, 94080, USA
| | - Sakthivel Sadayappan
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, Heart, Lung and Vascular Institute, University of Cincinnati, Cincinnati, OH, 45267, USA
| | - Gayathri Swaminath
- Cardiometabolic Department, Merck & Co., Inc., 213 East Grand Ave., South San Francisco, CA, 94080, USA.
| |
Collapse
|
8
|
Emrahi L, Hosseinzadeh H, Tabrizi MT. Two rare variants in the MYBPC3 gene associated with familial hypertrophic cardiomyopathy. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2021.101471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
9
|
Suay-Corredera C, Alegre-Cebollada J. The mechanics of the heart: zooming in on hypertrophic cardiomyopathy and cMyBP-C. FEBS Lett 2022; 596:703-746. [PMID: 35224729 DOI: 10.1002/1873-3468.14301] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/10/2022] [Accepted: 01/14/2022] [Indexed: 11/10/2022]
Abstract
Hypertrophic cardiomyopathy (HCM), a disease characterized by cardiac muscle hypertrophy and hypercontractility, is the most frequently inherited disorder of the heart. HCM is mainly caused by variants in genes encoding proteins of the sarcomere, the basic contractile unit of cardiomyocytes. The most frequently mutated among them is MYBPC3, which encodes cardiac myosin-binding protein C (cMyBP-C), a key regulator of sarcomere contraction. In this review, we summarize clinical and genetic aspects of HCM and provide updated information on the function of the healthy and HCM sarcomere, as well as on emerging therapeutic options targeting sarcomere mechanical activity. Building on what is known about cMyBP-C activity, we examine different pathogenicity drivers by which MYBPC3 variants can cause disease, focussing on protein haploinsufficiency as a common pathomechanism also in nontruncating variants. Finally, we discuss recent evidence correlating altered cMyBP-C mechanical properties with HCM development.
Collapse
|
10
|
de Boer RA, Heymans S, Backs J, Carrier L, Coats AJS, Dimmeler S, Eschenhagen T, Filippatos G, Gepstein L, Hulot JS, Knöll R, Kupatt C, Linke WA, Seidman CE, Tocchetti CG, van der Velden J, Walsh R, Seferovic PM, Thum T. Targeted therapies in genetic dilated and hypertrophic cardiomyopathies: From molecular mechanisms to therapeutic targets. Eur J Heart Fail 2021; 24:406-420. [PMID: 34969177 PMCID: PMC9305112 DOI: 10.1002/ejhf.2414] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 12/17/2021] [Accepted: 12/28/2021] [Indexed: 11/15/2022] Open
Abstract
Genetic cardiomyopathies are disorders of the cardiac muscle, most often explained by pathogenic mutations in genes encoding sarcomere, cytoskeleton, or ion channel proteins. Clinical phenotypes such as heart failure and arrhythmia are classically treated with generic drugs, but aetiology‐specific and targeted treatments are lacking. As a result, cardiomyopathies still present a major burden to society, and affect many young and older patients. The Translational Committee of the Heart Failure Association (HFA) and the Working Group of Myocardial Function of the European Society of Cardiology (ESC) organized a workshop to discuss recent advances in molecular and physiological studies of various forms of cardiomyopathies. The study of cardiomyopathies has intensified after several new study setups became available, such as induced pluripotent stem cells, three‐dimensional printing of cells, use of scaffolds and engineered heart tissue, with convincing human validation studies. Furthermore, our knowledge on the consequences of mutated proteins has deepened, with relevance for cellular homeostasis, protein quality control and toxicity, often specific to particular cardiomyopathies, with precise effects explaining the aberrations. This has opened up new avenues to treat cardiomyopathies, using contemporary techniques from the molecular toolbox, such as gene editing and repair using CRISPR‐Cas9 techniques, antisense therapies, novel designer drugs, and RNA therapies. In this article, we discuss the connection between biology and diverse clinical presentation, as well as promising new medications and therapeutic avenues, which may be instrumental to come to precision medicine of genetic cardiomyopathies.
Collapse
Affiliation(s)
- Rudolf A de Boer
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713, GZ, Groningen, the Netherlands
| | - Stephane Heymans
- Department of Cardiology, Maastricht University Medical Center (MUMC+), PO Box 5800, 6202, AZ, Maastricht, the Netherlands.,Department of Cardiovascular Sciences, University of Leuven, Belgium
| | - Johannes Backs
- Institute of Experimental Cardiology, Heidelberg University, Heidelberg, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Lucie Carrier
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,German Centre for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | | | - Stefanie Dimmeler
- Institute for Cardiovascular Regeneration, Goethe University, Frankfurt, Germany.,German Center for Cardiovascular Research (DZHK), Frankfurt, Germany.,Cardio-Pulmonary Institute (CPI), Frankfurt, Germany
| | - Thomas Eschenhagen
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,German Centre for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Gerasimos Filippatos
- Department of Cardiology, National and Kapodistrian University of Athens, School of Medicine, Attikon University Hospital, Athens, Greece
| | - Lior Gepstein
- Department of Cardiology, Rambam Health Care Campus, Haaliya Street, 31096, Haifa, Israel
| | - Jean-Sebastien Hulot
- Université de Paris, INSERM, PARCC, F-75006, Paris, France.,CIC1418 and DMU CARTE, AP- HP, Hôpital Européen Georges-Pompidou, F-75015, Paris, France
| | - Ralph Knöll
- Department of Medicine, Integrated Cardio Metabolic Centre (ICMC), Heart and Vascular Theme, Karolinska Institute, Stockholm, SE-171 77, Sweden.,Bioscience, Cardiovascular, Renal & Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Christian Kupatt
- Department of Cardiology, University Clinic rechts der Isar, Technical University of Munich, Germany and German Center for Cardiovascular Research (DZHK), Munich Heart Alliance
| | - Wolfgang A Linke
- Institute of Physiology II, University Hospital Muenster, Robert-Koch-Str. 27B, 48149, Muenster, Germany
| | - Christine E Seidman
- Department of Genetics, Harvard Medical School, Boston, MA, USA.,Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA.,Howard Hughes Medical Institute, Harvard University, Boston, MA, USA
| | - C Gabriele Tocchetti
- Department of Translational Medical Sciences, Center for Basic and Clinical Immunology Research (CISI); Interdepartmental Center for Clinical and Translational Research (CIRCET); Interdepartmental Hypertension Research Center (CIRIAPA), Federico II University, Naples, Italy
| | - Jolanda van der Velden
- Department of Physiology, Amsterdam UMC, Amsterdam Cardiovascular Sciences, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Roddy Walsh
- Department of Clinical and Experimental Cardiology, Amsterdam UMC, Amsterdam Cardiovascular Sciences, University of Amsterdam, Heart Center, Amsterdam, The Netherlands
| | - Petar M Seferovic
- Serbian Academy of Sciences and Arts, Belgrade, 11000, Serbia.,Faculty of Medicine, University of Belgrade, Belgrade, 11000, Serbia
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany.,Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
| |
Collapse
|
11
|
Pradeep R, Akram A, Proute MC, Kothur NR, Georgiou P, Serhiyenia T, Shi W, Kerolos ME, Mostafa JA. Understanding the Genetic and Molecular Basis of Familial Hypertrophic Cardiomyopathy and the Current Trends in Gene Therapy for Its Management. Cureus 2021; 13:e17548. [PMID: 34646605 PMCID: PMC8481153 DOI: 10.7759/cureus.17548] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 08/28/2021] [Indexed: 01/16/2023] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is a genetically acquired disease of cardiac myocytes. Studies show that 70% of this disease is a result of different mutations in various sarcomere genes. This review aims to discuss several genetic mutations, epigenetic factors, and signal transduction pathways leading to the development of HCM. In addition, this article elaborates on recent advances in gene therapies and their implications for managing this condition. We start by discussing the founding mutations in HCM and their effect on power stroke generation. The less explored field of epigenetics including methylation, acetylation, and the role of different micro RNAs in the development of cardiac muscle hypertrophy has been highlighted in this article. The signal transduction pathways that lead to gene transcription, which in turn lead to increased protein synthesis of cardiac muscle fibers are elaborated. Finally, the microscopic events leading to the pathophysiologic macro events of cardiac failure, and the current experimental trials of gene therapy models, and the clustered regularly interspaced short palindromic repeats (CRISPR) type 2 system proteins, are discussed. We have concluded our discussion by emphasizing the need for more studies on epigenomics and experimental designs for gene therapy in HCM patients. This review focuses on the process of HCM from initial mutation to the development of phenotypic expression and various points of intervention in cardiac myocardial hypertrophy development.
Collapse
Affiliation(s)
- Roshini Pradeep
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Aqsa Akram
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Matthew C Proute
- Family Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Nageshwar R Kothur
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Petros Georgiou
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Tatsiana Serhiyenia
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Wangpan Shi
- Pathology, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Mina E Kerolos
- Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Jihan A Mostafa
- Psychiatry/Cognitive Behavioural Psychotherapy, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| |
Collapse
|
12
|
Jia WW, Lu JZ, Zhang L, Cao HX, Qi YY, Zhu HY, Bai ZH, Zhang SM, Qiao ZB, Bao Y, Liu ZM. An induced pluripotent stem cell line (EHTJUi003-A) generated from a neonate with c.1377delC mutation in the gene MYBPC3 causing hypertrophic cardiomyopathy. Stem Cell Res 2021; 53:102328. [PMID: 34087980 DOI: 10.1016/j.scr.2021.102328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 03/28/2021] [Accepted: 03/29/2021] [Indexed: 10/21/2022] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is an autosomal dominant heart disease. An induced pluripotent stem cell line (EHTJUi003-A) was generated from umbilical cord blood mononuclear cells (UCBMCs) of a female neonate with heterozygous mutation of p.L460Wfs (c.1377delC) in the MYBPC3 gene. This iPSC model offers a very valuable resource to study the pathological mechanism of HCM in vitro.
Collapse
Affiliation(s)
- Wen-Wen Jia
- Institute for Regenerative Medicine, National Stem Cell Translational Resource Center, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Ji-Zhen Lu
- Institute for Regenerative Medicine, National Stem Cell Translational Resource Center, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Lu Zhang
- Institute for Regenerative Medicine, National Stem Cell Translational Resource Center, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Hong-Xia Cao
- Institute for Regenerative Medicine, National Stem Cell Translational Resource Center, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Yi-Yao Qi
- Institute for Regenerative Medicine, National Stem Cell Translational Resource Center, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Han-Yu Zhu
- Institute for Regenerative Medicine, National Stem Cell Translational Resource Center, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Zhi-Hui Bai
- Institute for Regenerative Medicine, National Stem Cell Translational Resource Center, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Shou-Mei Zhang
- Institute for Regenerative Medicine, National Stem Cell Translational Resource Center, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Zhi-Bin Qiao
- Institute for Regenerative Medicine, National Stem Cell Translational Resource Center, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Yan Bao
- Institute for Regenerative Medicine, National Stem Cell Translational Resource Center, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.
| | - Zhong-Min Liu
- Institute for Regenerative Medicine, National Stem Cell Translational Resource Center, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.
| |
Collapse
|
13
|
Shrivastava A, Haase T, Zeller T, Schulte C. Biomarkers for Heart Failure Prognosis: Proteins, Genetic Scores and Non-coding RNAs. Front Cardiovasc Med 2020; 7:601364. [PMID: 33330662 PMCID: PMC7719677 DOI: 10.3389/fcvm.2020.601364] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 10/14/2020] [Indexed: 12/13/2022] Open
Abstract
Heart failure (HF) is a complex disease in which cardiomyocyte injury leads to a cascade of inflammatory and fibrosis pathway activation, thereby causing decrease in cardiac function. As a result, several biomolecules are released which can be identified easily in circulating body fluids. The complex biological processes involved in the development and worsening of HF require an early treatment strategy to stop deterioration of cardiac function. Circulating biomarkers provide not only an ideal platform to detect subclinical changes, their clinical application also offers the opportunity to monitor disease treatment. Many of these biomarkers can be quantified with high sensitivity; allowing their clinical application to be evaluated beyond diagnostic purposes as potential tools for HF prognosis. Though the field of biomarkers is dominated by protein molecules, non-coding RNAs (microRNAs, long non-coding RNAs, and circular RNAs) are novel and promising biomarker candidates that encompass several ideal characteristics required in the biomarker field. The application of genetic biomarkers as genetic risk scores in disease prognosis, albeit in its infancy, holds promise to improve disease risk estimation. Despite the multitude of biomarkers that have been available and identified, the majority of novel biomarker candidates are not cardiac-specific, and instead may simply be a readout of systemic inflammation or other pathological processes. Thus, the true value of novel biomarker candidates in HF prognostication remains unclear. In this article, we discuss the current state of application of protein, genetic as well as non-coding RNA biomarkers in HF risk prognosis.
Collapse
Affiliation(s)
- Apurva Shrivastava
- Clinic for Cardiology, University Heart and Vascular Center, University Medical Center Eppendorf, Hamburg, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Luebeck, University Medical Center Eppendorf, Hamburg, Germany
| | - Tina Haase
- Clinic for Cardiology, University Heart and Vascular Center, University Medical Center Eppendorf, Hamburg, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Luebeck, University Medical Center Eppendorf, Hamburg, Germany
| | - Tanja Zeller
- Clinic for Cardiology, University Heart and Vascular Center, University Medical Center Eppendorf, Hamburg, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Luebeck, University Medical Center Eppendorf, Hamburg, Germany
| | - Christian Schulte
- Clinic for Cardiology, University Heart and Vascular Center, University Medical Center Eppendorf, Hamburg, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Luebeck, University Medical Center Eppendorf, Hamburg, Germany.,King's British Heart Foundation Centre, King's College London, London, United Kingdom
| |
Collapse
|
14
|
Carrier L. Targeting the population for gene therapy with MYBPC3. J Mol Cell Cardiol 2020; 150:101-108. [PMID: 33049255 DOI: 10.1016/j.yjmcc.2020.10.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/02/2020] [Accepted: 10/05/2020] [Indexed: 12/14/2022]
Abstract
Hypertrophic cardiomyopathy (HCM) is the most prevalent inherited myocardial disease characterized by unexplained left ventricular hypertrophy, diastolic dysfunction and myocardial disarray. Clinical heterogeneity is wide, ranging from asymptomatic individuals to heart failure, arrhythmias and sudden death. HCM is often caused by mutations in genes encoding components of the sarcomere. Among them, MYBPC3, encoding cardiac myosin-myosin binding protein C is the most frequently mutated gene. Three quarter of pathogenic or likely pathogenic mutations in MYBPC3 are truncating and the resulting protein was not detected in HCM myectomy samples. The overall prognosis of the patients is excellent if managed with contemporary therapy, but still remains a significant disease-related health burden, and carriers with double heterozygous, compound heterozygous and homozygous mutations often display a more severe clinical phenotype than single heterozygotes. We propose these individuals as a good target population for MYBPC3 gene therapy.
Collapse
Affiliation(s)
- Lucie Carrier
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Hamburg, Kiel, Lübeck, Germany.
| |
Collapse
|
15
|
Zhao X, Hou C, Xiao T, Xie L, Li Y, Jia J, Zheng J, Zhang Y, Xu M. An interesting Mybpc3 heterozygous mutation associated with bicuspid aortic valve. Transl Pediatr 2020; 9:610-618. [PMID: 33209723 PMCID: PMC7658766 DOI: 10.21037/tp-20-81] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Bicuspid aortic valve (BAV) is a common congenital heart defect (0.5-2.0% in the adult), potentially an onset factor of aortic stenosis (AS). Increasing evidence demonstrates that genetic risk factors play a key role in the pathogenesis of BAV, but the genetic basis underlying this cardiac malformation remains poorly understood. METHODS Whole exome sequencing (WES) was utilized to uncover genetic variants associated with BAV. Pathogenicity score and mode of inheritance through bioinformatics tools were undertook to identify the possible disease-causing mutation. RESULTS A heterozygous Ala58Val mutation in Myosin binding protein C (Mybpc3) was identified out of 2,840 variants in an 11-year-old female patient. The proband and her father were confirmed to be heterozygous carriers of 173 C>T hybridization, and her mother was homozygous negative of the mutation as confirmed through Sanger sequencing. Expression of mRNA in the proband and her father, who also carries the mutation, were almost half of proband's mother. Indicating Mybpc3 (p.Ala58Val) mutation affected its expression, and may play crucial roles for heritable BAV. CONCLUSIONS To our knowledge, this is the first time to report Mybpc3 heterozygous variant associated with heritable BAV. The relationship between the location of Mybpc3 mutation and BAV may provide a novel perspective of understanding this disorder.
Collapse
Affiliation(s)
- Xiaopei Zhao
- Department of Cardiology, Shanghai Children's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Cuilan Hou
- Department of Cardiology, Shanghai Children's Hospital, Shanghai Jiaotong University, Shanghai, China.,NHC Key Laboratory of Medical Embryogenesis and Developmental Molecular Biology, Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai, China
| | - Tingting Xiao
- Department of Cardiology, Shanghai Children's Hospital, Shanghai Jiaotong University, Shanghai, China.,NHC Key Laboratory of Medical Embryogenesis and Developmental Molecular Biology, Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai, China
| | - Lijian Xie
- Department of Cardiology, Shanghai Children's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Yun Li
- Department of Cardiology, Shanghai Children's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Jia Jia
- Shanghai Center for Bioinformation Technology, Shanghai, China
| | - Junming Zheng
- Department of Cardiology, Shanghai Children's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Yongwei Zhang
- Department of Cardiology, Shanghai Children's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Meng Xu
- Department of Cardiology, Shanghai Children's Hospital, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
16
|
Maltês S, Lopes LR. New perspectives in the pharmacological treatment of hypertrophic cardiomyopathy. Rev Port Cardiol 2020; 39:99-109. [PMID: 32245685 DOI: 10.1016/j.repc.2019.03.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 02/17/2019] [Accepted: 03/10/2019] [Indexed: 10/24/2022] Open
Abstract
Hypertrophic cardiomyopathy is an inherited cardiac disease and a major cause of heart failure and sudden death. Even though it was described more than 50 years ago, sarcomeric hypertrophic cardiomyopathy still lacks a disease-specific treatment. The drugs routinely used alleviate symptoms but do not prevent or revert the phenotype. With recent advances in the knowledge about the genetics and pathophysiology of hypertrophic cardiomyopathy, new genetic and pharmacological approaches have been recently discovered and studied that, by influencing different pathways involved in this disease, have the potential to function as disease-modifying therapies. These promising new pharmacological and genetic therapies will be the focus of this review.
Collapse
Affiliation(s)
- Sérgio Maltês
- Clínica Universitária de Cardiologia, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal.
| | - Luis Rocha Lopes
- Centre for Heart Muscle Disease, Institute of Cardiovascular Science, University College London, Inglaterra; St. Bartholomew's Hospital, Barts Heart Centre, London, Inglaterra; Centro Cardiovascular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
17
|
Maltês S, Lopes LR. New perspectives in the pharmacological treatment of hypertrophic cardiomyopathy. REVISTA PORTUGUESA DE CARDIOLOGIA (ENGLISH EDITION) 2020. [DOI: 10.1016/j.repce.2019.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
18
|
Viola HM, Hool LC. Impaired calcium handling and mitochondrial metabolic dysfunction as early markers of hypertrophic cardiomyopathy. Arch Biochem Biophys 2019; 665:166-174. [PMID: 30885674 DOI: 10.1016/j.abb.2019.03.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 03/08/2019] [Accepted: 03/11/2019] [Indexed: 02/07/2023]
Abstract
Hypertrophic cardiomyopathy (HCM) is a primary myocardial disorder, characterised by myocyte remodeling, disorganisation of sarcomeric proteins, impaired energy metabolism and altered cardiac contractility. Gene mutations encoding cardiac contractile proteins account for 60% of HCM aetiology. Current drug therapy including L-type calcium channel antagonists, are used to manage symptoms in patients with overt HCM, but no treatment exists that can reverse or prevent the cardiomyopathy. Design of effective drug therapy will require a clear understanding of the early pathophysiological mechanisms of the disease. Numerous studies have investigated specific aspects of HCM pathophysiology. This review brings these findings together, in order to develop a holistic understanding of the early pathophysiological mechanisms of the disease. We focus on gene mutations in cardiac myosin binding protein-C, β-cardiac myosin heavy chain, cardiac troponin I, and cardiac troponin T, that comprise the majority of all HCM sarcomeric gene mutations. We find that although some similarities exist, each mutation leads to mutation-specific alterations in calcium handling, myofilament calcium sensitivity and mitochondrial metabolic function. This may contribute to the observed clinical phenotypic variability in sarcomeric-related HCM. An understanding of early mutation-specific mechanisms of the disease may provide useful markers of disease progression, and inform therapeutic design.
Collapse
Affiliation(s)
- Helena M Viola
- School of Human Sciences (Physiology), The University of Western Australia, Crawley, WA, Australia
| | - Livia C Hool
- School of Human Sciences (Physiology), The University of Western Australia, Crawley, WA, Australia; Victor Chang Cardiac Research Institute, Sydney, NSW, Australia.
| |
Collapse
|
19
|
Prondzynski M, Mearini G, Carrier L. Gene therapy strategies in the treatment of hypertrophic cardiomyopathy. Pflugers Arch 2018; 471:807-815. [PMID: 29971600 DOI: 10.1007/s00424-018-2173-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 06/22/2018] [Accepted: 06/25/2018] [Indexed: 12/26/2022]
Abstract
Hypertrophic cardiomyopathy (HCM) is an inherited myocardial disease with an estimated prevalence of 1:200 caused by mutations in sarcomeric proteins. It is associated with hypertrophy of the left ventricle, increased interstitial fibrosis, and diastolic dysfunction for heterozygous mutation carriers. Carriers of double heterozygous, compound heterozygous, and homozygous mutations often display more severe forms of cardiomyopathies, ultimately leading to premature death. So far, there is no curative treatment against HCM, as current therapies are focused on symptoms relief by pharmacological intervention and not on the cause of HCM. In the last decade, several strategies have been developed to remove genetic defects, including genome editing, exon skipping, allele-specific silencing, spliceosome-mediated RNA trans-splicing, and gene replacement. Most of these technologies have already been tested for efficacy and efficiency in animal- or human-induced pluripotent stem cell models of HCM with promising results. We will summarize recent technological advances and their implication as gene therapy options in HCM with a special focus on treating MYBPC3 mutations and its potential for being a successful bench to bedside example.
Collapse
Affiliation(s)
- Maksymilian Prondzynski
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Giulia Mearini
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Lucie Carrier
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany. .,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany.
| |
Collapse
|
20
|
Mahdieh N, Hosseini Moghaddam M, Motavaf M, Rabbani A, Soveizi M, Maleki M, Rabbani B, Alizadeh-Asl A. Genotypic effect of a mutation of the MYBPC3 gene and two phenotypes with different patterns of inheritance. J Clin Lab Anal 2018; 32:e22419. [PMID: 29493010 DOI: 10.1002/jcla.22419] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 02/03/2018] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND MYBPC3 mutations have been described in dilated cardiomyopathy (DCM) and hypertrophic cardiomyopathy (HCM). A mutation, c.3373G>A, has been reported to cause autosomal recessive form of HCM. Here, we report that this mutation can cause autosomal dominant form of DCM. METHODS Next-generation sequencing using targeted panel of a total of 23 candidate genes and following Sanger sequencing was applied to detect causal mutations of DCM. Computational analyses were also performed using available software tools. In silico structural and functional analyses including protein modeling and prediction were done for the mutated MYBPC3 protein. RESULTS AND CONCLUSION Targeted sequencing showed one variant c.3373G>A (p.Val1125Met) in the studied family following autosomal dominant inheritance. Computational programs predicted a high score of pathogenicity. Secondary structure of the region surrounding p.Val1125 was changed to a shortened beta-strand based on prediction of I-TASSER and Phyre2 servers with high confidence value for the mutation. cMyBP-C protein was modeled to 3dmkA. Our findings suggest that one single mutation of MYBPC3 may have different effects on the cellular mechanisms based of its zygosity. Various factors might be considered for explaining this phenomenon. This gene may have an important role in Iranian DCM and HCM patients.
Collapse
Affiliation(s)
- Nejat Mahdieh
- Cardiogenetics Research Laboratory, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Hosseini Moghaddam
- Cardiogenetics Research Laboratory, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mahsa Motavaf
- Faculty of Biological Science, Department of Molecular Genetics, Tarbiat Modares University, Tehran, Iran
| | - Ahmad Rabbani
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mahdieh Soveizi
- Cardiogenetics Research Laboratory, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Majid Maleki
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Bahareh Rabbani
- Cardiogenetics Research Laboratory, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Azin Alizadeh-Asl
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
21
|
Singh SR, Zech ATL, Geertz B, Reischmann-Düsener S, Osinska H, Prondzynski M, Krämer E, Meng Q, Redwood C, van der Velden J, Robbins J, Schlossarek S, Carrier L. Activation of Autophagy Ameliorates Cardiomyopathy in Mybpc3-Targeted Knockin Mice. Circ Heart Fail 2017; 10:CIRCHEARTFAILURE.117.004140. [PMID: 29021349 DOI: 10.1161/circheartfailure.117.004140] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 07/26/2017] [Indexed: 12/14/2022]
Abstract
BACKGROUND Alterations in autophagy have been reported in hypertrophic cardiomyopathy (HCM) caused by Danon disease, Vici syndrome, or LEOPARD syndrome, but not in HCM caused by mutations in genes encoding sarcomeric proteins, which account for most of HCM cases. MYBPC3, encoding cMyBP-C (cardiac myosin-binding protein C), is the most frequently mutated HCM gene. METHODS AND RESULTS We evaluated autophagy in patients with HCM carrying MYBPC3 mutations and in a Mybpc3-targeted knockin HCM mouse model, as well as the effect of autophagy modulators on the development of cardiomyopathy in knockin mice. Microtubule-associated protein 1 light chain 3 (LC3)-II protein levels were higher in HCM septal myectomies than in nonfailing control hearts and in 60-week-old knockin than in wild-type mouse hearts. In contrast to wild-type, autophagic flux was blunted and associated with accumulation of residual bodies and glycogen in hearts of 60-week-old knockin mice. We found that Akt-mTORC1 (mammalian target of rapamycin complex 1) signaling was increased, and treatment with 2.24 mg/kg·d rapamycin or 40% caloric restriction for 9 weeks partially rescued cardiomyopathy or heart failure and restored autophagic flux in knockin mice. CONCLUSIONS Altogether, we found that (1) autophagy is altered in patients with HCM carrying MYBPC3 mutations, (2) autophagy is impaired in Mybpc3-targeted knockin mice, and (3) activation of autophagy ameliorated the cardiac disease phenotype in this mouse model. We propose that activation of autophagy might be an attractive option alone or in combination with another therapy to rescue HCM caused by MYBPC3 mutations.
Collapse
Affiliation(s)
- Sonia R Singh
- From the Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Germany (S.R.S., A.T.L.Z., B.G., S.R.-D., M.P., E.K., S.S., L.C.); DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Germany (S.R.S., A.T.L.Z., B.G., S.R.-D., M.P., E.K., S.S., L.C.); Department of Pediatrics, The Heart Institute, The Cincinnati Children's Hospital Medical Center, OH (S.R.S., H.O., Q.M., J.R.); Radcliffe Department of Medicine, University of Oxford, United Kingdom (C.R.); Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands (J.v.d.V.); and ICIN-Netherlands Heart Institute, Utrecht (J.v.d.V.)
| | - Antonia T L Zech
- From the Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Germany (S.R.S., A.T.L.Z., B.G., S.R.-D., M.P., E.K., S.S., L.C.); DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Germany (S.R.S., A.T.L.Z., B.G., S.R.-D., M.P., E.K., S.S., L.C.); Department of Pediatrics, The Heart Institute, The Cincinnati Children's Hospital Medical Center, OH (S.R.S., H.O., Q.M., J.R.); Radcliffe Department of Medicine, University of Oxford, United Kingdom (C.R.); Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands (J.v.d.V.); and ICIN-Netherlands Heart Institute, Utrecht (J.v.d.V.)
| | - Birgit Geertz
- From the Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Germany (S.R.S., A.T.L.Z., B.G., S.R.-D., M.P., E.K., S.S., L.C.); DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Germany (S.R.S., A.T.L.Z., B.G., S.R.-D., M.P., E.K., S.S., L.C.); Department of Pediatrics, The Heart Institute, The Cincinnati Children's Hospital Medical Center, OH (S.R.S., H.O., Q.M., J.R.); Radcliffe Department of Medicine, University of Oxford, United Kingdom (C.R.); Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands (J.v.d.V.); and ICIN-Netherlands Heart Institute, Utrecht (J.v.d.V.)
| | - Silke Reischmann-Düsener
- From the Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Germany (S.R.S., A.T.L.Z., B.G., S.R.-D., M.P., E.K., S.S., L.C.); DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Germany (S.R.S., A.T.L.Z., B.G., S.R.-D., M.P., E.K., S.S., L.C.); Department of Pediatrics, The Heart Institute, The Cincinnati Children's Hospital Medical Center, OH (S.R.S., H.O., Q.M., J.R.); Radcliffe Department of Medicine, University of Oxford, United Kingdom (C.R.); Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands (J.v.d.V.); and ICIN-Netherlands Heart Institute, Utrecht (J.v.d.V.)
| | - Hanna Osinska
- From the Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Germany (S.R.S., A.T.L.Z., B.G., S.R.-D., M.P., E.K., S.S., L.C.); DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Germany (S.R.S., A.T.L.Z., B.G., S.R.-D., M.P., E.K., S.S., L.C.); Department of Pediatrics, The Heart Institute, The Cincinnati Children's Hospital Medical Center, OH (S.R.S., H.O., Q.M., J.R.); Radcliffe Department of Medicine, University of Oxford, United Kingdom (C.R.); Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands (J.v.d.V.); and ICIN-Netherlands Heart Institute, Utrecht (J.v.d.V.)
| | - Maksymilian Prondzynski
- From the Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Germany (S.R.S., A.T.L.Z., B.G., S.R.-D., M.P., E.K., S.S., L.C.); DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Germany (S.R.S., A.T.L.Z., B.G., S.R.-D., M.P., E.K., S.S., L.C.); Department of Pediatrics, The Heart Institute, The Cincinnati Children's Hospital Medical Center, OH (S.R.S., H.O., Q.M., J.R.); Radcliffe Department of Medicine, University of Oxford, United Kingdom (C.R.); Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands (J.v.d.V.); and ICIN-Netherlands Heart Institute, Utrecht (J.v.d.V.)
| | - Elisabeth Krämer
- From the Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Germany (S.R.S., A.T.L.Z., B.G., S.R.-D., M.P., E.K., S.S., L.C.); DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Germany (S.R.S., A.T.L.Z., B.G., S.R.-D., M.P., E.K., S.S., L.C.); Department of Pediatrics, The Heart Institute, The Cincinnati Children's Hospital Medical Center, OH (S.R.S., H.O., Q.M., J.R.); Radcliffe Department of Medicine, University of Oxford, United Kingdom (C.R.); Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands (J.v.d.V.); and ICIN-Netherlands Heart Institute, Utrecht (J.v.d.V.)
| | - Qinghang Meng
- From the Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Germany (S.R.S., A.T.L.Z., B.G., S.R.-D., M.P., E.K., S.S., L.C.); DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Germany (S.R.S., A.T.L.Z., B.G., S.R.-D., M.P., E.K., S.S., L.C.); Department of Pediatrics, The Heart Institute, The Cincinnati Children's Hospital Medical Center, OH (S.R.S., H.O., Q.M., J.R.); Radcliffe Department of Medicine, University of Oxford, United Kingdom (C.R.); Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands (J.v.d.V.); and ICIN-Netherlands Heart Institute, Utrecht (J.v.d.V.)
| | - Charles Redwood
- From the Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Germany (S.R.S., A.T.L.Z., B.G., S.R.-D., M.P., E.K., S.S., L.C.); DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Germany (S.R.S., A.T.L.Z., B.G., S.R.-D., M.P., E.K., S.S., L.C.); Department of Pediatrics, The Heart Institute, The Cincinnati Children's Hospital Medical Center, OH (S.R.S., H.O., Q.M., J.R.); Radcliffe Department of Medicine, University of Oxford, United Kingdom (C.R.); Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands (J.v.d.V.); and ICIN-Netherlands Heart Institute, Utrecht (J.v.d.V.)
| | - Jolanda van der Velden
- From the Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Germany (S.R.S., A.T.L.Z., B.G., S.R.-D., M.P., E.K., S.S., L.C.); DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Germany (S.R.S., A.T.L.Z., B.G., S.R.-D., M.P., E.K., S.S., L.C.); Department of Pediatrics, The Heart Institute, The Cincinnati Children's Hospital Medical Center, OH (S.R.S., H.O., Q.M., J.R.); Radcliffe Department of Medicine, University of Oxford, United Kingdom (C.R.); Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands (J.v.d.V.); and ICIN-Netherlands Heart Institute, Utrecht (J.v.d.V.)
| | - Jeffrey Robbins
- From the Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Germany (S.R.S., A.T.L.Z., B.G., S.R.-D., M.P., E.K., S.S., L.C.); DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Germany (S.R.S., A.T.L.Z., B.G., S.R.-D., M.P., E.K., S.S., L.C.); Department of Pediatrics, The Heart Institute, The Cincinnati Children's Hospital Medical Center, OH (S.R.S., H.O., Q.M., J.R.); Radcliffe Department of Medicine, University of Oxford, United Kingdom (C.R.); Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands (J.v.d.V.); and ICIN-Netherlands Heart Institute, Utrecht (J.v.d.V.)
| | - Saskia Schlossarek
- From the Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Germany (S.R.S., A.T.L.Z., B.G., S.R.-D., M.P., E.K., S.S., L.C.); DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Germany (S.R.S., A.T.L.Z., B.G., S.R.-D., M.P., E.K., S.S., L.C.); Department of Pediatrics, The Heart Institute, The Cincinnati Children's Hospital Medical Center, OH (S.R.S., H.O., Q.M., J.R.); Radcliffe Department of Medicine, University of Oxford, United Kingdom (C.R.); Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands (J.v.d.V.); and ICIN-Netherlands Heart Institute, Utrecht (J.v.d.V.)
| | - Lucie Carrier
- From the Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Germany (S.R.S., A.T.L.Z., B.G., S.R.-D., M.P., E.K., S.S., L.C.); DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Germany (S.R.S., A.T.L.Z., B.G., S.R.-D., M.P., E.K., S.S., L.C.); Department of Pediatrics, The Heart Institute, The Cincinnati Children's Hospital Medical Center, OH (S.R.S., H.O., Q.M., J.R.); Radcliffe Department of Medicine, University of Oxford, United Kingdom (C.R.); Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands (J.v.d.V.); and ICIN-Netherlands Heart Institute, Utrecht (J.v.d.V.).
| |
Collapse
|
22
|
Prondzynski M, Krämer E, Laufer SD, Shibamiya A, Pless O, Flenner F, Müller OJ, Münch J, Redwood C, Hansen A, Patten M, Eschenhagen T, Mearini G, Carrier L. Evaluation of MYBPC3 trans-Splicing and Gene Replacement as Therapeutic Options in Human iPSC-Derived Cardiomyocytes. MOLECULAR THERAPY. NUCLEIC ACIDS 2017. [PMID: 28624223 PMCID: PMC5458066 DOI: 10.1016/j.omtn.2017.05.008] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Gene therapy is a promising option for severe forms of genetic diseases. We previously provided evidence for the feasibility of trans-splicing, exon skipping, and gene replacement in a mouse model of hypertrophic cardiomyopathy (HCM) carrying a mutation in MYBPC3, encoding cardiac myosin-binding protein C (cMyBP-C). Here we used human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) from an HCM patient carrying a heterozygous c.1358-1359insC MYBPC3 mutation and from a healthy donor. HCM hiPSC-CMs exhibited ∼50% lower MYBPC3 mRNA and cMyBP-C protein levels than control, no truncated cMyBP-C, larger cell size, and altered gene expression, thus reproducing human HCM features. We evaluated RNA trans-splicing and gene replacement after transducing hiPSC-CMs with adeno-associated virus. trans-splicing with 5' or 3' pre-trans-splicing molecules represented ∼1% of total MYBPC3 transcripts in healthy hiPSC-CMs. In contrast, gene replacement with the full-length MYBPC3 cDNA resulted in ∼2.5-fold higher MYBPC3 mRNA levels in HCM and control hiPSC-CMs. This restored the cMyBP-C level to 81% of the control level, suppressed hypertrophy, and partially restored gene expression to control level in HCM cells. This study provides evidence for (1) the feasibility of trans-splicing, although with low efficiency, and (2) efficient gene replacement in hiPSC-CMs with a MYBPC3 mutation.
Collapse
Affiliation(s)
- Maksymilian Prondzynski
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
| | - Elisabeth Krämer
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
| | - Sandra D Laufer
- DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany; Hamburg Zentrum für Experimentelle Therapieforschung (HEXT) Stem Cell Facility, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Aya Shibamiya
- DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany; Hamburg Zentrum für Experimentelle Therapieforschung (HEXT) Stem Cell Facility, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Ole Pless
- Fraunhofer IME Screening-Port, 22525 Hamburg, Germany
| | - Frederik Flenner
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
| | - Oliver J Müller
- Department of Cardiology, Internal Medicine III, University Hospital Heidelberg, 69120 Heidelberg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, 69120 Heidelberg, Germany
| | - Julia Münch
- DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany; University Heart Center Hamburg, 20246 Hamburg, Germany
| | - Charles Redwood
- Radcliffe Department of Medicine, University of Oxford, Oxford OX1 3PA, UK
| | - Arne Hansen
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
| | - Monica Patten
- DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany; University Heart Center Hamburg, 20246 Hamburg, Germany
| | - Thomas Eschenhagen
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
| | - Giulia Mearini
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany.
| | - Lucie Carrier
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany.
| |
Collapse
|
23
|
Mohamed IA, Krishnamoorthy NT, Nasrallah GK, Da'as SI. The Role of Cardiac Myosin Binding Protein C3 in Hypertrophic Cardiomyopathy-Progress and Novel Therapeutic Opportunities. J Cell Physiol 2017; 232:1650-1659. [PMID: 27731493 DOI: 10.1002/jcp.25639] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 10/07/2016] [Indexed: 11/11/2022]
Abstract
Hypertrophic cardiomyopathy (HCM) is a common autosomal dominant genetic cardiovascular disorder marked by genetic and phenotypic heterogeneity. Mutations in the gene encodes the cardiac myosin-binding protein C, cMYBPC3 is amongst the various sarcomeric genes that are associated with HCM. These mutations produce mutated mRNAs and truncated cMyBP-C proteins. In this review, we will discuss the implications and molecular mechanisms involved in MYBPC3 different mutations. Further, we will highlight the novel targets that can be developed into potential therapeutics for the treatment of HMC. J. Cell. Physiol. 232: 1650-1659, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Iman A Mohamed
- Department of Biomedical Science, Zewail City of Science and Technology, Giza, Egypt
| | - Navaneethakrishnan T Krishnamoorthy
- Division of Experimental Genetics, Sidra Medical and Research Center, Doha, Qatar.,Heart Science Centre, National Heart and Lung Institute, Imperial College London, London, UK
| | - Gheyath K Nasrallah
- Department of Biomedical Science, College of Health Science, Qatar University, Doha, Qatar.,Biomedical Research Center, Qatar University, Doha, Qatar
| | - Sahar I Da'as
- Division of Experimental Genetics, Sidra Medical and Research Center, Doha, Qatar.,Department of Biomedical and Biological Sciences, Hamad Bin Khalifa University, Doha, Qatar
| |
Collapse
|
24
|
Wijnker PJM, Friedrich FW, Dutsch A, Reischmann S, Eder A, Mannhardt I, Mearini G, Eschenhagen T, van der Velden J, Carrier L. Comparison of the effects of a truncating and a missense MYBPC3 mutation on contractile parameters of engineered heart tissue. J Mol Cell Cardiol 2016; 97:82-92. [PMID: 27108529 DOI: 10.1016/j.yjmcc.2016.03.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 03/08/2016] [Accepted: 03/09/2016] [Indexed: 12/25/2022]
Abstract
Hypertrophic cardiomyopathy (HCM) is a cardiac genetic disease characterized by left ventricular hypertrophy, diastolic dysfunction and myocardial disarray. The most frequently mutated gene is MYBPC3, encoding cardiac myosin-binding protein-C (cMyBP-C). We compared the pathomechanisms of a truncating mutation (c.2373_2374insG) and a missense mutation (c.1591G>C) in MYBPC3 in engineered heart tissue (EHT). EHTs enable to study the direct effects of mutants without interference of secondary disease-related changes. EHTs were generated from Mybpc3-targeted knock-out (KO) and wild-type (WT) mouse cardiac cells. MYBPC3 WT and mutants were expressed in KO EHTs via adeno-associated virus. KO EHTs displayed higher maximal force and sensitivity to external [Ca(2+)] than WT EHTs. Expression of WT-Mybpc3 at MOI-100 resulted in ~73% cMyBP-C level but did not prevent the KO phenotype, whereas MOI-300 resulted in ≥95% cMyBP-C level and prevented the KO phenotype. Expression of the truncating or missense mutation (MOI-300) or their combination with WT (MOI-150 each), mimicking the homozygous or heterozygous disease state, respectively, failed to restore force to WT level. Immunofluorescence analysis revealed correct incorporation of WT and missense, but not of truncated cMyBP-C in the sarcomere. In conclusion, this study provides evidence in KO EHTs that i) haploinsufficiency affects EHT contractile function if WT cMyBP-C protein levels are ≤73%, ii) missense or truncating mutations, but not WT do not fully restore the disease phenotype and have different pathogenic mechanisms, e.g. sarcomere poisoning for the missense mutation, iii) the direct impact of (newly identified) MYBPC3 gene variants can be evaluated.
Collapse
Affiliation(s)
- Paul J M Wijnker
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Germany; Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands
| | - Felix W Friedrich
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Germany
| | - Alexander Dutsch
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Germany
| | - Silke Reischmann
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Germany
| | - Alexandra Eder
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Germany
| | - Ingra Mannhardt
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Germany
| | - Giulia Mearini
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Germany
| | - Thomas Eschenhagen
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Germany
| | - Jolanda van der Velden
- Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands
| | - Lucie Carrier
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Germany.
| |
Collapse
|
25
|
van Dijk SJ, Witt CC, Harris SP. Normal cardiac contraction in mice lacking the proline-alanine rich region and C1 domain of cardiac myosin binding protein C. J Mol Cell Cardiol 2015; 88:124-32. [PMID: 26455481 DOI: 10.1016/j.yjmcc.2015.09.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 09/15/2015] [Accepted: 09/15/2015] [Indexed: 11/28/2022]
Abstract
Cardiac myosin binding protein C (cMyBP-C) is an essential regulator of cross bridge cycling. Through mechanisms that are incompletely understood the N-terminal domains (NTDs) of cMyBP-C can activate contraction even in the absence of calcium and can also inhibit cross bridge kinetics in the presence of calcium. In vitro studies indicated that the proline-alanine rich (p/a) region and C1 domain are involved in these processes, although effects were greater using human proteins compared to murine proteins (Shaffer et al. J Biomed Biotechnol 2010, 2010: 789798). We hypothesized that the p/a and C1 region are critical for the timing of contraction. In this study we tested this hypothesis using a mouse model lacking the p/a and C1 region (p/a-C1(-/-) mice) to investigate the in vivo relevance of these regions on cardiac performance. Surprisingly, hearts of adult p/a-C1(-/-) mice functioned normally both on a cellular and whole organ level. Force measurements in permeabilized cardiomyocytes from adult p/a-C1(-/-) mice and wild type (Wt) littermate controls demonstrated similar rates of force redevelopment both at submaximal and maximal activation. Maximal and passive force and calcium sensitivity of force were comparable between groups as well. Echocardiograms showed normal isovolumetric contraction times, fractional shortening and ejection fraction, indicating proper systolic function in p/a-C1(-/-) mouse hearts. p/a-C1(-/-) mice showed a slight but significant reduction in isovolumetric relaxation time compared to Wt littermates, yet this difference disappeared in older mice (7-8months of age). Moreover, stroke volume was preserved in p/a-C1(-/-) mice, corroborating sufficient time for normal filling of the heart. Overall, the hearts of p/a-C1(-/-) mice showed no signs of dysfunction even after chronic stress with an adrenergic agonist. Together, these results indicate that the p/a region and the C1 domain of cMyBP-C are not critical for normal cardiac contraction in mice and that these domains have little if any impact on cross bridge kinetics in mice. These results thus contrast with in vitro studies utilizing proteins encoding the human p/a region and C1 domain. More detailed insight in how individual domains of cMyBP-C function and interact, across species and over the wide spectrum of conditions in which the heart has to function, will be essential to a better understanding of how cMyBP-C tunes cardiac contraction.
Collapse
Affiliation(s)
- Sabine J van Dijk
- Department of Cellular and Molecular Medicine, University of Arizona, 1656 East Mabel Street, Tucson, AZ 85724, USA
| | - Christian C Witt
- Department of Anaesthesiology and Operative Intensive Care, University Hospital Mannheim, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Samantha P Harris
- Department of Cellular and Molecular Medicine, University of Arizona, 1656 East Mabel Street, Tucson, AZ 85724, USA.
| |
Collapse
|
26
|
Cardiac myosin-binding protein C (MYBPC3) in cardiac pathophysiology. Gene 2015; 573:188-97. [PMID: 26358504 DOI: 10.1016/j.gene.2015.09.008] [Citation(s) in RCA: 148] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 08/21/2015] [Accepted: 09/01/2015] [Indexed: 12/27/2022]
Abstract
More than 350 individual MYPBC3 mutations have been identified in patients with inherited hypertrophic cardiomyopathy (HCM), thus representing 40–50% of all HCM mutations, making it the most frequently mutated gene in HCM. HCM is considered a disease of the sarcomere and is characterized by left ventricular hypertrophy, myocyte disarray and diastolic dysfunction. MYBPC3 encodes for the thick filament associated protein cardiac myosin-binding protein C (cMyBP-C), a signaling node in cardiac myocytes that contributes to the maintenance of sarcomeric structure and regulation of contraction and relaxation. This review aims to provide a succinct overview of how mutations in MYBPC3 are considered to affect the physiological function of cMyBP-C, thus causing the deleterious consequences observed inHCM patients. Importantly, recent advances to causally treat HCM by repairing MYBPC3 mutations by gene therapy are discussed here, providing a promising alternative to heart transplantation for patients with a fatal form of neonatal cardiomyopathy due to bi-allelic truncating MYBPC3 mutations.
Collapse
|
27
|
Friedrich FW, Sotoud H, Geertz B, Weber S, Flenner F, Reischmann S, Eschenhagen T, Carrier L, El-Armouche A. I-1-deficiency negatively impacts survival in a cardiomyopathy mouse model. IJC HEART & VASCULATURE 2015; 8:87-94. [PMID: 28785686 PMCID: PMC5497269 DOI: 10.1016/j.ijcha.2015.05.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 05/20/2015] [Accepted: 05/25/2015] [Indexed: 10/31/2022]
Abstract
AIMS Hypertrophic cardiomyopathy (HCM) is characterized by left ventricular hypertrophy, diastolic dysfunction and increased interstitial fibrosis. Current treatment is based on beta-adrenoceptor (AR) and calcium channel blockers. Since mice deficient of protein phosphatase-1 inhibitor-1 (I-1), an amplifier in beta-AR signalling, were protected from pathological adrenergic stimulation in vivo, we hypothesized that I-1 ablation could result in an improved outcome in a HCM mouse model. METHODS AND RESULTS We crossed mice deficient of I-1 with homozygous myosin-binding protein C knock-out (Mybpc3 KO) mice exhibiting cardiac dilatation and reduced survival. Unexpectedly, survival time was shorter in double I-1/Mybpc3 KO than in single Mybpc3 KO mice. Longitudinal echocardiographic assessment revealed lower fractional area change, and higher diastolic left ventricular inner dimensions and end-diastolic volumes in Mybpc3 KO than in WT mice. In comparison to Mybpc3 KO, double I-1/Mybpc3 KO presented higher left ventricular end-diastolic volumes, inner dimensions and ventricular surface areas with increasing differences over time. Phosphorylation levels of PKA-downstream targets and mRNA levels of hypertrophic markers did not differ between I-1/Mybpc3 KO and single Mybpc3 KO mice, except a trend towards higher beta-myosin heavy chain levels in double I-1/Mybpc3 KO. CONCLUSION The data indicate that interference with beta-AR signalling has no long-term benefit in this severe MYBPC3-related cardiomyopathy mouse model.
Collapse
Affiliation(s)
- Felix W Friedrich
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Centre for Cardiovascular Research), Partner site Hamburg/Kiel/Lübeck, Germany
| | - Hannieh Sotoud
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Centre for Cardiovascular Research), Partner site Hamburg/Kiel/Lübeck, Germany
| | - Birgit Geertz
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Centre for Cardiovascular Research), Partner site Hamburg/Kiel/Lübeck, Germany
| | - Silvio Weber
- Department of Pharmacology and Toxicology, University of Technology Dresden, Germany
| | - Frederik Flenner
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Centre for Cardiovascular Research), Partner site Hamburg/Kiel/Lübeck, Germany
| | - Silke Reischmann
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Centre for Cardiovascular Research), Partner site Hamburg/Kiel/Lübeck, Germany
| | - Thomas Eschenhagen
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Centre for Cardiovascular Research), Partner site Hamburg/Kiel/Lübeck, Germany
| | - Lucie Carrier
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Centre for Cardiovascular Research), Partner site Hamburg/Kiel/Lübeck, Germany
| | - Ali El-Armouche
- Department of Pharmacology and Toxicology, University of Technology Dresden, Germany
| |
Collapse
|
28
|
Tardiff JC, Carrier L, Bers DM, Poggesi C, Ferrantini C, Coppini R, Maier LS, Ashrafian H, Huke S, van der Velden J. Targets for therapy in sarcomeric cardiomyopathies. Cardiovasc Res 2015; 105:457-70. [PMID: 25634554 DOI: 10.1093/cvr/cvv023] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
To date, no compounds or interventions exist that treat or prevent sarcomeric cardiomyopathies. Established therapies currently improve the outcome, but novel therapies may be able to more fundamentally affect the disease process and course. Investigations of the pathomechanisms are generating molecular insights that can be useful for the design of novel specific drugs suitable for clinical use. As perturbations in the heart are stage-specific, proper timing of drug treatment is essential to prevent initiation and progression of cardiac disease in mutation carrier individuals. In this review, we emphasize potential novel therapies which may prevent, delay, or even reverse hypertrophic cardiomyopathy caused by sarcomeric gene mutations. These include corrections of genetic defects, altered sarcomere function, perturbations in intracellular ion homeostasis, and impaired myocardial energetics.
Collapse
Affiliation(s)
- Jil C Tardiff
- Department of Medicine and Cellular and Molecular Medicine, University of Arizona, 1656 East Mabel Street, MRB 312, Tucson, AZ 85724-5217, USA
| | - Lucie Carrier
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Donald M Bers
- Department of Pharmacology, University of California, Davis, CA, USA
| | - Corrado Poggesi
- Center of Molecular Medicine and Applied Biophysics (CIMMBA), University of Florence, Florence, Italy
| | - Cecilia Ferrantini
- Center of Molecular Medicine and Applied Biophysics (CIMMBA), University of Florence, Florence, Italy
| | - Raffaele Coppini
- Center of Molecular Medicine and Applied Biophysics (CIMMBA), University of Florence, Florence, Italy
| | - Lars S Maier
- Klinik und Poliklinik für Innere Medizin II, Universitätsklinikum, Regensburg, Germany
| | - Houman Ashrafian
- Experimental Therapeutics and Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Sabine Huke
- Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jolanda van der Velden
- Department of Physiology, Institute for Cardiovascular Research (ICaR-VU), VU University Medical Center, van der Boechorststraat 7, 1081 BT Amsterdam, The Netherlands ICIN-Netherlands Heart Institute, Utrecht, the Netherlands
| |
Collapse
|
29
|
Mybpc3 gene therapy for neonatal cardiomyopathy enables long-term disease prevention in mice. Nat Commun 2014; 5:5515. [PMID: 25463264 DOI: 10.1038/ncomms6515] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 10/08/2014] [Indexed: 01/24/2023] Open
Abstract
Homozygous or compound heterozygous frameshift mutations in MYBPC3 encoding cardiac myosin-binding protein C (cMyBP-C) cause neonatal hypertrophic cardiomyopathy (HCM), which rapidly evolves into systolic heart failure and death within the first year of life. Here we show successful long-term Mybpc3 gene therapy in homozygous Mybpc3-targeted knock-in (KI) mice, which genetically mimic these human neonatal cardiomyopathies. A single systemic administration of adeno-associated virus (AAV9)-Mybpc3 in 1-day-old KI mice prevents the development of cardiac hypertrophy and dysfunction for the observation period of 34 weeks and increases Mybpc3 messenger RNA (mRNA) and cMyBP-C protein levels in a dose-dependent manner. Importantly, Mybpc3 gene therapy unexpectedly also suppresses accumulation of mutant mRNAs. This study reports the first successful long-term gene therapy of HCM with correction of both haploinsufficiency and production of poison peptides. In the absence of alternative treatment options except heart transplantation, gene therapy could become a realistic treatment option for severe neonatal HCM.
Collapse
|
30
|
Tanaka A, Yuasa S, Mearini G, Egashira T, Seki T, Kodaira M, Kusumoto D, Kuroda Y, Okata S, Suzuki T, Inohara T, Arimura T, Makino S, Kimura K, Kimura A, Furukawa T, Carrier L, Node K, Fukuda K. Endothelin-1 induces myofibrillar disarray and contractile vector variability in hypertrophic cardiomyopathy-induced pluripotent stem cell-derived cardiomyocytes. J Am Heart Assoc 2014; 3:e001263. [PMID: 25389285 PMCID: PMC4338713 DOI: 10.1161/jaha.114.001263] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND Despite the accumulating genetic and molecular investigations into hypertrophic cardiomyopathy (HCM), it remains unclear how this condition develops and worsens pathologically and clinically in terms of the genetic-environmental interactions. Establishing a human disease model for HCM would help to elucidate these disease mechanisms; however, cardiomyocytes from patients are not easily obtained for basic research. Patient-specific induced pluripotent stem cells (iPSCs) potentially hold much promise for deciphering the pathogenesis of HCM. The purpose of this study is to elucidate the interactions between genetic backgrounds and environmental factors involved in the disease progression of HCM. METHODS AND RESULTS We generated iPSCs from 3 patients with HCM and 3 healthy control subjects, and cardiomyocytes were differentiated. The HCM pathological phenotypes were characterized based on morphological properties and high-speed video imaging. The differences between control and HCM iPSC-derived cardiomyocytes were mild under baseline conditions in pathological features. To identify candidate disease-promoting environmental factors, the cardiomyocytes were stimulated by several cardiomyocyte hypertrophy-promoting factors. Interestingly, endothelin-1 strongly induced pathological phenotypes such as cardiomyocyte hypertrophy and intracellular myofibrillar disarray in the HCM iPSC-derived cardiomyocytes. We then reproduced these phenotypes in neonatal cardiomyocytes from the heterozygous Mybpc3-targeted knock in mice. High-speed video imaging with motion vector prediction depicted physiological contractile dynamics in the iPSC-derived cardiomyocytes, which revealed that self-beating HCM iPSC-derived single cardiomyocytes stimulated by endothelin-1 showed variable contractile directions. CONCLUSIONS Interactions between the patient's genetic backgrounds and the environmental factor endothelin-1 promote the HCM pathological phenotype and contractile variability in the HCM iPSC-derived cardiomyocytes.
Collapse
Affiliation(s)
- Atsushi Tanaka
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan (A.T., S.Y., T.E., T.S., M.K., D.K., Y.K., S.O., T.S., T.I., S.M., K.K., K.F.) Department of Cardiovascular Medicine, Saga University, Saga, Japan (A.T., K.N.)
| | - Shinsuke Yuasa
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan (A.T., S.Y., T.E., T.S., M.K., D.K., Y.K., S.O., T.S., T.I., S.M., K.K., K.F.)
| | - Giulia Mearini
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (G.M., L.C.) DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Germany (G.M., L.C.)
| | - Toru Egashira
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan (A.T., S.Y., T.E., T.S., M.K., D.K., Y.K., S.O., T.S., T.I., S.M., K.K., K.F.)
| | - Tomohisa Seki
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan (A.T., S.Y., T.E., T.S., M.K., D.K., Y.K., S.O., T.S., T.I., S.M., K.K., K.F.)
| | - Masaki Kodaira
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan (A.T., S.Y., T.E., T.S., M.K., D.K., Y.K., S.O., T.S., T.I., S.M., K.K., K.F.)
| | - Dai Kusumoto
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan (A.T., S.Y., T.E., T.S., M.K., D.K., Y.K., S.O., T.S., T.I., S.M., K.K., K.F.)
| | - Yusuke Kuroda
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan (A.T., S.Y., T.E., T.S., M.K., D.K., Y.K., S.O., T.S., T.I., S.M., K.K., K.F.)
| | - Shinichiro Okata
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan (A.T., S.Y., T.E., T.S., M.K., D.K., Y.K., S.O., T.S., T.I., S.M., K.K., K.F.) Department of Bio-informational Pharmacology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan (S.O., T.F.)
| | - Tomoyuki Suzuki
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan (A.T., S.Y., T.E., T.S., M.K., D.K., Y.K., S.O., T.S., T.I., S.M., K.K., K.F.)
| | - Taku Inohara
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan (A.T., S.Y., T.E., T.S., M.K., D.K., Y.K., S.O., T.S., T.I., S.M., K.K., K.F.)
| | - Takuro Arimura
- Department of Molecular Pathogenesis, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan (T.A., A.K.)
| | - Shinji Makino
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan (A.T., S.Y., T.E., T.S., M.K., D.K., Y.K., S.O., T.S., T.I., S.M., K.K., K.F.)
| | - Kensuke Kimura
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan (A.T., S.Y., T.E., T.S., M.K., D.K., Y.K., S.O., T.S., T.I., S.M., K.K., K.F.)
| | - Akinori Kimura
- Department of Molecular Pathogenesis, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan (T.A., A.K.)
| | - Tetsushi Furukawa
- Department of Bio-informational Pharmacology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan (S.O., T.F.)
| | - Lucie Carrier
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (G.M., L.C.) DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Germany (G.M., L.C.)
| | - Koichi Node
- Department of Cardiovascular Medicine, Saga University, Saga, Japan (A.T., K.N.)
| | - Keiichi Fukuda
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan (A.T., S.Y., T.E., T.S., M.K., D.K., Y.K., S.O., T.S., T.I., S.M., K.K., K.F.)
| |
Collapse
|