1
|
Lopez-Charcas O, Benouna O, Lemoine R, Rosendo-Pineda MJ, Anguheven-Ledezma TG, Sandoval-Vazquez L, Gallegos-Gomez ML, Robles-Martinez L, Herrera-Carrillo Z, Ramírez-Aragón M, Alfaro A, Chadet S, Ferro F, Besson P, Jiang LH, Velu SE, Guerrero-Hernandez A, Roger S, Carlos Gomora J. Blockade of Ca V3 calcium channels and induction of G 0/G 1 cell cycle arrest in colon cancer cells by gossypol. Br J Pharmacol 2024; 181:4546-4570. [PMID: 39081110 PMCID: PMC11613961 DOI: 10.1111/bph.16497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 05/29/2024] [Accepted: 06/04/2024] [Indexed: 08/30/2024] Open
Abstract
BACKGROUND AND PURPOSE Gastrointestinal tumours overexpress voltage-gated calcium (CaV3) channels (CaV3.1, 3.2 and 3.3). CaV3 channels regulate cell growth and apoptosis colorectal cancer. Gossypol, a polyphenolic aldehyde found in the cotton plant, has anti-tumour properties and inhibits CaV3 currents. A systematic study was performed on gossypol blocking mechanism on CaV3 channels and its potential anticancer effects in colon cancer cells, which express CaV3 isoforms. EXPERIMENTAL APPROACH Transcripts for CaV3 proteins were analysed in gastrointestinal cancers using public repositories and in human colorectal cancer cell lines HCT116, SW480 and SW620. The gossypol blocking mechanism on CaV3 channels was investigated by combining heterologous expression systems and patch-clamp experiments. The anti-tumoural properties of gossypol were estimated by cell proliferation, viability and cell cycle assays. Ca2+ dynamics were evaluated with cytosolic and endoplasmic reticulum (ER) Ca2+ indicators. KEY RESULTS High levels of CaV3 transcripts correlate with poor prognosis in gastrointestinal cancers. Gossypol blockade of CaV3 isoforms is concentration- and use-dependent interacting with the closed, activated and inactivated conformations of CaV3 channels. Gossypol and CaV3 channels down-regulation inhibit colorectal cancer cell proliferation by arresting cell cycles at the G0/G1 and G2/M phases, respectively. CaV3 channels underlie the vectorial Ca2+ uptake by endoplasmic reticulum in colorectal cancer cells. CONCLUSION AND IMPLICATIONS Gossypol differentially blocked CaV3 channel and its anticancer activity was correlated with high levels of CaV3.1 and CaV3.2 in colorectal cancer cells. The CaV3 regulates cell proliferation and Ca2+ dynamics in colorectal cancer cells. Understanding this blocking mechanism maybe improve cancer therapies.
Collapse
Grants
- SPF201909009198 Fondation pour la Recherche Médicale (FRM), France
- BB/C517317/1 Biotechnology and Biological Sciences Research Council, UK
- G2022026006L National High-End Foreign Expert Recruitment Plan of China, China
- pre-R01grant O'Neal Comprehensive Cancer Center, USA
- CVU1148606 Consejo Nacional de Ciencia y Tecnologia (CONACYT), Mexico
- PrixRubanRoseAvenir Le Cancer du sein, parlons-en, France
- 16IRTSTHN020 Department of Education of the Henan Province, China
- Ministère de la Recherche et des Technologies, France
- Université de Tours, France
- IN209820 PAPIIT-DGAPA-UNAM, Mexico
- NavMetarget Conseil Régional du Centre-Val de Loire, France
- 1R21CA226491 National Institutes of Health (NIH), USA
- R21 CA226491 NCI NIH HHS
- 099758/Z/12/Z Wellcome Trust, UK
- CanalEx Conseil Régional du Centre-Val de Loire, France
- I1200/320/2022 CVU 369878 Consejo Nacional de Ciencia y Tecnologia (CONACYT), Mexico
- Ligue Nationale Contre le Cancer, Interrégion Grand-Ouest: comités 29, 36, 86 and 37, France
- 2016PN-KFKT-06 Disciplinary Group of Psychology and Neuroscience, Xinxiang Medical University, China
- Wellcome Trust
- A1-S-19171 Consejo Nacional de Ciencia y Tecnologia (CONACYT), Mexico
Collapse
Affiliation(s)
- Osbaldo Lopez-Charcas
- Departamento de Neuropatología Molecular, División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510 Mexico City, México
| | - Oumnia Benouna
- Université de Tours, Inserm U1327 ISCHEMIA “Membrane Signalling and Inflammation in Reperfusion Injuries” 37032 Tours, France
| | - Roxane Lemoine
- Université de Tours, Inserm U1327 ISCHEMIA “Membrane Signalling and Inflammation in Reperfusion Injuries” 37032 Tours, France
| | - Margarita Jacaranda Rosendo-Pineda
- Departamento de Neuropatología Molecular, División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510 Mexico City, México
| | - Tonantzin Guadalupe Anguheven-Ledezma
- Departamento de Neuropatología Molecular, División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510 Mexico City, México
| | | | | | - Leticia Robles-Martinez
- Departamento de Neuropatología Molecular, División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510 Mexico City, México
| | - Zazil Herrera-Carrillo
- Departamento de Neuropatología Molecular, División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510 Mexico City, México
- Centro de Investigación en Ciencias de la Salud (CICSA), Universidad Anáhuac, 52786 Mexico City, México
| | - Miguel Ramírez-Aragón
- Departamento de Neuropatología Molecular, División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510 Mexico City, México
| | - Ana Alfaro
- Servicio de Anatomía Patológica, Hospital General de México “Dr. Eduardo Liceaga” 06720 Mexico City, México
| | - Stéphanie Chadet
- Université de Tours, Inserm U1327 ISCHEMIA “Membrane Signalling and Inflammation in Reperfusion Injuries” 37032 Tours, France
| | - Fabio Ferro
- Université de Tours, Inserm U1327 ISCHEMIA “Membrane Signalling and Inflammation in Reperfusion Injuries” 37032 Tours, France
| | - Pierre Besson
- Université de Tours, Inserm U1327 ISCHEMIA “Membrane Signalling and Inflammation in Reperfusion Injuries” 37032 Tours, France
| | - Lin-Hua Jiang
- Université de Tours, Inserm U1327 ISCHEMIA “Membrane Signalling and Inflammation in Reperfusion Injuries” 37032 Tours, France
- Department of Physiology and Pathophysiology and Sino-UK Joint Laboratory of Brain Function and Injury of Henan Province, Xinxiang Medical University, China
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Sadanandan E. Velu
- Department of Chemistry, University of Alabama at Birmingham, 901 14 Street South, Birmingham, AL 35294-1240, USA
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, 1025 18 Street South, Birmingham, AL 35294-1240, USA
| | | | - Sébastien Roger
- Université de Tours, Inserm U1327 ISCHEMIA “Membrane Signalling and Inflammation in Reperfusion Injuries” 37032 Tours, France
| | - Juan Carlos Gomora
- Departamento de Neuropatología Molecular, División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510 Mexico City, México
| |
Collapse
|
2
|
Malysz J, Petkov GV. Urinary bladder smooth muscle ion channels: expression, function, and regulation in health and disease. Am J Physiol Renal Physiol 2020; 319:F257-F283. [PMID: 32628539 PMCID: PMC7473901 DOI: 10.1152/ajprenal.00048.2020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 06/21/2020] [Accepted: 06/28/2020] [Indexed: 12/17/2022] Open
Abstract
Urinary bladder smooth muscle (UBSM), also known as detrusor smooth muscle, forms the bladder wall and ultimately determines the two main attributes of the organ: urine storage and voiding. The two functions are facilitated by UBSM relaxation and contraction, respectively, which depend on UBSM excitability shaped by multiple ion channels. In this review, we summarize the current understanding of key ion channels establishing and regulating UBSM excitability and contractility. They include excitation-enhancing voltage-gated Ca2+ (Cav) and transient receptor potential channels, excitation-reducing K+ channels, and still poorly understood Cl- channels. Dynamic interplay among UBSM ion channels determines the overall level of Cav channel activity. The net Ca2+ influx via Cav channels increases global intracellular Ca2+ concentration, which subsequently triggers UBSM contractility. Here, for each ion channel type, we describe UBSM tissue/cell expression (mRNA and protein) profiles and their role in regulating excitability and contractility of UBSM in various animal species, including the mouse, rat, and guinea pig, and, most importantly, humans. The currently available data reveal certain interspecies differences, which complicate the translational value of published animal research results to humans. This review highlights recent developments, findings on genetic knockout models, pharmacological data, reports on UBSM ion channel dysfunction in animal bladder disease models, and the very limited human studies currently available. Among all gaps in present-day knowledge, the unknowns on expression and functional roles for ion channels determined directly in human UBSM tissues and cells under both normal and disease conditions remain key hurdles in the field.
Collapse
Affiliation(s)
- John Malysz
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Georgi V Petkov
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee
- Department of Pharmacology, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee
- Department of Urology, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee
| |
Collapse
|
3
|
Drumm BT, Rembetski BE, Cobine CA, Baker SA, Sergeant GP, Hollywood MA, Thornbury KD, Sanders KM. Ca 2+ signalling in mouse urethral smooth muscle in situ: role of Ca 2+ stores and Ca 2+ influx mechanisms. J Physiol 2018; 596:1433-1466. [PMID: 29383731 PMCID: PMC5899989 DOI: 10.1113/jp275719] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 01/17/2018] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Contraction of urethral smooth muscle cells (USMCs) contributes to urinary continence. Ca2+ signalling in USMCs was investigated in intact urethral muscles using a genetically encoded Ca2+ sensor, GCaMP3, expressed selectively in USMCs. USMCs were spontaneously active in situ, firing intracellular Ca2+ waves that were asynchronous at different sites within cells and between adjacent cells. Spontaneous Ca2+ waves in USMCs were myogenic but enhanced by adrenergic or purinergic agonists and decreased by nitric oxide. Ca2+ waves arose from inositol trisphosphate type 1 receptors and ryanodine receptors, and Ca2+ influx by store-operated calcium entry was required to maintain Ca2+ release events. Ca2+ release and development of Ca2+ waves appear to be the primary source of Ca2+ for excitation-contraction coupling in the mouse urethra, and no evidence was found that voltage-dependent Ca2+ entry via L-type or T-type channels was required for responses to α adrenergic responses. ABSTRACT Urethral smooth muscle cells (USMCs) generate myogenic tone and contribute to urinary continence. Currently, little is known about Ca2+ signalling in USMCs in situ, and therefore little is known about the source(s) of Ca2+ required for excitation-contraction coupling. We characterized Ca2+ signalling in USMCs within intact urethral muscles using a genetically encoded Ca2+ sensor, GCaMP3, expressed selectively in USMCs. USMCs fired spontaneous intracellular Ca2+ waves that did not propagate cell-to-cell across muscle bundles. Ca2+ waves increased dramatically in response to the α1 adrenoceptor agonist phenylephrine (10 μm) and to ATP (10 μm). Ca2+ waves were inhibited by the nitric oxide donor DEA NONOate (10 μm). Ca2+ influx and release from sarcoplasmic reticulum stores contributed to Ca2+ waves, as Ca2+ free bathing solution and blocking the sarcoplasmic Ca2+ -ATPase abolished activity. Intracellular Ca2+ release involved cooperation between ryanadine receptors and inositol trisphosphate receptors, as tetracaine and ryanodine (100 μm) and xestospongin C (1 μm) reduced Ca2+ waves. Ca2+ waves were insensitive to L-type Ca2+ channel modulators nifedipine (1 μm), nicardipine (1 μm), isradipine (1 μm) and FPL 64176 (1 μm), and were unaffected by the T-type Ca2+ channel antagonists NNC-550396 (1 μm) and TTA-A2 (1 μm). Ca2+ waves were reduced by the store operated Ca2+ entry blocker SKF 96365 (10 μm) and by an Orai antagonist, GSK-7975A (1 μm). The latter also reduced urethral contractions induced by phenylephrine, suggesting that Orai can function effectively as a receptor-operated channel. In conclusion, Ca2+ waves in mouse USMCs are a source of Ca2+ for excitation-contraction coupling in urethral muscles.
Collapse
Affiliation(s)
- Bernard T. Drumm
- Department of Physiology and Cell BiologyUniversity of Nevada, Reno School of MedicineRenoNV89557USA
| | - Benjamin E. Rembetski
- Department of Physiology and Cell BiologyUniversity of Nevada, Reno School of MedicineRenoNV89557USA
| | - Caroline A. Cobine
- Department of Physiology and Cell BiologyUniversity of Nevada, Reno School of MedicineRenoNV89557USA
| | - Salah A. Baker
- Department of Physiology and Cell BiologyUniversity of Nevada, Reno School of MedicineRenoNV89557USA
| | - Gerard P. Sergeant
- Smooth Muscle Research CentreDundalk Institute of TechnologyCo. LouthDundalkRepublic of Ireland
| | - Mark A. Hollywood
- Smooth Muscle Research CentreDundalk Institute of TechnologyCo. LouthDundalkRepublic of Ireland
| | - Keith D. Thornbury
- Smooth Muscle Research CentreDundalk Institute of TechnologyCo. LouthDundalkRepublic of Ireland
| | - Kenton M. Sanders
- Department of Physiology and Cell BiologyUniversity of Nevada, Reno School of MedicineRenoNV89557USA
| |
Collapse
|
4
|
Hristov KL, Parajuli SP, Provence A, Petkov GV. Testosterone decreases urinary bladder smooth muscle excitability via novel signaling mechanism involving direct activation of the BK channels. Am J Physiol Renal Physiol 2016; 311:F1253-F1259. [PMID: 27605581 PMCID: PMC5210203 DOI: 10.1152/ajprenal.00238.2016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 08/30/2016] [Indexed: 11/22/2022] Open
Abstract
In addition to improving sexual function, testosterone has been reported to have beneficial effects in ameliorating lower urinary tract symptoms by increasing bladder capacity and compliance, while decreasing bladder pressure. However, the cellular mechanisms by which testosterone regulates detrusor smooth muscle (DSM) excitability have not been elucidated. Here, we used amphotericin-B perforated whole cell patch-clamp and single channel recordings on inside-out excised membrane patches to investigate the regulatory role of testosterone in guinea pig DSM excitability. Testosterone (100 nM) significantly increased the depolarization-induced whole cell outward currents in DSM cells. The selective pharmacological inhibition of the large-conductance voltage- and Ca2+-activated K+ (BK) channels with paxilline (1 μM) completely abolished this stimulatory effect of testosterone, suggesting a mechanism involving BK channels. At a holding potential of -20 mV, DSM cells exhibited transient BK currents (TBKCs). Testosterone (100 nM) significantly increased TBKC activity in DSM cells. In current-clamp mode, testosterone (100 nM) significantly hyperpolarized the DSM cell resting membrane potential and increased spontaneous transient hyperpolarizations. Testosterone (100 nM) rapidly increased the single BK channel open probability in inside-out excised membrane patches from DSM cells, clearly suggesting a direct BK channel activation via a nongenomic mechanism. Live-cell Ca2+ imaging showed that testosterone (100 nM) caused a decrease in global intracellular Ca2+ concentration, consistent with testosterone-induced membrane hyperpolarization. In conclusion, the data provide compelling mechanistic evidence that under physiological conditions, testosterone at nanomolar concentrations directly activates BK channels in DSM cells, independent from genomic testosterone receptors, and thus regulates DSM excitability.
Collapse
Affiliation(s)
- Kiril L Hristov
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, South Carolina
| | - Shankar P Parajuli
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, South Carolina
| | - Aaron Provence
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, South Carolina
| | - Georgi V Petkov
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, South Carolina
| |
Collapse
|
5
|
Isogai A, Lee K, Mitsui R, Hashitani H. Functional coupling of TRPV4 channels and BK channels in regulating spontaneous contractions of the guinea pig urinary bladder. Pflugers Arch 2016; 468:1573-85. [DOI: 10.1007/s00424-016-1863-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 07/06/2016] [Accepted: 07/26/2016] [Indexed: 12/13/2022]
|
6
|
Brun J, Lutz KA, Neumayer KMH, Klein G, Seeger T, Uynuk-Ool T, Wörgötter K, Schmid S, Kraushaar U, Guenther E, Rolauffs B, Aicher WK, Hart ML. Smooth Muscle-Like Cells Generated from Human Mesenchymal Stromal Cells Display Marker Gene Expression and Electrophysiological Competence Comparable to Bladder Smooth Muscle Cells. PLoS One 2015; 10:e0145153. [PMID: 26673782 PMCID: PMC4684225 DOI: 10.1371/journal.pone.0145153] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 11/30/2015] [Indexed: 12/19/2022] Open
Abstract
The use of mesenchymal stromal cells (MSCs) differentiated toward a smooth muscle cell (SMC) phenotype may provide an alternative for investigators interested in regenerating urinary tract organs such as the bladder where autologous smooth muscle cells cannot be used or are unavailable. In this study we measured the effects of good manufacturing practice (GMP)-compliant expansion followed by myogenic differentiation of human MSCs on the expression of a range of contractile (from early to late) myogenic markers in relation to the electrophysiological parameters to assess the functional role of the differentiated MSCs and found that differentiation of MSCs associated with electrophysiological competence comparable to bladder SMCs. Within 1-2 weeks of myogenic differentiation, differentiating MSCs significantly expressed alpha smooth muscle actin (αSMA; ACTA2), transgelin (TAGLN), calponin (CNN1), and smooth muscle myosin heavy chain (SM-MHC; MYH11) according to qRT-PCR and/or immunofluorescence and Western blot. Voltage-gated Na+ current levels also increased within the same time period following myogenic differentiation. In contrast to undifferentiated MSCs, differentiated MSCs and bladder SMCs exhibited elevated cytosolic Ca2+ transients in response to K+-induced depolarization and contracted in response to K+ indicating functional maturation of differentiated MSCs. Depolarization was suppressed by Cd2+, an inhibitor of voltage-gated Ca2+-channels. The expression of Na+-channels was pharmacologically identified as the Nav1.4 subtype, while the K+ and Ca2+ ion channels were identified by gene expression of KCNMA1, CACNA1C and CACNA1H which encode for the large conductance Ca2+-activated K+ channel BKCa channels, Cav1.2 L-type Ca2+ channels and Cav3.2 T-type Ca2+ channels, respectively. This protocol may be used to differentiate adult MSCs into smooth muscle-like cells with an intermediate-to-late SMC contractile phenotype exhibiting voltage-gated ion channel activity comparable to bladder SMCs which may be important for urological regenerative medicine applications.
Collapse
Affiliation(s)
- Juliane Brun
- Clinical Research Group KFO 273, Department of Urology, University of Tübingen, Tübingen, Germany
| | - Katrin A. Lutz
- Clinical Research Group KFO 273, Department of Urology, University of Tübingen, Tübingen, Germany
| | - Katharina M. H. Neumayer
- Clinical Research Group KFO 273, Department of Urology, University of Tübingen, Tübingen, Germany
| | - Gerd Klein
- Center for Medical Research, University Medical Clinic, Department II, University of Tübingen, Tübingen, Germany
| | - Tanja Seeger
- Center for Medical Research, University Medical Clinic, Department II, University of Tübingen, Tübingen, Germany
| | - Tatiana Uynuk-Ool
- Siegfried Weller Institute for Trauma Research, Laboratory for Molecular Biomechanics, University of Tübingen, Tübingen, Germany
| | - Katharina Wörgötter
- Siegfried Weller Institute for Trauma Research, Laboratory for Molecular Biomechanics, University of Tübingen, Tübingen, Germany
| | - Sandra Schmid
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Department of Electrophysiology, Reutlingen, Germany
| | - Udo Kraushaar
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Department of Electrophysiology, Reutlingen, Germany
| | - Elke Guenther
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Department of Electrophysiology, Reutlingen, Germany
| | - Bernd Rolauffs
- Siegfried Weller Institute for Trauma Research, Laboratory for Molecular Biomechanics, University of Tübingen, Tübingen, Germany
| | - Wilhelm K. Aicher
- Clinical Research Group KFO 273, Department of Urology, University of Tübingen, Tübingen, Germany
| | - Melanie L. Hart
- Clinical Research Group KFO 273, Department of Urology, University of Tübingen, Tübingen, Germany
- Siegfried Weller Institute for Trauma Research, Laboratory for Molecular Biomechanics, University of Tübingen, Tübingen, Germany
| |
Collapse
|