1
|
Lacroix JJ, Wijerathne TD. PIEZO channels as multimodal mechanotransducers. Biochem Soc Trans 2025; 53:BST20240419. [PMID: 39936392 PMCID: PMC12010695 DOI: 10.1042/bst20240419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/09/2025] [Accepted: 01/10/2025] [Indexed: 02/13/2025]
Abstract
All living beings experience a wide range of endogenous and exogenous mechanical forces. The ability to detect these forces and rapidly convert them into specific biological signals is essential to a wide range of physiological processes. In vertebrates, these fundamental tasks are predominantly achieved by two related mechanosensitive ion channels called PIEZO1 and PIEZO2. PIEZO channels are thought to sense mechanical forces through flexible transmembrane blade-like domains. Structural studies indeed show that these mechanosensory domains adopt a curved conformation in a resting membrane but become flattened in a membrane under tension, promoting an open state. Yet, recent studies suggest the intriguing possibility that distinct mechanical stimuli activate PIEZO channels through discrete molecular rearrangements of these domains. In addition, biological signals downstream of PIEZO channel activation vary as a function of the mechanical stimulus and of the cellular context. These unique features could explain how PIEZOs confer cells the ability to differentially interpret a complex landscape of mechanical cues.
Collapse
Affiliation(s)
- Jérôme J Lacroix
- Department of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766, U.S.A
| | - Tharaka D Wijerathne
- Department of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766, U.S.A
| |
Collapse
|
2
|
Abstract
Recent years have seen substantial efforts aimed at constructing artificial cells from various molecular components with the aim of mimicking the processes, behaviours and architectures found in biological systems. Artificial cell development ultimately aims to produce model constructs that progress our understanding of biology, as well as forming the basis for functional bio-inspired devices that can be used in fields such as therapeutic delivery, biosensing, cell therapy and bioremediation. Typically, artificial cells rely on a bilayer membrane chassis and have fluid aqueous interiors to mimic biological cells. However, a desire to more accurately replicate the gel-like properties of intracellular and extracellular biological environments has driven increasing efforts to build cell mimics based on hydrogels. This has enabled researchers to exploit some of the unique functional properties of hydrogels that have seen them deployed in fields such as tissue engineering, biomaterials and drug delivery. In this Review, we explore how hydrogels can be leveraged in the context of artificial cell development. We also discuss how hydrogels can potentially be incorporated within the next generation of artificial cells to engineer improved biological mimics and functional microsystems.
Collapse
|
3
|
Zeng C, Zhao H, Wan Z, Xiao Q, Xia H, Guo S. Highly biodegradable, thermostable eutectogels prepared by gelation of natural deep eutectic solvents using xanthan gum: preparation and characterization. RSC Adv 2020; 10:28376-28382. [PMID: 35519143 PMCID: PMC9055700 DOI: 10.1039/d0ra03390a] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 07/13/2020] [Indexed: 01/02/2023] Open
Abstract
Highly biodegradable, thermostable eutectogels prepared by gelation of natural deep eutectic solvents using xanthan gum are expected to be widely used in the fields of food, medicine and materials.
Collapse
Affiliation(s)
- Chaoxi Zeng
- Department of Food Science and Technology
- College of Food Science and Technology
- Hunan Agricultural University
- Changsha
- China
| | - Haiyang Zhao
- Department of Food Science and Technology
- College of Food Science and Technology
- Hunan Agricultural University
- Changsha
- China
| | - Zheng Wan
- Department of Food Science and Technology
- College of Food Science and Technology
- Hunan Agricultural University
- Changsha
- China
| | - Qian Xiao
- Department of Food Science and Technology
- College of Food Science and Technology
- Hunan Agricultural University
- Changsha
- China
| | - Huiping Xia
- Department of Food Science and Technology
- College of Food Science and Technology
- Hunan Agricultural University
- Changsha
- China
| | - Shiyin Guo
- Department of Food Science and Technology
- College of Food Science and Technology
- Hunan Agricultural University
- Changsha
- China
| |
Collapse
|
4
|
Heimlicher MB, Bächler M, Liu M, Ibeneche-Nnewihe C, Florin EL, Hoenger A, Brunner D. Reversible solidification of fission yeast cytoplasm after prolonged nutrient starvation. J Cell Sci 2019; 132:jcs.231688. [PMID: 31558680 PMCID: PMC6857596 DOI: 10.1242/jcs.231688] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 09/20/2019] [Indexed: 12/19/2022] Open
Abstract
Cells depend on a highly ordered organisation of their content and must develop strategies to maintain the anisotropic distribution of organelles during periods of nutrient shortage. One of these strategies is to solidify the cytoplasm, which was observed in bacteria and yeast cells with acutely interrupted energy production. Here, we describe a different type of cytoplasm solidification fission yeast cells switch to, after having run out of nutrients during multiple days in culture. It provides the most profound reversible cytoplasmic solidification of yeast cells described to date. Our data exclude the previously proposed mechanisms for cytoplasm solidification in yeasts and suggest a mechanism that immobilises cellular components in a size-dependent manner. We provide experimental evidence that, in addition to time, cells use intrinsic nutrients and energy sources to reach this state. Such cytoplasmic solidification may provide a robust means to protect cellular architecture in dormant cells. Summary: After prolonged quiescence, fission yeast cell populations switch state to immobilise subcellular components much more profoundly than cells experiencing acute energy depletion.
Collapse
Affiliation(s)
- Maria B Heimlicher
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Mirjam Bächler
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Minghua Liu
- Dept. of Molecular, Cellular and Developmental Biology, University of Colorado at Boulder, UCB-0347, Boulder, CO 80309, USA
| | - Chieze Ibeneche-Nnewihe
- Center for Nonlinear Dynamics and Department of Physics, University of Texas at Austin, Austin, TX 78712, USA
| | - Ernst-Ludwig Florin
- Center for Nonlinear Dynamics and Department of Physics, University of Texas at Austin, Austin, TX 78712, USA
| | - Andreas Hoenger
- Dept. of Molecular, Cellular and Developmental Biology, University of Colorado at Boulder, UCB-0347, Boulder, CO 80309, USA
| | - Damian Brunner
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| |
Collapse
|
5
|
Alexandrov AI, Grosfeld EV, Dergalev AA, Kushnirov VV, Chuprov-Netochin RN, Tyurin-Kuzmin PA, Kireev II, Ter-Avanesyan MD, Leonov SV, Agaphonov MO. Analysis of novel hyperosmotic shock response suggests 'beads in liquid' cytosol structure. Biol Open 2019; 8:bio044529. [PMID: 31285266 PMCID: PMC6679407 DOI: 10.1242/bio.044529] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 06/25/2019] [Indexed: 12/11/2022] Open
Abstract
Proteins can aggregate in response to stresses, including hyperosmotic shock. Formation and disassembly of aggregates is a relatively slow process. We describe a novel instant response of the cell to hyperosmosis, during which chaperones and other proteins form numerous foci with properties uncharacteristic of classical aggregates. These foci appeared/disappeared seconds after shock onset/removal, in close correlation with cell volume changes. Genome-wide and targeted testing revealed chaperones, metabolic enzymes, P-body components and amyloidogenic proteins in the foci. Most of these proteins can form large assemblies and for some, the assembled state was pre-requisite for participation in foci. A genome-wide screen failed to identify genes whose absence prevented foci participation by Hsp70. Shapes of and interconnections between foci, revealed by super-resolution microscopy, indicated that the foci were compressed between other entities. Based on our findings, we suggest a new model of cytosol architecture as a collection of numerous gel-like regions suspended in a liquid network. This network is reduced in volume in response to hyperosmosis and forms small pockets between the gel-like regions.
Collapse
Affiliation(s)
- Alexander I Alexandrov
- Federal Research Center "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Bach Institute of Biochemistry, Leninsky Ave. 33, bld. 2, Moscow 119071, Russia
- A.N. Belozersky Institute of Physico-chemical Biology, M.V. Lomonosov Moscow State University, Leninskie gori 1, bldg 40, Moscow 119234, Russia
| | - Erika V Grosfeld
- Federal Research Center "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Bach Institute of Biochemistry, Leninsky Ave. 33, bld. 2, Moscow 119071, Russia
- Chair of Molecular and Cell Biology, Moscow Institute of Physics and Technology (State University), Institutskiy per. 9, Dolgoprudny, Moscow Region 141701, Russia
| | - Alexander A Dergalev
- Federal Research Center "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Bach Institute of Biochemistry, Leninsky Ave. 33, bld. 2, Moscow 119071, Russia
| | - Vitaly V Kushnirov
- Federal Research Center "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Bach Institute of Biochemistry, Leninsky Ave. 33, bld. 2, Moscow 119071, Russia
| | - Roman N Chuprov-Netochin
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology (State University), Institutskiy per. 9, Dolgoprudny, Moscow Region 141701, Russia
| | - Pyotr A Tyurin-Kuzmin
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, M.V. Lomonosov Moscow State University, Lomonosovskiy pr., 27 bldg 1, Moscow 119192, Russia
| | - Igor I Kireev
- A.N. Belozersky Institute of Physico-chemical Biology, M.V. Lomonosov Moscow State University, Leninskie gori 1, bldg 40, Moscow 119234, Russia
- V. I. Kulakov National Medical Research Center for Obstetrics, Gynecology, and Perinatology, Moscow 117198, Russia
- Faculty of Biology, M. V. Lomonosov Moscow State University, Moscow 119234, Russia
| | - Michael D Ter-Avanesyan
- Federal Research Center "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Bach Institute of Biochemistry, Leninsky Ave. 33, bld. 2, Moscow 119071, Russia
| | - Sergey V Leonov
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology (State University), Institutskiy per. 9, Dolgoprudny, Moscow Region 141701, Russia
- Institute of Cell Biophysics of the Russian Academy of Sciences, Institutskaya str., 3, Moscow Region, 142290 Puschino, Russia
| | - Michael O Agaphonov
- Federal Research Center "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Bach Institute of Biochemistry, Leninsky Ave. 33, bld. 2, Moscow 119071, Russia
| |
Collapse
|
6
|
Orlov SN, Shiyan A, Boudreault F, Ponomarchuk O, Grygorczyk R. Search for Upstream Cell Volume Sensors: The Role of Plasma Membrane and Cytoplasmic Hydrogel. CURRENT TOPICS IN MEMBRANES 2018; 81:53-82. [PMID: 30243440 DOI: 10.1016/bs.ctm.2018.07.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
The plasma membrane plays a prominent role in the regulation of cell volume by mediating selective transport of extra- and intracellular osmolytes. Recent studies show that upstream sensors of cell volume changes are mainly located within the cytoplasm that displays properties of a hydrogel and not in the plasma membrane. Cell volume changes occurring in anisosmotic medium as well as in isosmotic environment affect properties of cytoplasmic hydrogel that, in turn, trigger rapid regulatory volume increase and decrease (RVI and RVD). The downstream signaling pathways include reorganization of 2D cytoskeleton and altered composition of polyphosphoinositides located on the inner surface of the plasma membrane. In addition to its action on physico-chemical properties of cytoplasmic hydrogel, cell volume changes in anisosmotic conditions affect the ionic strength of the cytoplasm and the [Na+]i/[K+]i ratio. Elevated intracellular ionic strength evoked by long term exposure of cells to hypertonic environment resulted in the activation of TonEBP and augmented expression of genes controlling intracellular organic osmolyte levels. The role of Na+i/K+i -sensitive, Ca2+i -mediated and Ca2+i-independent mechanisms of excitation-transcription coupling in cell volume-adjustment remains unknown.
Collapse
Affiliation(s)
- Sergei N Orlov
- Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia; Siberian State Medical University, Tomsk, Russia; National Research Tomsk State University, Tomsk, Russia
| | - Aleksandra Shiyan
- Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Francis Boudreault
- Centre de recherche, Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada
| | - Olga Ponomarchuk
- Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia; Centre de recherche, Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada
| | - Ryszard Grygorczyk
- Centre de recherche, Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada; Department of Medicine, Faculty of Medicine, University of Montreal, Montreal, QC, Canada
| |
Collapse
|
7
|
Ponomarchuk O, Boudreault F, Orlov SN, Grygorczyk R. Calcium is not required for triggering volume restoration in hypotonically challenged A549 epithelial cells. Pflugers Arch 2016; 468:2075-2085. [PMID: 27796579 DOI: 10.1007/s00424-016-1896-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 09/11/2016] [Accepted: 10/14/2016] [Indexed: 11/26/2022]
Abstract
Maintenance of cell volume is a fundamental housekeeping function in eukaryotic cells. Acute cell swelling activates a regulatory volume decrease (RVD) process with poorly defined volume sensing and intermediate signaling mechanisms. Here, we analyzed the putative role of Ca2+ signaling in RVD in single substrate-adherent human lung epithelial A549 cells. Acute cell swelling was induced by perfusion of the flow-through imaging chamber with 50 % hypotonic solution at a defined fluid turnover rate. Changes in cytosolic Ca2+ concentration ([Ca2+]i) and cell volume were monitored simultaneously with ratiometric Fura-2 fluorescence and 3D reconstruction of stereoscopic single-cell images, respectively. Hypotonic challenge caused a progressive swelling peaking at ∼20 min and followed, during the next 20 min, by RVD of 60 ± 7 % of the peak volume increase. However, at the rate of swelling used in our experiments, these processes were not accompanied by a measurable increment of [Ca2+]i. Loading with intracellular Ca2+ chelator BAPTA slightly delayed peak of swelling but did not prevent RVD in 82 % of cells. Further, electrophysiology whole-cell patch-clamp experiments showed that BAPTA did not block activation of volume-regulated anion channel (VRAC) measured as swelling-induced outwardly rectifying 5-nitro-2-(3-phenylpropyl-amino) benzoic acid sensitive current. Together, our data suggest that intracellular Ca2+-mediated signaling is not essential for VRAC activation and subsequent volume restoration in A549 cells.
Collapse
Affiliation(s)
- Olga Ponomarchuk
- Centre de recherche, Centre hospitalier de l'Université de Montréal (CRCHUM), Tour Viger 900 rue St-Denis, Montreal, Quebec, H2X 0A9, Canada
- Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Francis Boudreault
- Centre de recherche, Centre hospitalier de l'Université de Montréal (CRCHUM), Tour Viger 900 rue St-Denis, Montreal, Quebec, H2X 0A9, Canada.
| | - Sergei N Orlov
- Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Ryszard Grygorczyk
- Centre de recherche, Centre hospitalier de l'Université de Montréal (CRCHUM), Tour Viger 900 rue St-Denis, Montreal, Quebec, H2X 0A9, Canada.
- Department of Medicine, Université de Montréal, Montreal, Quebec, Canada.
| |
Collapse
|
8
|
Role of cytoskeleton network in anisosmotic volume changes of intact and permeabilized A549 cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:2337-43. [PMID: 26171817 DOI: 10.1016/j.bbamem.2015.07.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 07/06/2015] [Accepted: 07/10/2015] [Indexed: 11/20/2022]
Abstract
Recently we found that cytoplasm of permeabilized mammalian cells behaves as a hydrogel displaying intrinsic osmosensitivity. This study examined the role of microfilaments and microtubules in the regulation of hydrogel osmosensitivity, volume-sensitive ion transporters, and their contribution to volume modulation of intact cells. We found that intact and digitonin-permeabilized A549 cells displayed similar rate of shrinkage triggered by hyperosmotic medium. It was significantly slowed-down in both cell preparations after disruption of actin microfilaments by cytochalasin B, suggesting that rapid water release by intact cytoplasmic hydrogel contributes to hyperosmotic shrinkage. In hyposmotic swelling experiments, disruption of microtubules by vinblastine attenuated the maximal amplitude of swelling in intact cells and completely abolished it in permeabilized cells. The swelling of intact cells also triggered ~10-fold elevation of furosemide-resistant (86)Rb+ (K+) permeability and the regulatory volume decrease (RVD), both of which were abolished by Ba2+. Interestingly, RVD and K+ permeability remained unaffected in cytocholasin/vinblastine treated cells demonstrating that cytoskeleton disruption has no direct impact on Ba2+-sensitive K+-channels involved in RVD. Our results show, for the first time, that the cytoskeleton network contributes directly to passive cell volume adjustments in anisosmotic media via the modulation of the water retained by the cytoplasmic hydrogel.
Collapse
|