1
|
Conte E, Imbrici P, Dinoi G, Boccanegra B, Lanza M, Mele E, Riemma MA, Urbanek K, Cappetta D, De Luca A, Berrino L, De Angelis A, Liantonio A. SGLT2 inhibitor dapagliflozin mitigates skeletal muscle pathology by modulating key proteins involved in glucose and ion homeostasis in an animal model of heart failure. Eur J Pharmacol 2025; 997:177617. [PMID: 40222442 DOI: 10.1016/j.ejphar.2025.177617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 03/31/2025] [Accepted: 04/10/2025] [Indexed: 04/15/2025]
Abstract
Heart failure (HF) is a syndrome characterized by dyspnoea, fatigue and exercise intolerance. Among non-cardiac comorbidities which often accompany HF, skeletal muscle abnormalities impact patients' daily activities and quality of life. Sodium-glucose cotransporter 2 inhibitors (SGLT2i) have shown promise in improving clinical outcomes and enhancing physical performance in HF patients, although their mechanism of action remains unclear. In this context, altered muscle ions and glucose homeostasis may contribute to HF-related muscle changes and serve as indirect targets for SGLT2i effects. To explore this further, we used Dahl salt-sensitive rats fed with a high-salt diet for five weeks and then randomized to receive dapagliflozin (HS + DAP) or vehicle (HS) for the following six weeks. Control animals received a low-salt diet (LS). We investigated whether variations in indexes of glucose and ions homeostasis occur in extensor digitorum longus muscle of this rodent model of HF with preserved ejection fraction and are counteracted by dapagliflozin treatment. Gene and protein expression analysis revealed altered expression of proteins involved in glucose (SGLT2, GLUT4, GPD1) and Ca2+ and Na + homeostasis (NCX3, Ryr1, NHE1/6, Na+/K+-ATPase, Nav1.4) in HS vs LS animals. Furthermore, HS rats showed an increased CaMKII expression in its active phosphorylated form and a change in plasma pH toward acidification. Dapagliflozin treatment counteracted the altered expression of most of the components under investigation, also promoting an amelioration of atrophy indexes and a recovery of plasma pH. Thus, skeletal muscle appears highly responsive to SGLT2i treatment, supporting the potential of these drugs in mitigating HF-related muscle pathology.
Collapse
Affiliation(s)
- Elena Conte
- Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro, Via Orabona 4, 70125, Bari, Italy.
| | - Paola Imbrici
- Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro, Via Orabona 4, 70125, Bari, Italy
| | - Giorgia Dinoi
- Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro, Via Orabona 4, 70125, Bari, Italy
| | - Brigida Boccanegra
- Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro, Via Orabona 4, 70125, Bari, Italy
| | - Martina Lanza
- Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro, Via Orabona 4, 70125, Bari, Italy
| | - Elena Mele
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138, Naples, Italy
| | - Maria Antonietta Riemma
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138, Naples, Italy
| | - Konrad Urbanek
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples "Federico II", Via A. Pansini 5, 80131, Naples, Italy
| | - Donato Cappetta
- Department of Experimental Medicine, University of Salento, Via Lecce-Monteroni, 73100 Lecce, Italy
| | - Annamaria De Luca
- Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro, Via Orabona 4, 70125, Bari, Italy
| | - Liberato Berrino
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138, Naples, Italy
| | - Antonella De Angelis
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138, Naples, Italy
| | - Antonella Liantonio
- Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro, Via Orabona 4, 70125, Bari, Italy.
| |
Collapse
|
2
|
Muto S, Moriwaki K, Nagata D, Furuse M. Axial heterogeneity of superficial proximal tubule paracellular transport in mice. Am J Physiol Renal Physiol 2024; 327:F1067-F1078. [PMID: 39480273 DOI: 10.1152/ajprenal.00187.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/14/2024] [Accepted: 10/26/2024] [Indexed: 12/06/2024] Open
Abstract
A considerable amount of NaCl reabsorption in proximal tubules (PTs) occurs via the paracellular transport regulated by the tight junction proteins claudins (Cldns). However, the paracellular transport properties in mouse superficial PTs remain unclear. We characterized these properties in superficial PT S1-S3 segments from mice expressing [wild-type (WT, WTS1-WTS3)] or lacking [knockout (KO, KOS1-KOS3)] claudin-2. We isolated and perfused segments with symmetrical solutions in the presence of bath ouabain and measured the diffusion potential upon changing the salt composition of the lumen or bath. Based on the diffusion potential corrected for the liquid junction potential (dVT), we calculated the paracellular Na+ over Cl- permeability (PNa/PCl) ratio. The PNa/PCl values upon reducing luminal NaCl averaged 1.27, 1.04, and 0.85 in WTS1, WTS2, and WTS3 and 0.34, 0.55, and 0.80 in KOS1, KOS2, and KOS3, respectively. The dVT values exhibited a symmetrical response to bidirectional NaCl concentration gradients in WTS1-WTS3 and KOS1-KOS3. WTS1 and WTS3 were monovalent cation-selective, with WTS1 demonstrating stronger cation selectivity. The order of permeabilities relative to Cl- was K+ > Rb+ > Na+ > Li+, whereas both KOS1 and KOS3 exhibited monovalent cation selectivity loss and, consequently, enhanced anion selectivity, especially in KOS1. Protamine addition to the lumen and bath similarly decreased PNa/PCl values upon reduced luminal NaCl in the order of WTS1 > WTS3 > KOS3 > KOS1. Therefore, this study presents evidence of axial heterogeneity in paracellular transport across superficial PTs in mice.NEW & NOTEWORTHY Research on isolated perfused S2 segments of proximal tubules in mice, both expressing and lacking claudin-2, indicates that claudin-2 forms leaky monovalent cation-selective paracellular channels within the tight junctions of proximal tubules. This study characterized the paracellular transport properties in isolated and perfused superficial proximal tubule S1-S3 segments in both groups of mice. The findings demonstrate, for the first time, functional heterogeneity in the paracellular pathway along the axis of the superficial proximal tubules.
Collapse
Affiliation(s)
- Shigeaki Muto
- Division of Nephrology, Department of Internal Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Kazumasa Moriwaki
- Department of Pharmacology, Faculty of Medicine, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka, Japan
| | - Daisuke Nagata
- Division of Nephrology, Department of Internal Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Mikio Furuse
- Division of Cell Structure, National Institute for Physiological Sciences, Okazaki, Aichi, Japan
- Physiological Sciences Program, Graduate Institute for Advanced Studies, The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Aichi, Japan
- Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| |
Collapse
|
3
|
Sun M, Sun J, Sun W, Li X, Wang Z, Sun L, Wang Y. Unveiling the anticancer effects of SGLT-2i: mechanisms and therapeutic potential. Front Pharmacol 2024; 15:1369352. [PMID: 38595915 PMCID: PMC11002155 DOI: 10.3389/fphar.2024.1369352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/14/2024] [Indexed: 04/11/2024] Open
Abstract
Cancer and diabetes are significant diseases that pose a threat to human health. Their interconnection is complex, particularly when they coexist, often necessitating multiple therapeutic approaches to attain remission. Sodium-glucose cotransporter protein two inhibitors (SGLT-2i) emerged as a treatment for hyperglycemia, but subsequently exhibited noteworthy extra-glycemic properties, such as being registered for the treatment of heart failure and chronic kidney disease, especially with co-existing albuminuria, prompting its assessment as a potential treatment for various non-metabolic diseases. Considering its overall tolerability and established use in diabetes management, SGLT-2i may be a promising candidate for cancer therapy and as a supplementary component to conventional treatments. This narrative review aimed to examine the potential roles and mechanisms of SGLT-2i in the management of diverse types of cancer. Future investigations should focus on elucidating the antitumor efficacy of individual SGLT-2i in different cancer types and exploring the underlying mechanisms. Additionally, clinical trials to evaluate the safety and feasibility of incorporating SGLT-2i into the treatment regimen of specific cancer patients and determining appropriate dosage combinations with established antitumor agents would be of significant interest.
Collapse
Affiliation(s)
- Min Sun
- Department of Geriatrics, First Hospital, Jilin University, Changchun, China
| | - Jilei Sun
- Changchun Traditional Chinese Medicine Hospital, Changchun, China
| | - Wei Sun
- First Affiliated Hospital of Jilin University, Changchun, China
| | - Xiaonan Li
- Department of Geriatrics, First Hospital, Jilin University, Changchun, China
| | - Zhe Wang
- Department of Geriatrics, First Hospital, Jilin University, Changchun, China
| | - Liwei Sun
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Yuehui Wang
- Department of Geriatrics, First Hospital, Jilin University, Changchun, China
| |
Collapse
|
4
|
Takeyasu M, Kozai K, Sugita M. Involvement of sodium-glucose cotransporter-1 activities in maintaining oscillatory Cl - currents from mouse submandibular acinar cells. J Comp Physiol B 2024; 194:21-32. [PMID: 38308715 PMCID: PMC10940492 DOI: 10.1007/s00360-024-01532-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/01/2023] [Accepted: 01/04/2024] [Indexed: 02/05/2024]
Abstract
In salivary acinar cells, cholinergic stimulation induces elevations of cytosolic [Ca2+]i to activate the apical exit of Cl- through TMEM16A Cl- channels, which acts as a driving force for fluid secretion. To sustain the Cl- secretion, [Cl-]i must be maintained to levels that are greater than the electrochemical equilibrium mainly by Na+-K+-2Cl- cotransporter-mediated Cl- entry in basolateral membrane. Glucose transporters carry glucose into the cytoplasm, enabling the cells to produce ATP to maintain Cl- and fluid secretion. Sodium-glucose cotransporter-1 is a glucose transporter highly expressed in acinar cells. The salivary flow is suppressed by the sodium-glucose cotransporter-1 inhibitor phlorizin. However, it remains elusive how sodium-glucose cotransporter-1 contributes to maintaining salivary fluid secretion. To examine if sodium-glucose cotransporter-1 activity is required for sustaining Cl- secretion to drive fluid secretion, we analyzed the Cl- currents activated by the cholinergic agonist, carbachol, in submandibular acinar cells while comparing the effect of phlorizin on the currents between the whole-cell patch and the gramicidin-perforated patch configurations. Phlorizin suppressed carbachol-induced oscillatory Cl- currents by reducing the Cl- efflux dependent on the Na+-K+-2Cl- cotransporter-mediated Cl- entry in addition to affecting TMEM16A activity. Our results suggest that the sodium-glucose cotransporter-1 activity is necessary for maintaining the oscillatory Cl- secretion supported by the Na+-K+-2Cl- cotransporter activity in real time to drive fluid secretion. The concerted effort of sodium-glucose cotransporter-1, Na+-K+-2Cl- cotransporter, and apically located Cl- channels might underlie the efficient driving of Cl- secretion in different secretory epithelia from a variety of animal species.
Collapse
Affiliation(s)
- Misa Takeyasu
- Department of Physiology and Oral Physiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima, 734-8553, Japan
- Department of Pediatric Dentistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Katsuyuki Kozai
- Department of Pediatric Dentistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Makoto Sugita
- Department of Physiology and Oral Physiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima, 734-8553, Japan.
| |
Collapse
|
5
|
McDonough AA, Harris AN, Xiong LI, Layton AT. Sex differences in renal transporters: assessment and functional consequences. Nat Rev Nephrol 2024; 20:21-36. [PMID: 37684523 PMCID: PMC11090267 DOI: 10.1038/s41581-023-00757-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2023] [Indexed: 09/10/2023]
Abstract
Mammalian kidneys are specialized to maintain fluid and electrolyte homeostasis. The epithelial transport processes along the renal tubule that match output to input have long been the subject of experimental and theoretical study. However, emerging data have identified a new dimension of investigation: sex. Like most tissues, the structure and function of the kidney is regulated by sex hormones and chromosomes. Available data demonstrate sex differences in the abundance of kidney solute and electrolyte transporters, establishing that renal tubular organization and operation are distinctly different in females and males. Newer studies have provided insights into the physiological consequences of these sex differences. Computational simulations predict that sex differences in transporter abundance are likely driven to optimize reproduction, enabling adaptive responses to the nutritional requirements of serial pregnancies and lactation - normal life-cycle changes that challenge the ability of renal transporters to maintain fluid and electrolyte homeostasis. Later in life, females may also undergo menopause, which is associated with changes in disease risk. Although numerous knowledge gaps remain, ongoing studies will provide further insights into the sex-specific mechanisms of sodium, potassium, acid-base and volume physiology throughout the life cycle, which may lead to therapeutic opportunities.
Collapse
Affiliation(s)
- Alicia A McDonough
- Department of Physiology and Neuroscience, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA.
| | - Autumn N Harris
- Department of Small Animal Clinical Sciences, University of Florida, College of Veterinary Medicine, Gainesville, FL, USA
| | - Lingyun Ivy Xiong
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, USA
| | - Anita T Layton
- Departments of Applied Mathematics and Biology, University of Waterloo, Waterloo, Ontario, Canada
- Cheriton School of Computer Science, University of Waterloo, Waterloo, Ontario, Canada
- School of Pharmacy, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
6
|
Nakamura C, Ishizuka N, Yokoyama K, Yazaki Y, Tatsumi F, Ikumi N, Hempstock W, Ikari A, Yoshino Y, Hayashi H. Regulatory mechanisms of glucose absorption in the mouse proximal small intestine during fasting and feeding. Sci Rep 2023; 13:10838. [PMID: 37407613 DOI: 10.1038/s41598-023-38024-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 06/30/2023] [Indexed: 07/07/2023] Open
Abstract
Fasting is known to alter the function of various organs and the mechanisms of glucose metabolism, which affect health outcomes and slow aging. However, it remains unclear how fasting and feeding affects glucose absorption function in the small intestine. We studied the effects of the fasting and feeding on glucose-induced short-circuit current (Isc) in vitro using an Ussing chamber technique. Glucose-induced Isc by SGLT1 was observed in the ileum, but little or no Isc was observed in the jejunum in ad libitum-fed mice. However, in mice fasted for 24-48 h, in addition to the ileum, robust glucose-induced Isc was observed over time in the jejunum. The expression of SGLT1 in the brush border membranes was significantly decreased in the jejunum under fed conditions compared to 48 h fasting, as analyzed by western blotting. Additionally, when mice were fed a 60% high glucose diet for 3 days, the increase in glucose-induced Isc was observed only in the ileum, and totally suppressed in the jejunum. An increase in Na+ permeability between epithelial cells was concomitantly observed in the jejunum of fasted mice. Transepithelial glucose flux was assessed using a non-metabolizable glucose analog, 14C-methyl α-D-glucopyranoside glucose (MGP). Regardless of whether fed or fasted, no glucose diffusion mechanism was observed. Fasting increased the SGLT1-mediated MGP flux in the jejunum. In conclusion, segment-dependent up- and down-regulation mechanisms during fasting and feeding are important for efficient glucose absorption once the fast is broken. Additionally, these mechanisms may play a crucial role in the small intestine's ability to autoregulate glucose absorption, preventing acute hyperglycemia when large amounts of glucose are ingested.
Collapse
Affiliation(s)
- Chisato Nakamura
- Laboratory of Physiology, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Noriko Ishizuka
- Laboratory of Physiology, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Kanako Yokoyama
- Laboratory of Physiology, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Yuyu Yazaki
- Laboratory of Physiology, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Fumiya Tatsumi
- Laboratory of Physiology, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Naotaka Ikumi
- Laboratory of Physiology, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Wendy Hempstock
- Laboratory of Physiology, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
- Department of Nursing, School of Nursing, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Akira Ikari
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| | - Yuta Yoshino
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| | - Hisayoshi Hayashi
- Laboratory of Physiology, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan.
| |
Collapse
|
7
|
Huang B, Lin Z, Chen Z, Chen J, Shi B, Jia J, Li Y, Pan Y, Liang Y, Cai Z. Strain differences in the drug transport capacity of intestinal glucose transporters in Sprague-Dawley versus Wistar rats, C57BL/6J versus Kunming mice. Int J Pharm 2023; 640:123000. [PMID: 37254285 DOI: 10.1016/j.ijpharm.2023.123000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/22/2023] [Accepted: 04/25/2023] [Indexed: 06/01/2023]
Abstract
Designing oral drug delivery systems using intestinal glucose transporters (IGTs) may be one of the strategies for improving oral bioavailability of drugs. However, little is known about the biological factors affecting the drug transport capacity of IGTs. Gastrodin is a sedative drug with a structure very similar to glucose. It is a highly water-soluble phenolic glucoside. It can hardly enter the intestine through simple diffusion but exhibits good oral bioavailability of over 80%. We confirmed that gastrodin is absorbed via the intestinal glucose transport pathway. It has the highest oral bioavailability among the reported glycosides' active ingredients through this pathway. Thus, gastrodin is the most selective drug substrate of IGTs and can be used to evaluate the drug transport capacity of IGTs. Obviously, strain is one of the main biological factors affecting drug absorption. This study firstly compared the drug transport capacity of IGTs between SD rats and Wistar rats and between C57 mice and KM mice by pharmacokinetic experiments and single-pass intestinal perfusion experiments of gastrodin. Then, the sodium-dependent glucose transporter type 1 (SGLT1) and sodium-independent glucose transporters type 2 (GLUT2) in the duodenum, jejunum, ileum and colon of these animals were quantified using RT-qPCR and Western blot. The results showed that the oral bioavailability of gastrodin in Wistar rats was significantly higher than in SD rats and significantly higher in KM mice than in C57 mice. Gastrodin absorption significantly differed among different intestinal segments in SD rats, C57 mice and KM mice, except Wistar rats. RT-qPCR and Western blot demonstrated that the intestinal expression distribution of SGLT1 and GLUT2 in SD rats and C57 mice was duodenum ≈ jejunum > ileum > colon. SGLT1 expression did not differ among different intestinal segments in KM mice, whereas the intestinal expression distribution of GLUT2 was duodenum ≈ jejunum ≈ ileum > colon. However, the expression of SGLT1 and GLUT2 did not differ among different intestinal segments in Wistar rats. It was reported that the intestinal expression distribution of SGLT1 and GLUT2 in humans is duodenum > jejunum > ileum > colon. Hence, the intestinal expression distribution of SGLT1 and GLUT2 of SD rats and C57 mice was more similar to that in humans. In conclusion, the drug transport capacity of IGTs differs in different strains of rats and mice. SD rats and C57 mice are more suitable for evaluating the pharmacokinetics of glycosides' active ingredients absorbed via the intestinal glucose transport pathway.
Collapse
Affiliation(s)
- Baolin Huang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 510515 Guangzhou, China; The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, 511500 Qingyuan, China
| | - Zimin Lin
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 510515 Guangzhou, China
| | - Zhenzhen Chen
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 510515 Guangzhou, China
| | - Jiasheng Chen
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 510515 Guangzhou, China
| | - Birui Shi
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 510515 Guangzhou, China; The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, 511500 Qingyuan, China
| | - Jingjing Jia
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, 511500 Qingyuan, China
| | - Yuan Li
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 510515 Guangzhou, China
| | - Yueqing Pan
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 510515 Guangzhou, China
| | - Yuntao Liang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 510515 Guangzhou, China
| | - Zheng Cai
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 510515 Guangzhou, China; Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 510315 Guangzhou, China.
| |
Collapse
|
8
|
Liu R, Juncos LA, Lu Y, Wei J, Zhang J, Wang L, Lai EY, Carlstrom M, Persson AEG. The Role of Macula Densa Nitric Oxide Synthase 1 Beta Splice Variant in Modulating Tubuloglomerular Feedback. Compr Physiol 2023; 13:4215-4229. [PMID: 36715280 PMCID: PMC9990375 DOI: 10.1002/cphy.c210043] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Abnormalities in renal electrolyte and water excretion may result in inappropriate salt and water retention, which facilitates the development and maintenance of hypertension, as well as acid-base and electrolyte disorders. A key mechanism by which the kidney regulates renal hemodynamics and electrolyte excretion is via tubuloglomerular feedback (TGF), an intrarenal negative feedback between tubules and arterioles. TGF is initiated by an increase of NaCl delivery at the macula densa cells. The increased NaCl activates luminal Na-K-2Cl cotransporter (NKCC2) of the macula densa cells, which leads to activation of several intracellular processes followed by the production of paracrine signals that ultimately result in a constriction of the afferent arteriole and a tonic inhibition of single nephron glomerular filtration rate. Neuronal nitric oxide (NOS1) is highly expressed in the macula densa. NOS1β is the major splice variant and accounts for most of NO generation by the macula densa, which inhibits TGF response. Macula densa NOS1β-mediated modulation of TGF responses plays an essential role in control of sodium excretion, volume and electrolyte hemostasis, and blood pressure. In this article, we describe the mechanisms that regulate macula densa-derived NO and their effect on TGF response in physiologic and pathologic conditions. © 2023 American Physiological Society. Compr Physiol 13:4215-4229, 2023.
Collapse
Affiliation(s)
- Ruisheng Liu
- Department of Molecular Pharmacology & Physiology
- Hypertension and Kidney Research Center, Morsani College of Medicine, University of South Florida, Tampa, FL
| | - Luis A. Juncos
- Department of Internal Medicine, Central Arkansas Veterans Healthcare System, Little Rock, AR
| | - Yan Lu
- Division of Nephrology, University of Alabama at Birmingham, Birmingham AL
| | - Jin Wei
- Department of Molecular Pharmacology & Physiology
| | - Jie Zhang
- Department of Molecular Pharmacology & Physiology
| | - Lei Wang
- Department of Molecular Pharmacology & Physiology
| | - En Yin Lai
- Department of Physiology, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, China
| | - Mattias Carlstrom
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - A. Erik G Persson
- Division of Integrative Physiology, Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
9
|
SGLT-2 Inhibitors in Cancer Treatment-Mechanisms of Action and Emerging New Perspectives. Cancers (Basel) 2022; 14:cancers14235811. [PMID: 36497303 PMCID: PMC9738342 DOI: 10.3390/cancers14235811] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/11/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
A new group of antidiabetic drugs, sodium-glucose cotransporter 2 inhibitors (SGLT-2 inhibitors), have recently been shown to have anticancer effects and their expression has been confirmed in many cancer cell lines. Given the metabolic reprogramming of these cells in a glucose-based model, the ability of SGLT-2 inhibitors to block the glucose uptake by cancer cells appears to be an attractive therapeutic approach. In addition to tumour cells, SGLT-2s are only found in the proximal tubules in the kidneys. Furthermore, as numerous clinical trials have shown, the use of SGLT-2 inhibitors is well-tolerated and safe in patients with diabetes and/or heart failure. In vitro cell culture studies and preclinical in vivo studies have confirmed that SGLT-2 inhibitors exhibit antiproliferative effects on certain types of cancer. However, the mechanisms of this action remain unclear. Even in those tumour cell types in which SGLT-2 is present, there is sometimes an SGLT-2-independent mechanism of anticancer action of this group of drugs. This article presents the current state of knowledge of the potential mechanisms of the anticancer action of SGLT-2 inhibitors and their possible future application in clinical oncology.
Collapse
|
10
|
Oe Y, Vallon V. The Pathophysiological Basis of Diabetic Kidney Protection by Inhibition of SGLT2 and SGLT1. KIDNEY AND DIALYSIS 2022; 2:349-368. [PMID: 36380914 PMCID: PMC9648862 DOI: 10.3390/kidneydial2020032] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
SGLT2 inhibitors can protect the kidneys of patients with and without type 2 diabetes mellitus and slow the progression towards end-stage kidney disease. Blocking tubular SGLT2 and spilling glucose into the urine, which triggers a metabolic counter-regulation similar to fasting, provides unique benefits, not only as an anti-hyperglycemic strategy. These include a low hypoglycemia risk and a shift from carbohydrate to lipid utilization and mild ketogenesis, thereby reducing body weight and providing an additional energy source. SGLT2 inhibitors counteract hyperreabsorption in the early proximal tubule, which acutely lowers glomerular pressure and filtration and thereby reduces the physical stress on the filtration barrier, the filtration of tubule-toxic compounds, and the oxygen demand for tubular reabsorption. This improves cortical oxygenation, which, together with lesser tubular gluco-toxicity and improved mitochondrial function and autophagy, can reduce pro-inflammatory, pro-senescence, and pro-fibrotic signaling and preserve tubular function and GFR in the long-term. By shifting transport downstream, SGLT2 inhibitors more equally distribute the transport burden along the nephron and may mimic systemic hypoxia to stimulate erythropoiesis, which improves oxygen delivery to the kidney and other organs. SGLT1 inhibition improves glucose homeostasis by delaying intestinal glucose absorption and by increasing the release of gastrointestinal incretins. Combined SGLT1 and SGLT2 inhibition has additive effects on renal glucose excretion and blood glucose control. SGLT1 in the macula densa senses luminal glucose, which affects glomerular hemodynamics and has implications for blood pressure control. More studies are needed to better define the therapeutic potential of SGLT1 inhibition to protect the kidney, alone or in combination with SGLT2 inhibition.
Collapse
Affiliation(s)
- Yuji Oe
- Division of Nephrology and Hypertension, Department of Medicine, University of California San Diego, La Jolla, CA 92161, USA
- VA San Diego Healthcare System, San Diego, CA 92161, USA
| | - Volker Vallon
- Division of Nephrology and Hypertension, Department of Medicine, University of California San Diego, La Jolla, CA 92161, USA
- VA San Diego Healthcare System, San Diego, CA 92161, USA
- Department of Pharmacology, University of California San Diego, La Jolla, CA 92161, USA
| |
Collapse
|
11
|
Zhang J, Cai J, Cui Y, Jiang S, Wei J, Kim YC, Chan J, Thalakola A, Le T, Xu L, Wang L, Jiang K, Wang X, Wang H, Cheng F, Buggs J, Koepsell H, Vallon V, Liu R. Role of the macula densa sodium glucose cotransporter type 1-neuronal nitric oxide synthase-tubuloglomerular feedback pathway in diabetic hyperfiltration. Kidney Int 2022; 101:541-550. [PMID: 34843754 PMCID: PMC8863629 DOI: 10.1016/j.kint.2021.10.037] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 10/09/2021] [Accepted: 10/26/2021] [Indexed: 02/08/2023]
Abstract
An increase of glomerular filtration rate (GFR) is a common observation in early diabetes and is considered a key risk factor for subsequent kidney injury. However, the mechanisms underlying diabetic hyperfiltration have not been fully clarified. Here, we tested the hypothesis that macula densa neuronal nitric oxide synthase (NOS1) is upregulated via sodium glucose cotransporter type 1 (SGLT1) in diabetes, which then inhibits tubuloglomerular feedback (TGF) promoting glomerular hyperfiltration. Therefore, we examined changes in cortical NOS1 expression and phosphorylation, nitric oxide production in the macula densa, TGF response, and GFR during the early stage of insulin-deficient (Akita) diabetes in wild-type and macula densa-specific NOS1 knockout mice. A set of sophisticated techniques including microperfusion of juxtaglomerular apparatus in vitro, micropuncture of kidney tubules in vivo, and clearance kinetics of plasma fluorescent-sinistrin were employed. Complementary studies tested the role of SGLT1 in SGLT1 knockout mice and explored NOS1 expression and phosphorylation in kidney biopsies of cadaveric donors. Diabetic mice had upregulated macula densa NOS1, inhibited TGF and elevated GFR. Macula densa-selective NOS1 knockout attenuated the diabetes-induced TGF inhibition and GFR elevation. Additionally, deletion of SGLT1 prevented the upregulation of macula densa NOS1 and attenuated inhibition of TGF in diabetic mice. Furthermore, the expression and phosphorylation levels of NOS1 were increased in cadaveric kidneys of diabetics and positively correlated with blood glucose as well as estimated GFR in the donors. Thus, our findings demonstrate that the macula densa SGLT1-NOS1-TGF pathway plays a crucial role in the control of GFR in diabetes.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Molecular Pharmacology & Physiology, College of Medicine, University of South Florida, Tampa, Florida, USA.
| | - Jing Cai
- Department of Molecular Pharmacology & Physiology, College of Medicine, University of South Florida, Tampa, FL, Department of Otolarynggology-Head and Neck Surgery, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yu Cui
- Department of Molecular Pharmacology & Physiology, College of Medicine, University of South Florida, Tampa, FL
| | - Shan Jiang
- Department of Molecular Pharmacology & Physiology, College of Medicine, University of South Florida, Tampa, FL
| | - Jin Wei
- Department of Molecular Pharmacology & Physiology, College of Medicine, University of South Florida, Tampa, FL
| | - Young Chul Kim
- Division of Nephrology and Hypertension, Department of Medicine, University of California San Diego, La Jolla, CA
| | - Jenna Chan
- Department of Molecular Pharmacology & Physiology, College of Medicine, University of South Florida, Tampa, FL
| | - Anish Thalakola
- Department of Molecular Pharmacology & Physiology, College of Medicine, University of South Florida, Tampa, FL
| | - Thanh Le
- Department of Molecular Pharmacology & Physiology, College of Medicine, University of South Florida, Tampa, FL
| | - Lan Xu
- College of Public Health, University of South Florida, Tampa, FL
| | - Lei Wang
- Department of Molecular Pharmacology & Physiology, College of Medicine, University of South Florida, Tampa, FL
| | - Kun Jiang
- Department of Anatomic Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
| | - Ximing Wang
- Department of Molecular Pharmacology & Physiology, College of Medicine, University of South Florida, Tampa, FL
| | - Haibo Wang
- Department of Molecular Pharmacology & Physiology, College of Medicine, University of South Florida, Tampa, FL, Department of Otolarynggology-Head and Neck Surgery, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Feng Cheng
- Department of Pharmaceutical Science, College of Pharmacy, University of South Florida, Tampa, FL
| | - Jacentha Buggs
- Advanced Organ Disease & Transplantation Institute, Tampa General Hospital, Tampa, FL
| | - Hermann Koepsell
- Institute of Anatomy and Cell Biology, University of Würzburg, Würzburg, Germany
| | - Volker Vallon
- Division of Nephrology and Hypertension, Department of Medicine, University of California San Diego, La Jolla, CA
| | - Ruisheng Liu
- Department of Molecular Pharmacology & Physiology, College of Medicine, University of South Florida, Tampa, FL
| |
Collapse
|
12
|
Xue J, Thomas L, Murali SK, Levi M, Fenton RA, Dominguez Rieg JA, Rieg T. Enhanced phosphate absorption in intestinal epithelial cell-specific NHE3 knockout mice. Acta Physiol (Oxf) 2022; 234:e13756. [PMID: 34978760 PMCID: PMC9286053 DOI: 10.1111/apha.13756] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 11/16/2021] [Accepted: 01/01/2022] [Indexed: 12/11/2022]
Abstract
Aims The kidneys play a major role in maintaining Pi homeostasis. Patients in later stages of CKD develop hyperphosphatemia. One novel treatment option is tenapanor, an intestinal‐specific NHE3 inhibitor. To gain mechanistic insight into the role of intestinal NHE3 in Pi homeostasis, we studied tamoxifen‐inducible intestinal epithelial cell‐specific NHE3 knockout (NHE3IEC‐KO) mice. Methods Mice underwent dietary Pi challenges, and hormones as well as urinary/plasma Pi were determined. Intestinal 33P uptake studies were conducted in vivo to compare the effects of tenapanor and NHE3IEC‐KO. Ex vivo Pi transport was measured in everted gut sacs and brush border membrane vesicles. Intestinal and renal protein expression of Pi transporters were determined. Results On the control diet, NHE3IEC‐KO mice had similar Pi homeostasis, but a ~25% reduction in FGF23 compared with control mice. Everted gut sacs and brush border membrane vesicles showed enhanced Pi uptake associated with increased Npt2b expression in NHE3IEC‐KO mice. Acute oral Pi loading resulted in higher plasma Pi in NHE3IEC‐KO mice. Tenapanor inhibited intestinal 33P uptake acutely but then led to hyper‐absorption at later time points compared to vehicle. In response to high dietary Pi, plasma Pi and FGF23 increased to higher levels in NHE3IEC‐KO mice which was associated with greater Npt2b expression. Reduced renal Npt2c and a trend for reduced Npt2a expression were unable to correct for higher plasma Pi. Conclusion Intestinal NHE3 has a significant contribution to Pi homeostasis. In contrast to effects described for tenapanor on Pi homeostasis, NHE3IEC‐KO mice show enhanced, rather than reduced, intestinal Pi uptake.
Collapse
Affiliation(s)
- Jianxiang Xue
- Department of Molecular Pharmacology and Physiology Morsani College of Medicine University of South Florida Tampa Florida USA
| | - Linto Thomas
- Department of Molecular Pharmacology and Physiology Morsani College of Medicine University of South Florida Tampa Florida USA
| | | | - Moshe Levi
- Department of Biochemistry and Molecular & Cellular Biology Georgetown University Washington District of Columbia USA
| | | | - Jessica A. Dominguez Rieg
- Department of Molecular Pharmacology and Physiology Morsani College of Medicine University of South Florida Tampa Florida USA
- James A. Haley Veterans' Hospital Tampa Florida USA
| | - Timo Rieg
- Department of Molecular Pharmacology and Physiology Morsani College of Medicine University of South Florida Tampa Florida USA
- James A. Haley Veterans' Hospital Tampa Florida USA
| |
Collapse
|
13
|
Vallon V, Nakagawa T. Renal Tubular Handling of Glucose and Fructose in Health and Disease. Compr Physiol 2021; 12:2995-3044. [PMID: 34964123 PMCID: PMC9832976 DOI: 10.1002/cphy.c210030] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The proximal tubule of the kidney is programmed to reabsorb all filtered glucose and fructose. Glucose is taken up by apical sodium-glucose cotransporters SGLT2 and SGLT1 whereas SGLT5 and potentially SGLT4 and GLUT5 have been implicated in apical fructose uptake. The glucose taken up by the proximal tubule is typically not metabolized but leaves via the basolateral facilitative glucose transporter GLUT2 and is returned to the systemic circulation or used as an energy source by distal tubular segments after basolateral uptake via GLUT1. The proximal tubule generates new glucose in metabolic acidosis and the postabsorptive phase, and fructose serves as an important substrate. In fact, under physiological conditions and intake, fructose taken up by proximal tubules is primarily utilized for gluconeogenesis. In the diabetic kidney, glucose is retained and gluconeogenesis enhanced, the latter in part driven by fructose. This is maladaptive as it sustains hyperglycemia. Moreover, renal glucose retention is coupled to sodium retention through SGLT2 and SGLT1, which induces secondary deleterious effects. SGLT2 inhibitors are new anti-hyperglycemic drugs that can protect the kidneys and heart from failing independent of kidney function and diabetes. Dietary excess of fructose also induces tubular injury. This can be magnified by kidney formation of fructose under pathological conditions. Fructose metabolism is linked to urate formation, which partially accounts for fructose-induced tubular injury, inflammation, and hemodynamic alterations. Fructose metabolism favors glycolysis over mitochondrial respiration as urate suppresses aconitase in the tricarboxylic acid cycle, and has been linked to potentially detrimental aerobic glycolysis (Warburg effect). © 2022 American Physiological Society. Compr Physiol 12:2995-3044, 2022.
Collapse
Affiliation(s)
- Volker Vallon
- Division of Nephrology and Hypertension, Department of Medicine, University of California San Diego, La Jolla, California, USA,Department of Pharmacology, University of California San Diego, La Jolla, California, USA,VA San Diego Healthcare System, San Diego, California, USA,Correspondence to and
| | - Takahiko Nakagawa
- Division of Nephrology, Rakuwakai-Otowa Hospital, Kyoto, Japan,Correspondence to and
| |
Collapse
|
14
|
Tauber P, Sinha F, Berger RS, Gronwald W, Dettmer K, Kuhn M, Trum M, Maier LS, Wagner S, Schweda F. Empagliflozin Reduces Renal Hyperfiltration in Response to Uninephrectomy, but Is Not Nephroprotective in UNx/DOCA/Salt Mouse Models. Front Pharmacol 2021; 12:761855. [PMID: 34992532 PMCID: PMC8724563 DOI: 10.3389/fphar.2021.761855] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 12/06/2021] [Indexed: 12/20/2022] Open
Abstract
Large-scale clinical outcome studies demonstrated the efficacy of SGLT2 inhibitors in patients with type II diabetes. Besides their therapeutic efficacy in diabetes, significant renoprotection was observed in non-diabetic patients with chronic kidney disease (CKD), suggesting the existence of glucose-independent beneficial effects of SGLT2 inhibitors. However, the relevant mechanisms by which SGLT2 inhibition delays the progression of renal injury are still largely unknown and speculative. Previous studies showed that SGLT2 inhibitors reduce diabetic hyperfiltration, which is likely a key element in renoprotection. In line with this hypothesis, this study aimed to investigate the nephroprotective effects of the SGLT2 inhibitor empagliflozin (EMPA) in different mouse models with non-diabetic hyperfiltration and progressing CKD to identify the underlying diabetes-independent cellular mechanisms. Non-diabetic hyperfiltration was induced by unilateral nephrectomy (UNx). Since UNx alone does not result in renal damage, renal disease models with varying degrees of glomerular damage and albuminuria were generated by combining UNx with high NaCl diets ± deoxycorticosterone acetate (DOCA) in different mouse strains with and without genetic predisposition for glomerular injury. Renal parameters (GFR, albuminuria, urine volume) were monitored for 4–6 weeks. Application of EMPA via the drinking water resulted in sufficient EMPA plasma concentration and caused glucosuria, diuresis and in some models renal hypertrophy. EMPA had no effect on GFR in untreated wildtype animals, but significantly reduced hyperfiltration after UNx by 36%. In contrast, EMPA did not reduce UNx induced hyperfiltration in any of our kidney disease models, regardless of their degree of glomerular damage caused by DOCA/salt treatment. Consistent with the lack of reduction in glomerular hyperfiltration, EMPA-treated animals developed albuminuria and renal fibrosis to a similar extent as H2O control animals. Taken together, the data clearly indicate that blockade of SGLT2 has the potential to reduce non-diabetic hyperfiltration in otherwise untreated mice. However, no effects on hyperfiltration or progression of renal injury were observed in hypervolemic kidney disease models, suggesting that high salt intake and extracellular volume might attenuate the protective effects of SGLT2 blockers.
Collapse
Affiliation(s)
- Philipp Tauber
- Institute of Physiology, University of Regensburg, Regensburg, Germany
- *Correspondence: Philipp Tauber,
| | - Frederick Sinha
- Institute of Physiology, University of Regensburg, Regensburg, Germany
| | - Raffaela S. Berger
- Institute of Functional Genomics, University of Regensburg, Regensburg, Germany
| | - Wolfram Gronwald
- Institute of Functional Genomics, University of Regensburg, Regensburg, Germany
| | - Katja Dettmer
- Institute of Functional Genomics, University of Regensburg, Regensburg, Germany
| | - Michaela Kuhn
- Institute of Physiology, University of Würzburg, Würzburg, Germany
| | - Maximilian Trum
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - Lars S. Maier
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - Stefan Wagner
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - Frank Schweda
- Institute of Physiology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
15
|
Sędzikowska A, Szablewski L. Human Glucose Transporters in Renal Glucose Homeostasis. Int J Mol Sci 2021; 22:13522. [PMID: 34948317 PMCID: PMC8708129 DOI: 10.3390/ijms222413522] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 12/26/2022] Open
Abstract
The kidney plays an important role in glucose homeostasis by releasing glucose into the blood stream to prevent hypoglycemia. It is also responsible for the filtration and subsequent reabsorption or excretion of glucose. As glucose is hydrophilic and soluble in water, it is unable to pass through the lipid bilayer on its own; therefore, transport takes place using carrier proteins localized to the plasma membrane. Both sodium-independent glucose transporters (GLUT proteins) and sodium-dependent glucose transporters (SGLT proteins) are expressed in kidney tissue, and mutations of the genes coding for these glucose transporters lead to renal disorders and diseases, including renal cancers. In addition, several diseases may disturb the expression and/or function of renal glucose transporters. The aim of this review is to describe the role of the kidney in glucose homeostasis and the contribution of glucose transporters in renal physiology and renal diseases.
Collapse
Affiliation(s)
| | - Leszek Szablewski
- Chair and Department of General Biology and Parasitology, Medical University of Warsaw, Chalubinskiego 5, 02-004 Warsaw, Poland;
| |
Collapse
|
16
|
Shepard BD, Ecelbarger CM. Sodium Glucose Transporter, Type 2 (SGLT2) Inhibitors (SGLT2i) and Glucagon-Like Peptide 1-Receptor Agonists: Newer Therapies in Whole-Body Glucose Stabilization. Semin Nephrol 2021; 41:331-348. [PMID: 34715963 DOI: 10.1016/j.semnephrol.2021.06.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Diabetes is a worldwide epidemic that is increasing rapidly to become the seventh leading cause of death in the world. The increased incidence of this disease mirrors a similar uptick in obesity and metabolic syndrome, and, collectively, these conditions can cause deleterious effects on a number of organ systems including the renal and cardiovascular systems. Historically, treatment of type 2 diabetes has focused on decreasing hyperglycemia and glycated hemoglobin levels. However, it now is appreciated that there is more to the puzzle. Emerging evidence has indicated that newer classes of diabetes drugs, sodium-glucose co-transporter 2 inhibitors and glucagon-like peptide 1-receptor agonists, improve cardiovascular and renal function, while appropriately managing hyperglycemia. In this review, we highlight the recent clinical and preclinical studies that have shed light on sodium-glucose co-transporter 2 inhibitors and glucagon-like peptide 1-receptor agonists and their ability to stabilize blood glucose levels while offering whole-body protection in diabetic and nondiabetic patient populations.
Collapse
Affiliation(s)
- Blythe D Shepard
- Department of Human Science, Georgetown University Medical Center, Washington, DC
| | | |
Collapse
|
17
|
Ishida N, Saito M, Sato S, Tezuka Y, Sanbe A, Taira E, Hirose M. Mizagliflozin, a selective SGLT1 inhibitor, improves vascular cognitive impairment in a mouse model of small vessel disease. Pharmacol Res Perspect 2021; 9:e00869. [PMID: 34586752 PMCID: PMC8480397 DOI: 10.1002/prp2.869] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/02/2021] [Accepted: 09/02/2021] [Indexed: 12/25/2022] Open
Abstract
Previously, we showed that sodium/glucose cotransporter 1 (SGLT1) participates in vascular cognitive impairment in small vessel disease. We hypothesized that SGLT1 inhibitors can improve the small vessel disease induced-vascular cognitive impairment. We examined the effects of mizagliflozin, a selective SGLT1 inhibitor, and phlorizin, a non-selective SGLT inhibitor, on vascular cognitive impairment in a mouse model of small vessel disease. Small vessel disease was created using a mouse model of asymmetric common carotid artery surgery (ACAS). Two and/or 4 weeks after ACAS, all experiments were performed. Cerebral blood flow (CBF) was decreased in ACAS compared with sham-operated mice. Phlorizin but not mizagliflozin reversed the decreased CBF of ACAS mice. Both mizagliflozin and phlorizin reversed the ACAS-induced decrease in the latency to fall in a wire hang test of ACAS mice. Moreover, they reversed the ACAS-induced longer escape latencies in the Morris water maze test of ACAS mice. ACAS increased SGLT1 and proinflammatory cytokine gene expressions in mouse brains and phlorizin but not mizagliflozin normalized all gene expressions in ACAS mice. Hematoxylin/eosin staining demonstrated that they inhibited pyknotic cell death in the ACAS mouse hippocampus. In PC12HS cells, IL-1β increased SGLT1 expression and decreased survival rates of cells. Both mizagliflozin and phlorizin increased the survival rates of IL-1β-treated PC12HS cells. These results suggest that mizagliflozin and phlorizin can improve vascular cognitive impairment through the inhibition of neural SGLT1 and phlorizin also does so through the improvement of CBF in a mouse model of small vessel disease.
Collapse
Affiliation(s)
- Nanae Ishida
- Division of Molecular and Cellular PharmacologyDepartment of Pathophysiology and PharmacologyIwate Medical UniversitySchool of Pharmaceutical SciencesIwateJapan
| | - Maki Saito
- Department of PharmacyIryo Sosei UniversityFukushimaJapan
| | - Sachiko Sato
- Department of PharmacologyIwate Medical UniversitySchool of MedicineIwateJapan
| | - Yu Tezuka
- Division of PharmacotherapeuticsDepartment of Pathophysiology and PharmacologyIwate Medical University School of Pharmaceutical SciencesIwateJapan
| | - Atsushi Sanbe
- Division of PharmacotherapeuticsDepartment of Pathophysiology and PharmacologyIwate Medical University School of Pharmaceutical SciencesIwateJapan
| | - Eiichi Taira
- Department of PharmacologyIwate Medical UniversitySchool of MedicineIwateJapan
| | - Masamichi Hirose
- Division of Molecular and Cellular PharmacologyDepartment of Pathophysiology and PharmacologyIwate Medical UniversitySchool of Pharmaceutical SciencesIwateJapan
| |
Collapse
|
18
|
Vrhovac Madunić I, Karin-Kujundžić V, Madunić J, Šola IM, Šerman L. Endometrial Glucose Transporters in Health and Disease. Front Cell Dev Biol 2021; 9:703671. [PMID: 34552924 PMCID: PMC8450505 DOI: 10.3389/fcell.2021.703671] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 08/09/2021] [Indexed: 11/16/2022] Open
Abstract
Pregnancy loss is a frequent occurrence during the peri-implantation period, when there is high glucose demand for embryonic development and endometrial decidualization. Glucose is among the most essential uterine fluid components required for those processes. Numerous studies associate abnormal glucose metabolism in the endometrium with a higher risk of adverse pregnancy outcomes. The endometrium is incapable of synthesizing glucose, which thus must be delivered into the uterine lumen by glucose transporters (GLUTs) and/or the sodium-dependent glucose transporter 1 (SGLT1). Among the 26 glucose transporters (14 GLUTs and 12 SGLTs) described, 10 (9 GLUTs and SGLT1) are expressed in rodents and 8 (7 GLUTs and SGLT1) in the human uterus. This review summarizes present knowledge on the most studied glucose transporters in the uterine endometrium (GLUT1, GLUT3, GLUT4, and GLUT8), whose data regarding function and regulation are still lacking. We present the recently discovered SGLT1 in the mouse and human endometrium, responsible for controlling glycogen accumulation essential for embryo implantation. Moreover, we describe the epigenetic regulation of endometrial GLUTs, as well as signaling pathways included in uterine GLUT’s expression. Further investigation of the GLUTs function in different endometrial cells is of high importance, as numerous glucose transporters are associated with infertility, polycystic ovary syndrome, and gestational diabetes.
Collapse
Affiliation(s)
- Ivana Vrhovac Madunić
- Molecular Toxicology Unit, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Valentina Karin-Kujundžić
- Department of Biology, School of Medicine, University of Zagreb, Zagreb, Croatia.,Centre of Excellence in Reproductive and Regenerative Medicine, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Josip Madunić
- Biochemistry and Organic Analytical Chemistry Unit, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Ida Marija Šola
- Department of Gynecology and Obstetrics, Sisters of Charity University Hospital, Zagreb, Croatia
| | - Ljiljana Šerman
- Department of Biology, School of Medicine, University of Zagreb, Zagreb, Croatia.,Centre of Excellence in Reproductive and Regenerative Medicine, University of Zagreb School of Medicine, Zagreb, Croatia
| |
Collapse
|
19
|
Mechanisms of Glucose Absorption in the Small Intestine in Health and Metabolic Diseases and Their Role in Appetite Regulation. Nutrients 2021; 13:nu13072474. [PMID: 34371983 PMCID: PMC8308647 DOI: 10.3390/nu13072474] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/13/2021] [Accepted: 07/16/2021] [Indexed: 12/11/2022] Open
Abstract
The worldwide prevalence of metabolic diseases such as obesity, metabolic syndrome and type 2 diabetes shows an upward trend in recent decades. A characteristic feature of these diseases is hyperglycemia which can be associated with hyperphagia. Absorption of glucose in the small intestine physiologically contributes to the regulation of blood glucose levels, and hence, appears as a putative target for treatment of hyperglycemia. In fact, recent progress in understanding the molecular and cellular mechanisms of glucose absorption in the gut and its reabsorption in the kidney helped to develop a new strategy of diabetes treatment. Changes in blood glucose levels are also involved in regulation of appetite, suggesting that glucose absorption may be relevant to hyperphagia in metabolic diseases. In this review we discuss the mechanisms of glucose absorption in the small intestine in physiological conditions and their alterations in metabolic diseases as well as their relevance to the regulation of appetite. The key role of SGLT1 transporter in intestinal glucose absorption in both physiological conditions and in diabetes was clearly established. We conclude that although inhibition of small intestinal glucose absorption represents a valuable target for the treatment of hyperglycemia, it is not always suitable for the treatment of hyperphagia. In fact, independent regulation of glucose absorption and appetite requires a more complex approach for the treatment of metabolic diseases.
Collapse
|
20
|
Ferté L, Marino A, Battault S, Bultot L, Van Steenbergen A, Bol A, Cumps J, Ginion A, Koepsell H, Dumoutier L, Hue L, Horman S, Bertrand L, Beauloye C. New insight in understanding the contribution of SGLT1 in cardiac glucose uptake: evidence for a truncated form in mice and humans. Am J Physiol Heart Circ Physiol 2021; 320:H838-H853. [PMID: 33416451 PMCID: PMC8082801 DOI: 10.1152/ajpheart.00736.2019] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 12/17/2020] [Accepted: 12/17/2020] [Indexed: 01/10/2023]
Abstract
Although sodium glucose cotransporter 1 (SGLT1) has been identified as one of the major SGLT isoforms expressed in the heart, its exact role remains elusive. Evidence using phlorizin, the most common inhibitor of SGLTs, has suggested its role in glucose transport. However, phlorizin could also affect classical facilitated diffusion via glucose transporters (GLUTs), bringing into question the relevance of SGLT1 in overall cardiac glucose uptake. Accordingly, we assessed the contribution of SGLT1 in cardiac glucose uptake using the SGLT1 knockout mouse model, which lacks exon 1. Glucose uptake was similar in cardiomyocytes isolated from SGLT1-knockout (Δex1KO) and control littermate (WT) mice either under basal state, insulin, or hyperglycemia. Similarly, in vivo basal and insulin-stimulated cardiac glucose transport measured by micro-PET scan technology did not differ between WT and Δex1KO mice. Micromolar concentrations of phlorizin had no impact on glucose uptake in either isolated WT or Δex1KO-derived cardiomyocytes. However, higher concentrations (1 mM) completely inhibited insulin-stimulated glucose transport without affecting insulin signaling nor GLUT4 translocation independently from cardiomyocyte genotype. Interestingly, we discovered that mouse and human hearts expressed a shorter slc5a1 transcript, leading to SGLT1 protein lacking transmembrane domains and residues involved in glucose and sodium bindings. In conclusion, cardiac SGLT1 does not contribute to overall glucose uptake, probably due to the expression of slc5a1 transcript variant. The inhibitory effect of phlorizin on cardiac glucose uptake is SGLT1-independent and can be explained by GLUT transporter inhibition. These data open new perspectives in understanding the role of SGLT1 in the heart.NEW & NOTEWORTHY Ever since the discovery of its expression in the heart, SGLT1 has been considered as similar as the intestine and a potential contributor to cardiac glucose transport. For the first time, we have demonstrated that a slc5a1 transcript variant is present in the heart that has no significant impact on cardiac glucose handling.
Collapse
Affiliation(s)
- Laura Ferté
- Pôle de Recherche Cardiovasculaire, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
| | - Alice Marino
- Pôle de Recherche Cardiovasculaire, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
| | - Sylvain Battault
- Pôle de Recherche Cardiovasculaire, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
| | - Laurent Bultot
- Pôle de Recherche Cardiovasculaire, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
| | - Anne Van Steenbergen
- Pôle de Recherche Cardiovasculaire, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
| | - Anne Bol
- Center of Molecular Imaging, Radiotherapy and Oncology, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Julien Cumps
- Pôle de Recherche Cardiovasculaire, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
| | - Audrey Ginion
- Pôle de Recherche Cardiovasculaire, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
| | - Hermann Koepsell
- Department of Molecular Plant Physiology and Biophysics, Julius von Sachs Institute, University of Würzburg, Würzburg, Germany
| | - Laure Dumoutier
- Médecine Expérimentale, Institut de Duve, Université Catholique de Louvain, Brussels, Belgium
| | - Louis Hue
- Pôle de Recherche Cardiovasculaire, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
- Institut de Duve, Université Catholique de Louvain, Brussels, Belgium
| | - Sandrine Horman
- Pôle de Recherche Cardiovasculaire, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
| | - Luc Bertrand
- Pôle de Recherche Cardiovasculaire, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
| | - Christophe Beauloye
- Pôle de Recherche Cardiovasculaire, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
- Division of Cardiology, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium
| |
Collapse
|
21
|
Otto C, Friedrich A, Vrhovac Madunić I, Baumeier C, Schwenk RW, Karaica D, Germer CT, Schürmann A, Sabolić I, Koepsell H. Antidiabetic Effects of a Tripeptide That Decreases Abundance of Na +-d-glucose Cotransporter SGLT1 in the Brush-Border Membrane of the Small Intestine. ACS OMEGA 2020; 5:29127-29139. [PMID: 33225144 PMCID: PMC7675577 DOI: 10.1021/acsomega.0c03844] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 10/16/2020] [Indexed: 05/08/2023]
Abstract
In enterocytes, protein RS1 (RSC1A1) mediates an increase of glucose absorption after ingestion of glucose-rich food via upregulation of Na+-d-glucose cotransporter SGLT1 in the brush-border membrane (BBM). Whereas RS1 decelerates the exocytotic pathway of vesicles containing SGLT1 at low glucose levels between meals, RS1-mediated deceleration is relieved after ingestion of glucose-rich food. Regulation of SGLT1 is mediated by RS1 domain RS1-Reg, in which Gln-Ser-Pro (QSP) is effective. In contrast to QSP and RS1-Reg, Gln-Glu-Pro (QEP) and RS1-Reg with a serine to glutamate exchange in the QSP motif downregulate the abundance of SGLT1 in the BBM at high intracellular glucose concentrations by about 50%. We investigated whether oral application of QEP improves diabetes in db/db mice and affects the induction of diabetes in New Zealand obese (NZO) mice under glucolipotoxic conditions. After 6-day administration of drinking water containing 5 mM QEP to db/db mice, fasting glucose was decreased, increase of blood glucose in the oral glucose tolerance test was blunted, and insulin sensitivity was increased. When QEP was added for several days to a high fat/high carbohydrate diet that induced diabetes in NZO mice, the increase of random plasma glucose was prevented, accompanied by lower plasma insulin levels. QEP is considered a lead compound for development of new antidiabetic drugs with more rapid cellular uptake. In contrast to SGLT1 inhibitors, QEP-based drugs may be applied in combination with insulin for the treatment of type 1 and type 2 diabetes, decreasing the required insulin amount, and thereby may reduce the risk of hypoglycemia.
Collapse
Affiliation(s)
- Christoph Otto
- Department
of General, Visceral, Transplantation, Vascular and Pediatric Surgery, University Hospital of Würzburg, 97080 Würzburg, Germany
| | - Alexandra Friedrich
- Institute
of Anatomy and Cell Biology, University
of Würzburg, 97070 Würzburg, Germany
| | - Ivana Vrhovac Madunić
- Molecular
Toxicology Unit, Institute for Medical Research
and Occupational Health, 10000 Zagreb, Croatia
| | - Christian Baumeier
- Department
of Experimental Diabetology, German Institute
of Human Nutrition, 14558 Potsdam-Rehbruecke, Germany
- German
Center for Diabetes Research (DZD), 85764 München-Neuherberg, Germany
| | - Robert W. Schwenk
- Department
of Experimental Diabetology, German Institute
of Human Nutrition, 14558 Potsdam-Rehbruecke, Germany
- German
Center for Diabetes Research (DZD), 85764 München-Neuherberg, Germany
| | - Dean Karaica
- Molecular
Toxicology Unit, Institute for Medical Research
and Occupational Health, 10000 Zagreb, Croatia
| | - Christoph-Thomas Germer
- Department
of General, Visceral, Transplantation, Vascular and Pediatric Surgery, University Hospital of Würzburg, 97080 Würzburg, Germany
| | - Annette Schürmann
- Department
of Experimental Diabetology, German Institute
of Human Nutrition, 14558 Potsdam-Rehbruecke, Germany
- German
Center for Diabetes Research (DZD), 85764 München-Neuherberg, Germany
| | - Ivan Sabolić
- Molecular
Toxicology Unit, Institute for Medical Research
and Occupational Health, 10000 Zagreb, Croatia
| | - Hermann Koepsell
- Institute
of Anatomy and Cell Biology, University
of Würzburg, 97070 Würzburg, Germany
- . Phone: +49-0151 23532479
| |
Collapse
|
22
|
Koepsell H. Glucose transporters in the small intestine in health and disease. Pflugers Arch 2020; 472:1207-1248. [PMID: 32829466 PMCID: PMC7462918 DOI: 10.1007/s00424-020-02439-5] [Citation(s) in RCA: 148] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 07/11/2020] [Accepted: 07/17/2020] [Indexed: 12/23/2022]
Abstract
Absorption of monosaccharides is mainly mediated by Na+-D-glucose cotransporter SGLT1 and the facititative transporters GLUT2 and GLUT5. SGLT1 and GLUT2 are relevant for absorption of D-glucose and D-galactose while GLUT5 is relevant for D-fructose absorption. SGLT1 and GLUT5 are constantly localized in the brush border membrane (BBM) of enterocytes, whereas GLUT2 is localized in the basolateral membrane (BLM) or the BBM plus BLM at low and high luminal D-glucose concentrations, respectively. At high luminal D-glucose, the abundance SGLT1 in the BBM is increased. Hence, D-glucose absorption at low luminal glucose is mediated via SGLT1 in the BBM and GLUT2 in the BLM whereas high-capacity D-glucose absorption at high luminal glucose is mediated by SGLT1 plus GLUT2 in the BBM and GLUT2 in the BLM. The review describes functions and regulations of SGLT1, GLUT2, and GLUT5 in the small intestine including diurnal variations and carbohydrate-dependent regulations. Also, the roles of SGLT1 and GLUT2 for secretion of enterohormones are discussed. Furthermore, diseases are described that are caused by malfunctions of small intestinal monosaccharide transporters, such as glucose-galactose malabsorption, Fanconi syndrome, and fructose intolerance. Moreover, it is reported how diabetes, small intestinal inflammation, parental nutrition, bariatric surgery, and metformin treatment affect expression of monosaccharide transporters in the small intestine. Finally, food components that decrease D-glucose absorption and drugs in development that inhibit or downregulate SGLT1 in the small intestine are compiled. Models for regulations and combined functions of glucose transporters, and for interplay between D-fructose transport and metabolism, are discussed.
Collapse
Affiliation(s)
- Hermann Koepsell
- Institute for Anatomy and Cell Biology, University of Würzburg, Koellikerstr 6, 97070, Würzburg, Germany.
| |
Collapse
|
23
|
Vallon V. Glucose transporters in the kidney in health and disease. Pflugers Arch 2020; 472:1345-1370. [PMID: 32144488 PMCID: PMC7483786 DOI: 10.1007/s00424-020-02361-w] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/18/2020] [Accepted: 02/20/2020] [Indexed: 02/06/2023]
Abstract
The kidneys filter large amounts of glucose. To prevent the loss of this valuable fuel, the tubular system of the kidney, particularly the proximal tubule, has been programmed to reabsorb all filtered glucose. The machinery involves the sodium-glucose cotransporters SGLT2 and SGLT1 on the apical membrane and the facilitative glucose transporter GLUT2 on the basolateral membrane. The proximal tubule also generates new glucose, particularly in the post-absorptive phase but also to enhance bicarbonate formation and maintain acid-base balance. The glucose reabsorbed or formed by the proximal tubule is primarily taken up into peritubular capillaries and returned to the systemic circulation or provided as an energy source to further distal tubular segments that take up glucose by basolateral GLUT1. Recent studies provided insights on the coordination of renal glucose reabsorption, formation, and usage. Moreover, a better understanding of renal glucose transport in disease states is emerging. This includes the kidney in diabetes mellitus, when renal glucose retention becomes maladaptive and contributes to hyperglycemia. Furthermore, enhanced glucose reabsorption is coupled to sodium retention through the sodium-glucose cotransporter SGLT2, which induces secondary deleterious effects. As a consequence, SGLT2 inhibitors are new anti-hyperglycemic drugs that can protect the kidneys and heart from failing. Recent studies discovered unique roles for SGLT1 with implications in acute kidney injury and glucose sensing at the macula densa. This review discusses established and emerging concepts of renal glucose transport, and outlines the need for a better understanding of renal glucose handling in health and disease.
Collapse
Affiliation(s)
- Volker Vallon
- Division of Nephrology and Hypertension, Department of Medicine, University of California San Diego, La Jolla, CA, USA.
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA.
- VA San Diego Healthcare System, San Diego, CA, USA.
| |
Collapse
|
24
|
Berger C, Zdzieblo D. Glucose transporters in pancreatic islets. Pflugers Arch 2020; 472:1249-1272. [PMID: 32394191 PMCID: PMC7462922 DOI: 10.1007/s00424-020-02383-4] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/20/2020] [Accepted: 04/22/2020] [Indexed: 02/07/2023]
Abstract
The fine-tuning of glucose uptake mechanisms is rendered by various glucose transporters with distinct transport characteristics. In the pancreatic islet, facilitative diffusion glucose transporters (GLUTs), and sodium-glucose cotransporters (SGLTs) contribute to glucose uptake and represent important components in the glucose-stimulated hormone release from endocrine cells, therefore playing a crucial role in blood glucose homeostasis. This review summarizes the current knowledge about cell type-specific expression profiles as well as proven and putative functions of distinct GLUT and SGLT family members in the human and rodent pancreatic islet and further discusses their possible involvement in onset and progression of diabetes mellitus. In context of GLUTs, we focus on GLUT2, characterizing the main glucose transporter in insulin-secreting β-cells in rodents. In addition, we discuss recent data proposing that other GLUT family members, namely GLUT1 and GLUT3, render this task in humans. Finally, we summarize latest information about SGLT1 and SGLT2 as representatives of the SGLT family that have been reported to be expressed predominantly in the α-cell population with a suggested functional role in the regulation of glucagon release.
Collapse
Affiliation(s)
- Constantin Berger
- Tissue Engineering & Regenerative Medicine, University Hospital Würzburg, Röntgenring 11, 97070, Würzburg, Germany
| | - Daniela Zdzieblo
- Tissue Engineering & Regenerative Medicine, University Hospital Würzburg, Röntgenring 11, 97070, Würzburg, Germany.
- Fraunhofer Institute for Silicate Research (ISC), Translational Center Regenerative Therapies, Neunerplatz 2, 97082, Würzburg, Germany.
| |
Collapse
|
25
|
Abstract
Glycolysis plays a central role in tumor metabolism and growth, and this is reflected in a high rate of glucose uptake. It is commonly assumed that the upregulation of the facilitated glucose transporter GLUT1 meets the tumor’s demand for sugar. This underlies the success in using 2FDG PET imaging in the clinic to identify and stage many tumors. However, 2FDG is not a substrate for a second class of glucose transporters, the sodium-dependent glucose cotransporters, SGLTs, and so 2FDG PET may not provide a complete picture. A specific new radiotracer to detect SGLT activity has been introduced, Me4FDG, and this provides an opportunity to explore the potential role of SGLTs in supporting tumor glycolysis. In this brief review, I highlight the development of Me4FDG and our preliminary studies of Me4FDG PET in cancer patients. We find that the renal isoform, SGLT2, is expressed in pancreatic and prostate tumors and glioblastomas, and Me4FDG PET introduces a new method to image tumors. As SGLT2 drugs are successful in treating type 2 diabetes mellitus, they may also provide a new therapy.
Collapse
Affiliation(s)
- Ernest M Wright
- Physiology Department, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095-1751, USA.
| |
Collapse
|
26
|
Higashikawa T, Ito T, Mizuno T, Ishigami K, Kohori M, Mae K, Usuda D, Takeshima K, Takagi S, Izumida T, Yamada S, Kuroki K, Sangen R, Saito A, Iguchi M, Kamasaki Y, Nakahashi T, Fukuda A, Kanda T, Okuro M. Gender Differences in Cardiac Function Following Three-Month Administration of Tofogliflozin in Patients With Diabetes Mellitus. J Clin Med Res 2020; 12:530-538. [PMID: 32849941 PMCID: PMC7430877 DOI: 10.14740/jocmr4278] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 07/09/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Patients with type 2 diabetes mellitus (T2DM) are at increased risk for impairment in heart failure and diastolic relaxation while preserving ejection fraction (EF). Recently, several sodium glucose cotransporter-2 (SGLT2) inhibitors have demonstrated to decrease cardiovascular disease (CVD) events in elderly diabetic patients, although gender difference in the effect of SGLT2 inhibitors is unknown. The objective of the present study was to evaluate gender difference in the effect of tofogliflozin, one of the SGLT2 inhibitors, on CVD function in patients with diabetes mellitus. METHODS This was a retrospective study. Patients received 20 mg of tofogliflozin daily for 3 months. EF, ratio of early filling to atrial filling (E/A), a change in mitral inflow E and mitral e' annular velocities (E/e'), left atrial dimension (LAD) and maximal diameter of inferior vena cava (IVCmax), including various physiological parameters were measured between baseline, 1 month and 3 months after administration of tofogliflozin. Interaction between gender and time after administration was evaluated using mixed effect model. RESULTS The results showed significant decrease in E/e' (P < 0.01) and significant interaction between time and gender in E/A (P < 0.01), following administration of tofogliflozin for 3 months. EF was constantly higher significantly in women (P < 0.01). CONCLUSION It is concluded that 3-month administration of tofogliflozin decreased E/e' with gender difference in EF and E/A.
Collapse
Affiliation(s)
- Toshihiro Higashikawa
- Kanazawa Medical University Himi Municipal Hospital, 1130, Kurakawa, Himi, Toyama 935-8531, Japan
- Department of Geriatric Medicine, Kanazawa Medical University, Uchinada, Kahoku-gun, Ishikawa 920-0293, Japan
| | - Tomohiko Ito
- Kanazawa Medical University Himi Municipal Hospital, 1130, Kurakawa, Himi, Toyama 935-8531, Japan
| | - Takurou Mizuno
- Kanazawa Medical University Himi Municipal Hospital, 1130, Kurakawa, Himi, Toyama 935-8531, Japan
| | - Keiichiro Ishigami
- Kanazawa Medical University Himi Municipal Hospital, 1130, Kurakawa, Himi, Toyama 935-8531, Japan
| | - Masaru Kohori
- Kanazawa Medical University Himi Municipal Hospital, 1130, Kurakawa, Himi, Toyama 935-8531, Japan
| | - Kunihiro Mae
- Kanazawa Medical University Himi Municipal Hospital, 1130, Kurakawa, Himi, Toyama 935-8531, Japan
| | - Daisuke Usuda
- Kanazawa Medical University Himi Municipal Hospital, 1130, Kurakawa, Himi, Toyama 935-8531, Japan
| | - Kento Takeshima
- Kanazawa Medical University Himi Municipal Hospital, 1130, Kurakawa, Himi, Toyama 935-8531, Japan
| | - Susumu Takagi
- Kanazawa Medical University Himi Municipal Hospital, 1130, Kurakawa, Himi, Toyama 935-8531, Japan
| | - Toshihide Izumida
- Kanazawa Medical University Himi Municipal Hospital, 1130, Kurakawa, Himi, Toyama 935-8531, Japan
| | - Shinya Yamada
- Kanazawa Medical University Himi Municipal Hospital, 1130, Kurakawa, Himi, Toyama 935-8531, Japan
| | - Kengo Kuroki
- Kanazawa Medical University Himi Municipal Hospital, 1130, Kurakawa, Himi, Toyama 935-8531, Japan
| | - Ryusho Sangen
- Kanazawa Medical University Himi Municipal Hospital, 1130, Kurakawa, Himi, Toyama 935-8531, Japan
| | - Atsushi Saito
- Kanazawa Medical University Himi Municipal Hospital, 1130, Kurakawa, Himi, Toyama 935-8531, Japan
| | - Masaharu Iguchi
- Kanazawa Medical University Himi Municipal Hospital, 1130, Kurakawa, Himi, Toyama 935-8531, Japan
| | - Yuji Kamasaki
- Kanazawa Medical University Himi Municipal Hospital, 1130, Kurakawa, Himi, Toyama 935-8531, Japan
| | - Takeshi Nakahashi
- Department of Geriatric Medicine, Kanazawa Medical University, Uchinada, Kahoku-gun, Ishikawa 920-0293, Japan
| | - Akihiro Fukuda
- Kanazawa Medical University Himi Municipal Hospital, 1130, Kurakawa, Himi, Toyama 935-8531, Japan
| | - Tsugiyasu Kanda
- Kanazawa Medical University Himi Municipal Hospital, 1130, Kurakawa, Himi, Toyama 935-8531, Japan
| | - Masashi Okuro
- Department of Geriatric Medicine, Kanazawa Medical University, Uchinada, Kahoku-gun, Ishikawa 920-0293, Japan
| |
Collapse
|
27
|
Heterogeneity of Glucose Transport in Lung Cancer. Biomolecules 2020; 10:biom10060868. [PMID: 32517099 PMCID: PMC7356687 DOI: 10.3390/biom10060868] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 02/06/2023] Open
Abstract
Increased glucose uptake is a known hallmark of cancer. Cancer cells need glucose for energy production via glycolysis and the tricarboxylic acid cycle, and also to fuel the pentose phosphate pathway, the serine biosynthetic pathway, lipogenesis, and the hexosamine pathway. For this reason, glucose transport inhibition is an emerging new treatment for different malignancies, including lung cancer. However, studies both in animal models and in humans have shown high levels of heterogeneity in the utilization of glucose and other metabolites in cancer, unveiling a complexity that is difficult to target therapeutically. Here, we present an overview of different levels of heterogeneity in glucose uptake and utilization in lung cancer, with diagnostic and therapeutic implications.
Collapse
|
28
|
Carpentier C, Dubois S, Mohammedi K, Belhatem N, Bouhanick B, Rohmer V, Briet C, Bumbu A, Hadjadj S, Roussel R, Potier L, Velho G, Marre M. Glycosuria amount in response to hyperglycaemia and risk for diabetic kidney disease and related events in Type 1 diabetic patients. Nephrol Dial Transplant 2020; 34:1731-1738. [PMID: 29982607 DOI: 10.1093/ndt/gfy197] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 05/15/2018] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Hyperglycaemia impairs tubulo-glomerular feedback. We tested whether variable tubulo-glomerular feedback during hyperglycaemia contributes to renal risk heterogeneity seen in Type 1 diabetes. METHODS During the period 1990-92, we studied the tubulo-glomerular feedback in Type 1 diabetic patients at high or low renal risk [21 of 54 with glomerular hyperfiltration and/or microalbuminuria against 11 of 55 with normal glomerular filtration rate (GFR) and urinary albumin despite uncontrolled diabetes]. The GFR, effective renal plasma flow, mean arterial pressure and fractional reabsorptions of glucose, osmols, sodium and lithium were measured sequentially during normo- and hyperglycaemia. All patients were followed up until 2016 for incident proteinuria, estimated GFR <60 mL/min/1.73 m2, doubling of serum creatinine, end-stage renal disease or all-cause death. RESULTS Glycaemia increased from 6.1 ± 1.3 to 15.1 ± 1.9 mmol/L in both high-risk and low-risk patients. Glycosuria was lower in the high- versus low-risk patients: 0.34 ± 0.25 versus 0.64 ± 0.44 mmol/min (P = 0.03). Both groups displayed similar kidney function during normoglycaemia. Hyperglycaemia increased more importantly GFR and fractional reabsorptions, and pre-glomerular vasodilatation in the high- than in the low-risk patients (all P < 0.05). Over 21 years, 31.5% high- versus 12.7% low-risk patients developed endpoints (adjusted P = 0.006). In a multi-adjusted survival analysis of patients having undergone renal tests, each 0.10 mmol/min glycosuria during hyperglycaemia reduced the outcome risk by 0.72 (95% confidence interval 0.49-0.97, P = 0.03). CONCLUSIONS Reduced tubulo-glomerular feedback and glycosuria during hyperglycaemia indicate high renal risk for Type 1 diabetic patients. Inter-individual variability in tubulo-glomerular feedback activity determines renal risk in Type 1 diabetes.
Collapse
Affiliation(s)
- Charlyne Carpentier
- Centre Hospitalier Universitaire d'Angers, Service EDN, Angers, France.,INSERM, UMRS 1063, SOPAM, Université d'Angers, Angers, France
| | - Séverine Dubois
- Centre Hospitalier Universitaire d'Angers, Service EDN, Angers, France.,INSERM, UMRS 1063, SOPAM, Université d'Angers, Angers, France
| | - Kamel Mohammedi
- Hôpital Haut-Lévêque, Service d'Endocrinologie, Diabétologie, Nutrition, Bordeaux, France.,Université de Bordeaux, Faculté de Médecine Paul Broca, Bordeaux, France.,Centre de Recherche INSERM-Université de Bordeaux U1219 'Bordeaux Population Health', Bordeaux, France
| | - Narimène Belhatem
- Assistance Publique-Hôpitaux de Paris (AP-HP), Bichat Hospital, DHU FIRE, Department of Diabetology, Endocrinology and Nutrition, Paris, France
| | - Béatrice Bouhanick
- Centre Hospitalier Universitaire Rangueil, Service d'Hypertension et de Thérapeutique, TSA, Toulouse, France.,INSERM UMRS 1027, Université Toulouse 3, Toulouse, France
| | - Vincent Rohmer
- Centre Hospitalier Universitaire d'Angers, Service EDN, Angers, France.,INSERM, UMRS 1063, SOPAM, Université d'Angers, Angers, France
| | - Claire Briet
- Centre Hospitalier Universitaire d'Angers, Service EDN, Angers, France.,INSERM, UMRS 1063, SOPAM, Université d'Angers, Angers, France
| | - Anisoara Bumbu
- Assistance Publique-Hôpitaux de Paris (AP-HP), Bichat Hospital, DHU FIRE, Department of Diabetology, Endocrinology and Nutrition, Paris, France
| | - Samy Hadjadj
- INSERM, CIC 0802, Poitiers, France.,Université de Poitiers, UFR de Médecine et Pharmacie, Poitiers, France.,INSERM, Research Unit 1082, Poitiers, France.,Centre Hospitalier Universitaire de Poitiers, Department of Endocrinology and Diabetology, Poitiers, France
| | - Ronan Roussel
- Assistance Publique-Hôpitaux de Paris (AP-HP), Bichat Hospital, DHU FIRE, Department of Diabetology, Endocrinology and Nutrition, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, UFR de Médecine, Paris, France.,Inserm Research Unit 1138, Centre de Recherche des Cordeliers, Paris, France
| | - Louis Potier
- Assistance Publique-Hôpitaux de Paris (AP-HP), Bichat Hospital, DHU FIRE, Department of Diabetology, Endocrinology and Nutrition, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, UFR de Médecine, Paris, France.,Inserm Research Unit 1138, Centre de Recherche des Cordeliers, Paris, France
| | - Gilberto Velho
- Inserm Research Unit 1138, Centre de Recherche des Cordeliers, Paris, France
| | - Michel Marre
- Assistance Publique-Hôpitaux de Paris (AP-HP), Bichat Hospital, DHU FIRE, Department of Diabetology, Endocrinology and Nutrition, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, UFR de Médecine, Paris, France.,Inserm Research Unit 1138, Centre de Recherche des Cordeliers, Paris, France
| |
Collapse
|
29
|
Higashikawa T, Ito T, Mizuno T, Ishigami K, Kohori M, Mae K, Usuda D, Takagi S, Sangen R, Saito A, Iguchi M, Kasamaki Y, Fukuda A, Kanda T, Okuro M. Effects of Tofogliflozin on Cardiac Function in Elderly Patients With Diabetes Mellitus. J Clin Med Res 2020; 12:165-171. [PMID: 32231752 PMCID: PMC7092764 DOI: 10.14740/jocmr4098] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 02/11/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Patients with type 2 diabetes mellitus (T2DM) are at increased risk for impairments in diastolic relaxation and heart failure with preserved ejection fraction (EF). Recent clinical data suggest that several sodium glucose transporter-2 (SGLT2) inhibitors are found to reduce cardiovascular disease (CVD) events in elderly diabetic patients, but the effect of tofogliflozin, one of the SGLT2 inhibitors, on CVD is unknown. We retrospectively investigated the effect of tofogliflozin on cardiac function in elderly patients with T2DM. METHODS Patients received 20 mg of tofogliflozin daily for 1 month. EF, ratio of early filling to atrial filling (E/A), a change in mitral inflow E and mitral e' annular velocities (E/e'), left atrial dimension (LAD) and maximal diameter of inferior vena cava (IVCmax) were measured between baseline and 1 month after the administration of tofogliflozin. RESULTS Body weight, systolic and diastolic blood pressures significantly decreased, while renin and aldosterone level significantly increased after 1 month of tofogliflozin treatment. Most of the physiological parameters and the level of serum electrolyte did not change significantly. E/A, E/e' and LAD significantly decreased, while no significant changes were observed in EF and IVCmax. The interactions of E/e' between time, gender and age were not significant. CONCLUSION The present study suggested that tofogliflozin improved left ventricular diastolic function irrespective of gender and age, while preserving IVC, renal function and electrolyte balance.
Collapse
Affiliation(s)
- Toshihiro Higashikawa
- Kanazawa Medical University Himi Municipal Hospital, Kurakawa, Himi, Toyama 935-8531, Japan
- Department of Geriatric Medicine, Kanazawa Medical University, Uchinada, Kahoku-gun, Ishikawa 920-0293, Japan
| | - Tomohiko Ito
- Kanazawa Medical University Himi Municipal Hospital, Kurakawa, Himi, Toyama 935-8531, Japan
| | - Takurou Mizuno
- Kanazawa Medical University Himi Municipal Hospital, Kurakawa, Himi, Toyama 935-8531, Japan
| | - Keiichirou Ishigami
- Kanazawa Medical University Himi Municipal Hospital, Kurakawa, Himi, Toyama 935-8531, Japan
| | - Masaru Kohori
- Kanazawa Medical University Himi Municipal Hospital, Kurakawa, Himi, Toyama 935-8531, Japan
| | - Kunihiro Mae
- Kanazawa Medical University Himi Municipal Hospital, Kurakawa, Himi, Toyama 935-8531, Japan
| | - Daisuke Usuda
- Kanazawa Medical University Himi Municipal Hospital, Kurakawa, Himi, Toyama 935-8531, Japan
| | - Susumu Takagi
- Kanazawa Medical University Himi Municipal Hospital, Kurakawa, Himi, Toyama 935-8531, Japan
| | - Ryusho Sangen
- Kanazawa Medical University Himi Municipal Hospital, Kurakawa, Himi, Toyama 935-8531, Japan
| | - Atsushi Saito
- Kanazawa Medical University Himi Municipal Hospital, Kurakawa, Himi, Toyama 935-8531, Japan
| | - Masaharu Iguchi
- Kanazawa Medical University Himi Municipal Hospital, Kurakawa, Himi, Toyama 935-8531, Japan
| | - Yuji Kasamaki
- Kanazawa Medical University Himi Municipal Hospital, Kurakawa, Himi, Toyama 935-8531, Japan
| | - Akihiro Fukuda
- Kanazawa Medical University Himi Municipal Hospital, Kurakawa, Himi, Toyama 935-8531, Japan
| | - Tsugiyasu Kanda
- Kanazawa Medical University Himi Municipal Hospital, Kurakawa, Himi, Toyama 935-8531, Japan
| | - Masashi Okuro
- Department of Geriatric Medicine, Kanazawa Medical University, Uchinada, Kahoku-gun, Ishikawa 920-0293, Japan
| |
Collapse
|
30
|
Reiner J, Berlin P, Wobar J, Schäffler H, Bannert K, Bastian M, Vollmar B, Jaster R, Lamprecht G, Witte M. Teduglutide Promotes Epithelial Tight Junction Pore Function in Murine Short Bowel Syndrome to Alleviate Intestinal Insufficiency. Dig Dis Sci 2020; 65:3521-3537. [PMID: 32072437 PMCID: PMC7661426 DOI: 10.1007/s10620-020-06140-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 02/09/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND In short bowel syndrome, epithelial surface loss results in impaired nutrient absorption and may lead to intestinal insufficiency or intestinal failure. Nucleotide oligomerization domain 2 (Nod2) dysfunction predisposes to the development of intestinal failure after intestinal resection and is associated with intestinal barrier defects. Epithelial barrier function is crucial for intestinal absorption and for intestinal adaptation in the short bowel situation. AIMS The aim of the study was to characterize the effects of the GLP-2 analogue Teduglutide in the small intestine in the presence and absence of Nod2 in a mouse model of short bowel syndrome. METHODS Mice underwent 40% ICR and were thereafter treated with Teduglutide versus vehicle injections. Survival, body weight, stool water, and sodium content and plasma aldosterone concentrations were determined. Intestinal and kidney tissue was examined with light and fluorescence microscopy, Ussing chamber studies and quantitative PCR in wild type and transgenic mice. RESULTS Teduglutide reduced intestinal failure incidence in Nod2 k.o. mice. In wt mice, Teduglutide attenuated intestinal insufficiency as indicated by reduced body weight loss and lower plasma aldosterone concentrations, lower stool water content, and lower stool sodium losses. Teduglutide treatment was associated with enhanced epithelial paracellular pore function and enhanced claudin-10 expression in tight junctions in the villus tips, where it colocalized with sodium-glucose cotransporter 1 (SGLT-1), which mediates Na-coupled glucose transport. CONCLUSIONS In the SBS situation, Teduglutide not only maximizes small intestinal mucosal hypertrophy but also partially restores small intestinal epithelial function through an altered distribution of claudin-10, facilitating sodium recirculation for Na-coupled glucose transport and water absorption.
Collapse
Affiliation(s)
- Johannes Reiner
- Division of Gastroenterology and Endocrinology, Department of Medicine II, Rostock University Medical Center, Ernst-Heydemann-Str. 6, 18057 Rostock, Germany
| | - Peggy Berlin
- Division of Gastroenterology and Endocrinology, Department of Medicine II, Rostock University Medical Center, Ernst-Heydemann-Str. 6, 18057 Rostock, Germany
| | - Jakob Wobar
- Division of Gastroenterology and Endocrinology, Department of Medicine II, Rostock University Medical Center, Ernst-Heydemann-Str. 6, 18057 Rostock, Germany
| | - Holger Schäffler
- Division of Gastroenterology and Endocrinology, Department of Medicine II, Rostock University Medical Center, Ernst-Heydemann-Str. 6, 18057 Rostock, Germany
| | - Karen Bannert
- Division of Gastroenterology and Endocrinology, Department of Medicine II, Rostock University Medical Center, Ernst-Heydemann-Str. 6, 18057 Rostock, Germany
| | - Manuela Bastian
- Institute for Clinical Chemistry and Laboratory Medicine, Rostock University Medical Center, Ernst-Heydemann-Str. 6, 18057 Rostock, Germany
| | - Brigitte Vollmar
- Rudolf-Zenker-Institute of Experimental Surgery, Rostock University Medical Center, Schillingallee 69a, 18057 Rostock, Germany
| | - Robert Jaster
- Division of Gastroenterology and Endocrinology, Department of Medicine II, Rostock University Medical Center, Ernst-Heydemann-Str. 6, 18057 Rostock, Germany
| | - Georg Lamprecht
- Division of Gastroenterology and Endocrinology, Department of Medicine II, Rostock University Medical Center, Ernst-Heydemann-Str. 6, 18057 Rostock, Germany
| | - Maria Witte
- Department of General, Thoracic, Vascular and Transplantation Surgery, Rostock University Medical Center, Schillingallee 35, 18057 Rostock, Germany
| |
Collapse
|
31
|
Mucosal Monosaccharide Transporter Expression in Newborns With Jejunoileal Atresia and Along the Adult Intestine. J Pediatr Gastroenterol Nutr 2019; 69:611-618. [PMID: 31261244 DOI: 10.1097/mpg.0000000000002425] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
OBJECTIVES In newborn rodents, intestinal maturation involves delayed fructose transporter GLUT5 expression until weaning. In jejunoileal atresia (JIA), distal intestinal segments lack exposure to amniotic fluid-containing carbohydrates. We assessed in human newborns, the impact of intestinal maturation and obstruction on mucosal monosaccharide transporter expression. METHODS Samples were obtained from 10 newborns operated for small intestinal atresia and from 17 adults undergoing gastroduodenoscopy and/or ileocolonoscopy. mRNA expression of the transporters SGLT1, GLUT1, GLUT2, GLUT5, and GLUT7 was measured in neonate samples proximal and distal of the atresia as well as in adult duodenum, ileum, and colon. Protein expression and localization was assessed using immunofluorescence. RESULTS Although mRNA expression of monosaccharide transporters did not significantly differ between newborn and adult samples, luminal fructose transporter GLUT5 protein was absent in 0- to 4-day-old neonates, but expressed in adults. The mRNA expression of the 5 tested monosaccharide transporters was unchanged distal from the JIA relative to proximal. Similarly, luminal sodium-dependent glucose transporter SGLT1 and basolateral GLUT2 were expressed proximal and distal to JIA as visualized by immunofluorescence staining. With the exception of glucose transporter GLUT1 that showed highest expression levels in colon, all investigated hexose transporters showed strongest expression in duodenum, lower levels in ileum and lowest in colon. CONCLUSIONS Human newborns lack small intestinal fructose transporter GLUT5 protein expression and small intestinal atresia does not affect the expression of hexose transporters.
Collapse
|
32
|
Sodium-glucose cotransporters: new targets of cancer therapy? Arh Hig Rada Toksikol 2019; 69:278-285. [PMID: 30864374 DOI: 10.2478/aiht-2018-69-3204] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 11/01/2018] [Indexed: 01/17/2023] Open
Abstract
Glucose, the key source of metabolic energy, is imported into cells by two categories of transporters: 1) facilitative glucose transporters (GLUTs) and 2) secondary active sodium-glucose cotransporters (SGLTs). Cancer cells have an increased demand for glucose uptake and utilisation compared to normal cells. Previous studies have demonstrated the overexpression of GLUTs, mainly GLUT1, in many cancer types. As the current standard positron emission tomography (PET) tracer 2-deoxy-2-(18F)fluoro-D-glucose (2-FDG) for imaging tumour cells via GLUT1 lacks in sensitivity and specificity, it may soon be replaced by the newly designed, highly sensitive and specific SGLT tracer α-methyl-4-(F-18)fluoro-4-deoxy-Dglucopyranoside (Me-4FDG) in clinical detection and tumour staging. This tracer has recently demonstrated the functional activity of SGLT in pancreatic, prostate, and brain cancers. The mRNA and protein expression of SGLTs have also been reported in colon/colorectal, lung, ovarian, head, neck, and oral squamous carcinomas. So far, SGLTs have been poorly investigated in cancer, and their protein expression and localisation are often controversial due to a lack of specific SGLT antibodies. In this review, we describe current knowledge concerning SGLT1 and SGLT2 (over)expression in various cancer types. The findings of SGLTs in malignant cells may help in developing novel cancer therapies with SGLT2 or SGLT1/SGLT2 inhibitors already used in diabetes mellitus treatment.
Collapse
|
33
|
Song P, Huang W, Onishi A, Patel R, Kim YC, van Ginkel C, Fu Y, Freeman B, Koepsell H, Thomson S, Liu R, Vallon V. Knockout of Na +-glucose cotransporter SGLT1 mitigates diabetes-induced upregulation of nitric oxide synthase NOS1 in the macula densa and glomerular hyperfiltration. Am J Physiol Renal Physiol 2019; 317:F207-F217. [PMID: 31091127 DOI: 10.1152/ajprenal.00120.2019] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Na+-glucose cotransporter (SGLT)1 mediates glucose reabsorption in late proximal tubules. SGLT1 also mediates macula densa (MD) sensing of an increase in luminal glucose, which increases nitric oxide (NO) synthase 1 (MD-NOS1)-mediated NO formation and potentially glomerular filtratrion rate (GFR). Here, the contribution of SGLT1 was tested by gene knockout (-/-) in type 1 diabetic Akita mice. A low-glucose diet was used to prevent intestinal malabsorption in Sglt1-/- mice and minimize the contribution of intestinal SGLT1. Hyperglycemia was modestly reduced in Sglt1-/- versus littermate wild-type Akita mice (480 vs. 550 mg/dl), associated with reduced diabetes-induced increases in GFR, kidney weight, glomerular size, and albuminuria. Blunted hyperfiltration was confirmed in streptozotocin-induced diabetic Sglt1-/- mice, associated with similar hyperglycemia versus wild-type mice (350 vs. 385 mg/dl). Absence of SGLT1 attenuated upregulation of MD-NOS1 protein expression in diabetic Akita mice and in response to SGLT2 inhibition in nondiabetic mice. During SGLT2 inhibition in Akita mice, Sglt1-/- mice had likewise reduced blood glucose (200 vs. 300 mg/dl), associated with lesser MD-NOS1 expression, GFR, kidney weight, glomerular size, and albuminuria. Absence of Sglt1 in Akita mice increased systolic blood pressure, associated with suppressed renal renin mRNA expression. This may reflect fluid retention due to blunted hyperfiltration. SGLT2 inhibition prevented the blood pressure increase in Sglt1-/- Akita mice, possibly due to additive glucosuric/diuretic effects. The data indicate that SGLT1 contributes to diabetic hyperfiltration and limits diabetic hypertension. Potential mechanisms include its role in glucose-driven upregulation of MD-NOS1 expression. This pathway may increase GFR to maintain volume balance when enhanced MD glucose delivery indicates upstream saturation of SGLTs and thus hyperreabsorption.
Collapse
Affiliation(s)
- Panai Song
- Division of Nephrology, Department of Medicine, University of California-San Diego , La Jolla, California.,Veterans Affairs San Diego Healthcare System, San Diego, California
| | - Winnie Huang
- Veterans Affairs San Diego Healthcare System, San Diego, California
| | - Akira Onishi
- Division of Nephrology, Department of Medicine, University of California-San Diego , La Jolla, California.,Veterans Affairs San Diego Healthcare System, San Diego, California
| | - Rohit Patel
- Veterans Affairs San Diego Healthcare System, San Diego, California
| | - Young Chul Kim
- Division of Nephrology, Department of Medicine, University of California-San Diego , La Jolla, California.,Veterans Affairs San Diego Healthcare System, San Diego, California
| | - Charlotte van Ginkel
- Division of Nephrology, Department of Medicine, University of California-San Diego , La Jolla, California.,Veterans Affairs San Diego Healthcare System, San Diego, California
| | - Yiling Fu
- Veterans Affairs San Diego Healthcare System, San Diego, California
| | - Brent Freeman
- Veterans Affairs San Diego Healthcare System, San Diego, California
| | - Hermann Koepsell
- Institute for Anatomy and Cell Biology, University of Würzburg , Würzburg , Germany
| | - Scott Thomson
- Division of Nephrology, Department of Medicine, University of California-San Diego , La Jolla, California.,Veterans Affairs San Diego Healthcare System, San Diego, California
| | - Ruisheng Liu
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine , Tampa, Florida
| | - Volker Vallon
- Division of Nephrology, Department of Medicine, University of California-San Diego , La Jolla, California.,Veterans Affairs San Diego Healthcare System, San Diego, California.,Department of Pharmacology, University of California-San Diego , La Jolla, California
| |
Collapse
|
34
|
Zhang J, Wei J, Jiang S, Xu L, Wang L, Cheng F, Buggs J, Koepsell H, Vallon V, Liu R. Macula Densa SGLT1-NOS1-Tubuloglomerular Feedback Pathway, a New Mechanism for Glomerular Hyperfiltration during Hyperglycemia. J Am Soc Nephrol 2019; 30:578-593. [PMID: 30867247 DOI: 10.1681/asn.2018080844] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 01/27/2019] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Glomerular hyperfiltration is common in early diabetes and is considered a risk factor for later diabetic nephropathy. We propose that sodium-glucose cotransporter 1 (SGLT1) senses increases in luminal glucose at the macula densa, enhancing generation of neuronal nitric oxide synthase 1 (NOS1)-dependent nitric oxide (NO) in the macula densa and blunting the tubuloglomerular feedback (TGF) response, thereby promoting the rise in GFR. METHODS We used microperfusion, micropuncture, and renal clearance of FITC-inulin to examine the effects of tubular glucose on NO generation at the macula densa, TGF, and GFR in wild-type and macula densa-specific NOS1 knockout mice. RESULTS Acute intravenous injection of glucose induced hyperglycemia and glucosuria with increased GFR in mice. We found that tubular glucose blunts the TGF response in vivo and in vitro and stimulates NO generation at the macula densa. We also showed that SGLT1 is expressed at the macula densa; in the presence of tubular glucose, SGLT1 inhibits TGF and NO generation, but this action is blocked when the SGLT1 inhibitor KGA-2727 is present. In addition, we demonstrated that glucose increases NOS1 expression and NOS1 phosphorylation at Ser1417 in mouse renal cortex and cultured human kidney tissue. In macula densa-specific NOS1 knockout mice, glucose had no effect on NO generation, TGF, and GFR. CONCLUSIONS We identified a novel mechanism of acute hyperglycemia-induced hyperfiltration wherein increases in luminal glucose at the macula densa upregulate the expression and activity of NOS1 via SGLT1, blunting the TGF response and promoting glomerular hyperfiltration.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Molecular Pharmacology and Physiology, College of Medicine,
| | - Jin Wei
- Department of Molecular Pharmacology and Physiology, College of Medicine
| | - Shan Jiang
- Department of Molecular Pharmacology and Physiology, College of Medicine
| | - Lan Xu
- Department of Biostatistics, College of Public Health, and
| | - Lei Wang
- Department of Molecular Pharmacology and Physiology, College of Medicine
| | - Feng Cheng
- Department of Pharmaceutical Science, College of Pharmacy, University of South Florida, Tampa, Florida
| | - Jacentha Buggs
- Advanced Organ Disease & Transplantation Institute, Tampa General Hospital, Tampa, Florida
| | - Hermann Koepsell
- Institute of Anatomy and Cell Biology, University of Würzburg, Würzburg, Germany; and
| | - Volker Vallon
- Division of Nephrology and Hypertension, Department of Medicine, University of California, San Diego, La Jolla, California
| | - Ruisheng Liu
- Department of Molecular Pharmacology and Physiology, College of Medicine
| |
Collapse
|
35
|
Shepard BD, Koepsell H, Pluznick JL. Renal olfactory receptor 1393 contributes to the progression of type 2 diabetes in a diet-induced obesity model. Am J Physiol Renal Physiol 2018; 316:F372-F381. [PMID: 30484350 DOI: 10.1152/ajprenal.00069.2018] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Olfactory receptors are G protein-coupled receptors that serve to detect odorants in the nose. Additionally, these receptors are expressed in other tissues, where they have functions outside the canonical smell response. Olfactory receptor 1393 (Olfr1393) was recently identified as a novel regulator of Na+-glucose cotransporter 1 (Sglt1) localization in the renal proximal tubule. Glucose reabsorption in the proximal tubule (via Sglt1 and Sglt2) has emerged as an important contributor to the development of diabetes. Inhibition of Sglt2 is accepted as a viable therapeutic treatment option for patients with type 2 diabetes and has been shown to delay development of diabetic kidney disease. We hypothesized that Olfr1393 may contribute to the progression of type 2 diabetes, particularly the development of hyperfiltration, which has been linked to increased Na+ reabsorption in the proximal tubule via the Sglts. To test this hypothesis, Olfr1393 wild-type (WT) and knockout (KO) mice were challenged with a high-fat diet to induce early-stage type 2 diabetes. After 16 wk on the high-fat diet, fasting blood glucose values were increased and glucose tolerance was impaired in the male WT mice. Both of these effects were significantly blunted in the male KO mice. In addition, male and female WT mice developed diabetes-induced hyperfiltration, which was attenuated in the Olfr1393 KO mice and corresponded with a reduction in luminal expression of Sglt2. Collectively, these data indicate that renal Olfr1393 can contribute to the progression of type 2 diabetes, likely as a regulator of Na+-glucose cotransport in the proximal tubule.
Collapse
Affiliation(s)
- Blythe D Shepard
- Department of Physiology, Johns Hopkins University School of Medicine , Baltimore, Maryland.,Department of Human Science, Georgetown University , Washington, District of Columbia
| | - Hermann Koepsell
- Department of Molecular Plant Physiology and Biophysics, Julius-von Sachs-Institute, University Wurzburg , Wurzburg , Germany
| | - Jennifer L Pluznick
- Department of Physiology, Johns Hopkins University School of Medicine , Baltimore, Maryland
| |
Collapse
|
36
|
Novikov A, Fu Y, Huang W, Freeman B, Patel R, van Ginkel C, Koepsell H, Busslinger M, Onishi A, Nespoux J, Vallon V. SGLT2 inhibition and renal urate excretion: role of luminal glucose, GLUT9, and URAT1. Am J Physiol Renal Physiol 2018; 316:F173-F185. [PMID: 30427222 DOI: 10.1152/ajprenal.00462.2018] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Inhibitors of the Na+-glucose cotransporter SGLT2 enhance urinary glucose and urate excretion and lower plasma urate levels. The mechanisms remain unclear, but a role for enhanced glucose in the tubular fluid, which may interact with tubular urate transporters, such as the glucose transporter GLUT9 or the urate transporter URAT1, has been proposed. Studies were performed in nondiabetic mice treated with the SGLT2 inhibitor canagliflozin and in gene-targeted mice lacking the urate transporter Glut9 in the tubule or in mice with whole body knockout of Sglt2, Sglt1, or Urat1. Renal urate handling was assessed by analysis of urate in spontaneous plasma and urine samples and normalization to creatinine concentrations or by renal clearance studies with assessment of glomerular filtration rate by FITC-sinistrin. The experiments confirmed the contribution of URAT1 and GLUT9 to renal urate reabsorption, showing a greater contribution of the latter and additive effects. Genetic and pharmacological inhibition of SGLT2 enhanced fractional renal urate excretion (FE-urate), indicating that a direct effect of the SGLT2 inhibitor on urate transporters is not absolutely necessary. Consistent with a proposed role of increased luminal glucose delivery, the absence of Sglt1, which by itself had no effect on FE-urate, enhanced the glycosuric and uricosuric effects of the SGLT2 inhibitor. The SGLT2 inhibitor enhanced renal mRNA expression of Glut9 in wild-type mice, but tubular GLUT9 seemed dispensable for the increase in FE-urate in response to canagliflozin. First evidence is presented that URAT1 is required for the acute uricosuric effect of the SGLT2 inhibitor in mice.
Collapse
Affiliation(s)
- Aleksandra Novikov
- Department of Medicine, University of California San Diego and Veterans Affairs San Diego Healthcare System , San Diego, California
| | - Yiling Fu
- Department of Medicine, University of California San Diego and Veterans Affairs San Diego Healthcare System , San Diego, California
| | - Winnie Huang
- Department of Medicine, University of California San Diego and Veterans Affairs San Diego Healthcare System , San Diego, California
| | - Brent Freeman
- Department of Medicine, University of California San Diego and Veterans Affairs San Diego Healthcare System , San Diego, California
| | - Rohit Patel
- Department of Medicine, University of California San Diego and Veterans Affairs San Diego Healthcare System , San Diego, California
| | - Charlotte van Ginkel
- Department of Medicine, University of California San Diego and Veterans Affairs San Diego Healthcare System , San Diego, California
| | - Hermann Koepsell
- Department of Molecular Plant Physiology and Biophysics, Julius-von-Sachs-Institute, University of Würzburg , Würzburg , Germany
| | | | - Akira Onishi
- Department of Medicine, University of California San Diego and Veterans Affairs San Diego Healthcare System , San Diego, California
| | - Josselin Nespoux
- Department of Medicine, University of California San Diego and Veterans Affairs San Diego Healthcare System , San Diego, California
| | - Volker Vallon
- Department of Medicine, University of California San Diego and Veterans Affairs San Diego Healthcare System , San Diego, California.,Department of Pharmacology, University of California San Diego , La Jolla, California
| |
Collapse
|
37
|
Sebastiani A, Greve F, Gölz C, Förster CY, Koepsell H, Thal SC. RS1 (Rsc1A1) deficiency limits cerebral SGLT1 expression and delays brain damage after experimental traumatic brain injury. J Neurochem 2018; 147:190-203. [PMID: 30022488 DOI: 10.1111/jnc.14551] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/15/2018] [Accepted: 06/19/2018] [Indexed: 01/08/2023]
Abstract
Acute cerebral lesions are associated with dysregulation of brain glucose homeostasis. Previous studies showed that knockdown of Na+ -D-glucose cotransporter SGLT1 impaired outcome after middle cerebral artery occlusion and that widely expressed intracellular RS1 (RSC1A1) is involved in transcriptional and post-translational down-regulation of SGLT1. In the present study, we investigated whether SGLT1 is up-regulated during traumatic brain injury (TBI) and whether removal of RS1 in mice (RS1-KO) influences SGLT1 expression and outcome. Unexpectedly, brain SGLT1 mRNA in RS1-KO was similar to wild-type whereas it was increased in small intestine and decreased in kidney. One day after TBI, SGLT1 mRNA in the ipsilateral cortex was increased 160% in wild-type and 40% in RS1-KO. After RS1 removal lesion volume 1 day after TBI was reduced by 12%, brain edema was reduced by 28%, and motoric disability determined by a beam walking test was improved. In contrast, RS1 removal did neither influence glucose and glycogen accumulation 1 day after TBI nor up-regulation of inflammatory cytokines TNF-α, IL-1β and IL-6 or microglia activation 1 or 5 days after TBI. The data provide proof of principle that inhibition or down-regulation of SGLT1 by targeting RS1 in brain could be beneficial for early treatment of TBI.
Collapse
Affiliation(s)
- Anne Sebastiani
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Frederik Greve
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Christina Gölz
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Carola Y Förster
- Department of Anesthesiology, University of Würzburg, Würzburg, Germany
| | - Hermann Koepsell
- Institute of Anatomy and Cell Biology, University of Würzburg, Würzburg, Germany
| | - Serge C Thal
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| |
Collapse
|
38
|
Sala‐Rabanal M, Ghezzi C, Hirayama BA, Kepe V, Liu J, Barrio JR, Wright EM. Intestinal absorption of glucose in mice as determined by positron emission tomography. J Physiol 2018; 596:2473-2489. [PMID: 29707805 PMCID: PMC6023830 DOI: 10.1113/jp275934] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 04/17/2018] [Indexed: 01/12/2023] Open
Abstract
KEY POINTS The goal was to determine the importance of the sodium-glucose cotransporter SGLT1 and the glucose uniporter GLUT2 in intestinal glucose absorption during oral glucose tolerance tests (OGTTs) in mice. Glucose absorption was determined in mice using positron emission tomography and three non-metabolizable glucose probes: one specific for SGLTs, one specific for GLUTs, and one a substrate for both SGLTs and GLUTs. Absorption was determined in wild-type, Sglt1-/- and Glut2-/- mice. Gastric emptying was a rate-limiting step in absorption. SGLT1, but not GLUT2, was important in fast glucose absorption. In the absence of SGLT1 or GLUT2, the oral glucose load delivered to the small intestine was slowly absorbed. Oral phlorizin only inhibited the fast component of glucose absorption, but it contributed to decreasing blood glucose levels by inhibiting renal reabsorption. ABSTRACT The current model of intestinal absorption is that SGLT1 is responsible for transport of glucose from the lumen into enterocytes across the brush border membrane, and GLUT2 for the downhill transport from the epithelium into blood across the basolateral membrane. Nevertheless, questions remain about the importance of these transporters in vivo. To address these questions, we have developed a non-invasive imaging method, positron emission tomography (PET), to monitor intestinal absorption of three non-metabolized glucose tracers during standard oral glucose tolerance tests (OGTTs) in mice. One tracer is specific for SGLTs (α-methyl-4-[18 F]fluoro-4-deoxy-d-glucopyranoside; Me-4FDG), one is specific for GLUTs (2-deoxy-2-[18 F]fluoro-d-glucose; 2-FDG), and one is a substrate for both SGLTs and GLUTs (4-deoxy-4-[18 F]fluoro-d-glucose; 4-FDG). OGTTs were conducted on adult wild-type, Sglt1-/- and Glut2-/- mice. In conscious mice, OGTTs resulted in the predictable increase in blood glucose that was blocked by phlorizin in both wild-type and Glut2-/- animals. The blood activity of both Me-4FDG and 4-FDG, but not 2-FDG, accompanied the changes in glucose concentration. PET imaging during OGTTs further shows that: (i) intestinal absorption of the glucose load depends on gastric emptying; (ii) SGLT1 is important for the fast absorption; (iii) GLUT2 is not important in absorption; and (iv) oral phlorizin reduces absorption by SGLT1, but is absorbed and blocks glucose reabsorption in the kidney. We conclude that in standard OGTTs in mice, SGLT1 is essential in fast absorption, GLUT2 does not play a significant role, and in the absence of SGLT1 the total load of glucose is slowly absorbed.
Collapse
Affiliation(s)
- Monica Sala‐Rabanal
- Department of PhysiologyDavid Geffen School of Medicine at UCLAUniversity of CaliforniaLos AngelesCA90095‐1571USA
- Department of Cell Biology and Physiologyand Center for the Investigation of Membrane Excitability Diseases (CIMED)Washington UniversitySt LouisMO63110USA
| | - Chiara Ghezzi
- Department of PhysiologyDavid Geffen School of Medicine at UCLAUniversity of CaliforniaLos AngelesCA90095‐1571USA
| | - Bruce A. Hirayama
- Department of PhysiologyDavid Geffen School of Medicine at UCLAUniversity of CaliforniaLos AngelesCA90095‐1571USA
| | - Vladimir Kepe
- Department of Molecular and Medical PharmacologyDavid Geffen School of Medicine at UCLAUniversity of CaliforniaLos AngelesCA90095‐1735USA
| | - Jie Liu
- Department of Molecular and Medical PharmacologyDavid Geffen School of Medicine at UCLAUniversity of CaliforniaLos AngelesCA90095‐1735USA
| | - Jorge R. Barrio
- Department of Molecular and Medical PharmacologyDavid Geffen School of Medicine at UCLAUniversity of CaliforniaLos AngelesCA90095‐1735USA
| | - Ernest M. Wright
- Department of PhysiologyDavid Geffen School of Medicine at UCLAUniversity of CaliforniaLos AngelesCA90095‐1571USA
| |
Collapse
|
39
|
Mühlemann M, Zdzieblo D, Friedrich A, Berger C, Otto C, Walles H, Koepsell H, Metzger M. Altered pancreatic islet morphology and function in SGLT1 knockout mice on a glucose-deficient, fat-enriched diet. Mol Metab 2018; 13:67-76. [PMID: 29859847 PMCID: PMC6026318 DOI: 10.1016/j.molmet.2018.05.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 05/08/2018] [Accepted: 05/15/2018] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVES Glycemic control by medical treatment represents one therapeutic strategy for diabetic patients. The Na+-d-glucose cotransporter 1 (SGLT1) is currently of high interest in this context. SGLT1 is known to mediate glucose absorption and incretin secretion in the small intestine. Recently, inhibition of SGLT1 function was shown to improve postprandial hyperglycemia. In view of the lately demonstrated SGLT1 expression in pancreatic islets, we investigated if loss of SGLT1 affects islet morphology and function. METHODS Effects associated with the loss of SGLT1 on pancreatic islet (cyto) morphology and function were investigated by analyzing islets of a SGLT1 knockout mouse model, that were fed a glucose-deficient, fat-enriched diet (SGLT1-/--GDFE) to circumvent the glucose-galactose malabsorption syndrome. To distinguish diet- and Sglt1-/--dependent effects, wildtype mice on either standard chow (WT-SC) or the glucose-free, fat-enriched diet (WT-GDFE) were used as controls. Feeding a glucose-deficient, fat-enriched diet further required the analysis of intestinal SGLT1 expression and function under diet-conditions. RESULTS Consistent with literature, our data provide evidence that small intestinal SGLT1 mRNA expression and function is regulated by nutrition. In contrast, pancreatic SGLT1 mRNA levels were not affected by the applied diet, suggesting different regulatory mechanisms for SGLT1 in diverse tissues. Morphological changes such as increased islet sizes and cell numbers associated with changes in proliferation and apoptosis and alterations of the β- and α-cell population are specifically observed for pancreatic islets of SGLT1-/--GDFE mice. Glucose stimulation revealed no insulin response in SGLT1-/--GDFE mice while WT-GDFE mice displayed only a minor increase of blood insulin. Irregular glucagon responses were observed for both, SGLT1-/--GDFE and WT-GDFE mice. Further, both animal groups showed a sustained release of GLP-1 compared to WT-SC controls. CONCLUSION Loss or impairment of SGLT1 results in abnormal pancreatic islet (cyto)morphology and disturbed islet function regarding the insulin or glucagon release capacity from β- or α-cells, respectively. Consequently, our findings propose a new, additional role for SGLT1 maintaining proper islet structure and function.
Collapse
Affiliation(s)
- Markus Mühlemann
- Chair Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, 97070, Würzburg, Germany
| | - Daniela Zdzieblo
- Chair Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, 97070, Würzburg, Germany.
| | - Alexandra Friedrich
- Department of Molecular Plant Physiology and Biophysics, Julius-von-Sachs-Institute, University of Würzburg, 97070, Würzburg, Germany
| | - Constantin Berger
- Chair Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, 97070, Würzburg, Germany
| | - Christoph Otto
- Department of General Visceral Vascular and Pediatric Surgery, University Hospital Würzburg, 97070, Würzburg, Germany
| | - Heike Walles
- Chair Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, 97070, Würzburg, Germany; Translational Center Regenerative Therapies (TLC-RT), Fraunhofer Institute for Silicate Research ISC, 97070, Würzburg, Germany
| | - Hermann Koepsell
- Department of Molecular Plant Physiology and Biophysics, Julius-von-Sachs-Institute, University of Würzburg, 97070, Würzburg, Germany
| | - Marco Metzger
- Chair Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, 97070, Würzburg, Germany; Translational Center Regenerative Therapies (TLC-RT), Fraunhofer Institute for Silicate Research ISC, 97070, Würzburg, Germany
| |
Collapse
|