1
|
Zhong L, Hou X, Tian Y, Fu X. Exercise and dietary interventions in the management of diabetic cardiomyopathy: mechanisms and implications. Cardiovasc Diabetol 2025; 24:159. [PMID: 40205621 PMCID: PMC11983742 DOI: 10.1186/s12933-025-02702-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 03/22/2025] [Indexed: 04/11/2025] Open
Abstract
The global prevalence of diabetes is rapidly increasing, significantly raising the risk of various cardiovascular diseases. Among these, diabetic cardiomyopathy (DCM) is a distinct and critical complication characterized by ventricular hypertrophy and impaired myocardial contractility, ultimately progressing to heart failure and making it a leading cause of mortality among diabetic patients. Despite advances in pharmacological therapies, the effectiveness of managing cardiac dysfunction in DCM remains challenging. Consequently, exploring additional therapeutic strategies for the prevention and treatment of DCM is urgently needed. Beyond pharmacological approaches, lifestyle modifications, particularly exercise and dietary interventions, play a fundamental role in managing DCM due to their significant cardiovascular benefits in diabetic patients. This review synthesizes recent advancements in the field, elucidating the underlying mechanisms through which exercise and dietary interventions influence DCM pathophysiology. By integrating these strategies, we aim to facilitate the development of personalized exercise and dietary regimens that effectively mitigate or prevent DCM progression.
Collapse
Affiliation(s)
- Ling Zhong
- Department of Endocrinology and Metabolism, Department of Biotherapy, Laboratory of Diabetes and Metabolism Research, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xiaojie Hou
- Department of Cardiovascular Surgery, Cardiovascular Surgery Research Laboratory, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yan Tian
- Department of Endocrinology and Metabolism, Department of Biotherapy, Laboratory of Diabetes and Metabolism Research, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Xianghui Fu
- Department of Endocrinology and Metabolism, Department of Biotherapy, Laboratory of Diabetes and Metabolism Research, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
2
|
Shah IA, Ishaq S, Lee SD, Wu BT. Effects of Exercise Training on Cardiac Mitochondrial Functions in Diabetic Heart: A Systematic Review. Int J Mol Sci 2024; 26:8. [PMID: 39795867 PMCID: PMC11719559 DOI: 10.3390/ijms26010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/21/2024] [Accepted: 12/02/2024] [Indexed: 01/13/2025] Open
Abstract
A diabetic heart is characterized by fibrosis, autophagy, oxidative stress, and altered mitochondrial functions. For this review, three databases (PubMed, EMBASE, and Web of Science) were searched for articles written in English from September 2023 to April 2024. Studies that used exercise training for at least 3 weeks and which reported positive, negative, or no effects were included. The CAMARADES checklist was used to assess the quality of the included studies, and ten studies (CAMARADES scores 4-7/10) were included. Nine studies showed that exercise training improved cardiac mitochondrial oxidative phosphorylation by decreasing ROS, increasing electron transport chain activity, and enhancing the production of ATP. Eight studies indicated that exercise training ameliorated mitochondrial biogenesis by increasing the levels of AMPK, PGC-1α, Akt, Irisin, and Sirtuin-III. Moreover, four studies focused on mitochondrial dynamics and concluded that exercise training helped decrease the levels of mitochondrial fission factor and dynamin-related protein- 1. Finally, six studies revealed improvements in mitochondrial physiological characteristics such as size, potential, and permeability. Our findings demonstrate the beneficial effects of exercise training on cardiac mitochondrial function in diabetic hearts. Exercise training improves cardiac mitochondrial physiological characteristics, oxidative phosphorylation, biogenesis, and dynamics.
Collapse
Affiliation(s)
- Iqbal Ali Shah
- PhD Program in Healthcare Science, China Medical University, Taichung 40402, Taiwan; (I.A.S.); (S.I.)
| | - Shahid Ishaq
- PhD Program in Healthcare Science, China Medical University, Taichung 40402, Taiwan; (I.A.S.); (S.I.)
| | - Shin-Da Lee
- PhD Program in Healthcare Science, China Medical University, Taichung 40402, Taiwan; (I.A.S.); (S.I.)
- Department of Physical Therapy, China Medical University, Taichung 40402, Taiwan
| | - Bor-Tsang Wu
- Department of Senior Citizen Service Management, National Taichung University of Science and Technology, Taichung 40343, Taiwan;
| |
Collapse
|
3
|
Joukar S, Rajizadeh MA, Bejeshk MA, Alavi SS, Bagheri F, Rami M, Khoramipour K. ATP releasing channels and the ameliorative effects of high intensity interval training on diabetic heart: a multifaceted analysis. Sci Rep 2024; 14:7113. [PMID: 38532054 DOI: 10.1038/s41598-024-57818-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 03/21/2024] [Indexed: 03/28/2024] Open
Abstract
Type 2 diabetes (T2D) can cause severe cardiac complications at functional, histologic and molecular levels. These pathological complications could be mediated by ATP-releasing channels such as Panx1 and ATP receptors, in particular P2X7. The aim of our study was to investigate the effect of high-intensity interval training (HIIT) on T2D-induced cardiac complications at the functional, histopathological and molecular levels, with a particular focus on ATP-releasing channels. 48 male Wistar rats at the age of 8 weeks were randomly allocated into four groups: control (Con), Diabetes (T2D), Training (TR), and Diabetes + Training (T2D + TR). T2D was induced by a high-fat diet plus a low dose (35 mg/kg) of STZ administration. Rats in the TR and T2D + TR groups underwent an 8-weeks training program involving intervals ranging from 80 to 100% of their maximum running speed (Vmax), with 4-10 intervals per session. Protein expression of Interleukin 1β (IL1β), Interleukin 10 (IL-10), Pannexin 1 (Panx1), P2X7R (purinergic P2X receptor 7), NLRP1 (NLR Family Pyrin Domain Containing 1), BAX, and Bcl2 were measured in the heart tissue. Additionally, we assessed heart function, histopathological changes, as well as insulin resistance using the homeostasis model assessment of insulin resistance (HOMA-IR). In contrast to the T2D group, HIIT led to increased protein expression of Bcl2 and IL-10 in the heart. It also resulted in improvements in systolic and diastolic blood pressures, heart rate, ± dp/dt (maximum and minimum changes in left ventricular pressure), while reducing protein expression of IL-1β, Panx1, P2X7R, NLRP1, and BAX levels in the heart. Furthermore, left ventricular diastolic pressure (LVDP) was reduced (P ≤ 0.05). Moreover, heart lesion scores increased with T2D but decreased with HIIT, along with a reduction in fibrosis percentage (P ≤ 0.05). The results of this study suggest that the cardioprotective effects of HIIT on the diabetic heart may be mediated by the modulation of ATP-releasing channels. This modulation may lead to a reduction in inflammation and apoptosis, improve cardiac function, and attenuate cardiac injury and fibrosis.
Collapse
Affiliation(s)
- Siyavash Joukar
- Department of Physiology and Pharmacology, Afzalipour Medical Faculty, Kerman University of Medical Sciences, Kerman, Iran
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Amin Rajizadeh
- Cardiovascular Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Abbas Bejeshk
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Samaneh Sadat Alavi
- Department of Physiology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Fatemeh Bagheri
- Legal Medicine Research Center, Legal Medicine Organization, Kerman, Iran
- Pathology and Stem Cell Research Center, Department of Pathology, Afzalipour Medical Faculty, Kerman, Iran
| | - Mohammad Rami
- Department of Sport Physiology, Faculty of Sport Sciences, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Kayvan Khoramipour
- Department of Physiology and Pharmacology, Afzalipour Medical Faculty, Kerman University of Medical Sciences, Kerman, Iran.
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
4
|
Ding W, Yang X, Lai K, Jiang Y, Liu Y. The potential of therapeutic strategies targeting mitochondrial biogenesis for the treatment of insulin resistance and type 2 diabetes mellitus. Arch Pharm Res 2024; 47:219-248. [PMID: 38485900 DOI: 10.1007/s12272-024-01490-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 03/07/2024] [Indexed: 04/07/2024]
Abstract
Type 2 diabetes mellitus (T2DM) is a persistent metabolic disorder marked by deficiencies in insulin secretion and/or function, affecting various tissues and organs and leading to numerous complications. Mitochondrial biogenesis, the process by which cells generate new mitochondria utilizing existing ones plays a crucial role in energy homeostasis, glucose metabolism, and lipid handling. Recent evidence suggests that promoting mitochondrial biogenesis can alleviate insulin resistance in the liver, adipose tissue, and skeletal muscle while improving pancreatic β-cell function. Moreover, enhanced mitochondrial biogenesis has been shown to ameliorate T2DM symptoms and may contribute to therapeutic effects for the treatment of diabetic nephropathy, cardiomyopathy, retinopathy, and neuropathy. This review summarizes the intricate connection between mitochondrial biogenesis and T2DM, highlighting the potential of novel therapeutic strategies targeting mitochondrial biogenesis for T2DM treatment and its associated complications. It also discusses several natural products that exhibit beneficial effects on T2DM by promoting mitochondrial biogenesis.
Collapse
Affiliation(s)
- Wenwen Ding
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Xiaoxue Yang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Kaiyi Lai
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Yu Jiang
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA.
| | - Ying Liu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China.
| |
Collapse
|
5
|
Zhang F, Lin JJ, Tian HN, Wang J. Effect of exercise on improving myocardial mitochondrial function in decreasing diabetic cardiomyopathy. Exp Physiol 2024; 109:190-201. [PMID: 37845840 PMCID: PMC10988701 DOI: 10.1113/ep091309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 09/11/2023] [Indexed: 10/18/2023]
Abstract
Diabetic cardiomyopathy (DCM) is a significant cause of heart failure in patients with diabetes, and its pathogenesis is closely related to myocardial mitochondrial injury and functional disability. Studies have shown that the development of diabetic cardiomyopathy is related to disorders in mitochondrial metabolic substrates, changes in mitochondrial dynamics, an imbalance in mitochondrial Ca2+ regulation, defects in the regulation of microRNAs, and mitochondrial oxidative stress. Physical activity may play a role in resistance to the development of diabetic cardiomyopathy by improving myocardial mitochondrial biogenesis, the level of autophagy and dynamic changes in fusion and division; enhancing the ability to cope with oxidative stress; and optimising the metabolic substrates of the myocardium. This paper puts forward a new idea for further understanding the specific mitochondrial mechanism of the occurrence and development of diabetic cardiomyopathy and clarifying the role of exercise-mediated myocardial mitochondrial changes in the prevention and treatment of diabetic cardiomyopathy. This is expected to provide a new theoretical basis for exercise to reduce diabetic cardiomyopathy symptoms.
Collapse
Affiliation(s)
- Feng Zhang
- Sports Physiology DepartmentBeijing Sport UniversityBeijingChina
| | - Jian jian Lin
- PE Teaching and Research OfficeUniversity of International RelationshipBeijingChina
| | - Hao nan Tian
- Sports Physiology DepartmentBeijing Sport UniversityBeijingChina
| | - Jun Wang
- Sports Physiology DepartmentBeijing Sport UniversityBeijingChina
| |
Collapse
|
6
|
Nunes JHC, Cella PS, Guimarães TAS, Buçu IP, Deminice R. Chemotherapy periodization to maximize resistance training adaptations in oncology. Cancer Chemother Pharmacol 2023; 92:357-367. [PMID: 37582913 DOI: 10.1007/s00280-023-04576-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 08/06/2023] [Indexed: 08/17/2023]
Abstract
INTRODUCTION Engaging in exercise programs during cancer treatment is challenging due to the several chemotherapy-induced side effects. Using a pre-clinical model that mimics chemotherapy treatment, we investigated if a periodized-within-chemotherapy training strategy can maximize resistance training (RT) adaptations such as increasing muscle mass and strength. METHODS Swiss mice were randomly allocated into one of the following five groups (n = 14): control (C), resistance training (RT), chemotherapy-treated non-exercised group (Ch), resistance training chemotherapy treated (RTCh), and resistance training periodized-within-chemotherapy (RTPCh). Doxorubicin (i.p.) was weekly injected for a total of 3 weeks (total dose of 12 mg/kg). Resistance training consisted of ladder climbing with progressive intensity, three times a week for 3 weeks, during chemotherapy treatment. RTPCh prescriptions considered "bad day" adjustments while RTCh did not. "Bad day" adjustments considered the presence or absence of clinical signs (e.g., severe weight loss, diarrhea, mice refusing to train) to replace RT sessions. At the end of the third week, animals were euthanized. RESULTS Weekly doxorubicin injection promoted progressive body weight loss, muscle atrophy, strength loss, local oxidative stress, and elevated inflammatory mediators, such as TNF-α and IL-6. Non-periodized-within-chemotherapy RT promoted mild protection against doxorubicin-induced skeletal muscle disturbances; moreover, when periodized-within-chemotherapy was applied, RT prevented elevated skeletal muscle inflammatory mediators and oxidative damage markers and promoted muscle mass and strength gains. CONCLUSION Considering chemotherapy-induced side effects is a crucial aspect when prescribing resistance exercise during cancer, it will maximize the effectiveness of exercise in enhancing muscle mass and strength.
Collapse
Affiliation(s)
- Jonathan H C Nunes
- Department of Physical Education, Faculty of Physical Education and Sport, State University of Londrina, Rodovia Celso Garcia Cid, Pr 445 Km 380, Campus Universitário, Londrina, Paraná, Brazil
| | - Paola S Cella
- Department of Physical Education, Faculty of Physical Education and Sport, State University of Londrina, Rodovia Celso Garcia Cid, Pr 445 Km 380, Campus Universitário, Londrina, Paraná, Brazil
| | - Tatiana A S Guimarães
- Department of Physical Education, Faculty of Physical Education and Sport, State University of Londrina, Rodovia Celso Garcia Cid, Pr 445 Km 380, Campus Universitário, Londrina, Paraná, Brazil
| | - Icaro P Buçu
- Department of Physical Education, Faculty of Physical Education and Sport, State University of Londrina, Rodovia Celso Garcia Cid, Pr 445 Km 380, Campus Universitário, Londrina, Paraná, Brazil
| | - Rafael Deminice
- Department of Physical Education, Faculty of Physical Education and Sport, State University of Londrina, Rodovia Celso Garcia Cid, Pr 445 Km 380, Campus Universitário, Londrina, Paraná, Brazil.
| |
Collapse
|
7
|
Bai X, Zhang Z, Li X, Yang Y, Ding S. FUNDC1: An Emerging Mitochondrial and MAMs Protein for Mitochondrial Quality Control in Heart Diseases. Int J Mol Sci 2023; 24:ijms24119151. [PMID: 37298100 DOI: 10.3390/ijms24119151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/19/2023] [Accepted: 05/21/2023] [Indexed: 06/12/2023] Open
Abstract
Heart diseases (HDs) are the leading cause of mortality worldwide, with mitochondrial dysfunction being a significant factor in their development. The recently discovered mitophagy receptor, FUNDC1, plays a critical role in regulating the homeostasis of the Mitochondrial Quality Control (MQC) system and contributing to HDs. The phosphorylation of specific regions of FUNDC1 and varying levels of its expression have been shown to have diverse effects on cardiac injury. This review presents a comprehensive consolidation and summary of the latest evidence regarding the role of FUNDC1 in the MQC system. The review elucidates the association of FUNDC1 with prevalent HDs, such as metabolic cardiomyopathy (MCM), cardiac remodeling/heart failure, and myocardial ischemia-reperfusion (IR) injury. The results indicate that the expression of FUNDC1 is elevated in MCM but reduced in instances of cardiac remodeling, heart failure, and myocardial IR injury, with divergent impacts on mitochondrial function among distinct HDs. Exercise has been identified as a powerful preventive and therapeutic approach for managing HDs. Additionally, it has been suggested that exercise-induced enhancement of cardiac function may be attributed to the AMPK/FUNDC1 pathway.
Collapse
Affiliation(s)
- Xizhe Bai
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention, Ministry of Education, East China Normal University, Shanghai 200241, China
- College of Physical Education and Health, East China Normal University, Shanghai 200241, China
| | - Zhe Zhang
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention, Ministry of Education, East China Normal University, Shanghai 200241, China
- College of Physical Education and Health, East China Normal University, Shanghai 200241, China
| | - Xi Li
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention, Ministry of Education, East China Normal University, Shanghai 200241, China
- College of Physical Education and Health, East China Normal University, Shanghai 200241, China
| | - Yangjun Yang
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention, Ministry of Education, East China Normal University, Shanghai 200241, China
- College of Physical Education and Health, East China Normal University, Shanghai 200241, China
| | - Shuzhe Ding
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention, Ministry of Education, East China Normal University, Shanghai 200241, China
- College of Physical Education and Health, East China Normal University, Shanghai 200241, China
| |
Collapse
|
8
|
Costa Godinho LRL, Cella PS, Guimarães TAS, Palma GHD, Nunes JHC, Deminice R. Creatine Supplementation Potentiates Exercise Protective Effects against Doxorubicin-Induced Hepatotoxicity in Mice. Antioxidants (Basel) 2023; 12:antiox12040823. [PMID: 37107198 PMCID: PMC10135080 DOI: 10.3390/antiox12040823] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/20/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023] Open
Abstract
We tested the hypothesis that creatine supplementation may potentiate exercise’s protective effects against doxorubicin-induced hepatotoxicity. Thirty-eight Swiss mice were randomly allocated into five groups: control (C, n = 7), exercised (Ex, n = 7), treated with doxorubicin (Dox, n = 8), treated with doxorubicin and exercised (DoxEx, n = 8), and treated with doxorubicin, exercised, and supplemented with creatine (DoxExCr, n = 8). Doxorubicin was administered weekly (i.p.) for a total dose of 12 mg/kg. Creatine supplementation (2% added to the diet) and strength training (climbing stairs, 3 times a week) were performed for a total of 5 weeks. The results demonstrated that doxorubicin caused hepatotoxicity, which was evidenced by increased (p < 0.05) hepatic markers of inflammation (i.e., TNF-α and IL-6) and oxidative damage, while the redox status (GSH/GSSG) was reduced. The plasma concentrations of liver transaminases were also significantly (p < 0.05) elevated. Furthermore, doxorubicin-treated animals presented hepatic fibrosis and histopathological alterations such as cellular degeneration and the infiltration of interstitial inflammatory cells. Exercise alone partly prevented doxorubicin-induced hepatotoxicity; thus, when combined with creatine supplementation, exercise was able to attenuate inflammation and oxidative stress, morphological alterations, and fibrosis. In conclusion, creatine supplementation potentiates the protective effects of exercise against doxorubicin-induced hepatotoxicity in mice.
Collapse
|
9
|
Nijholt KT, Voorrips SN, Sánchez-Aguilera PI, Westenbrink BD. Exercising heart failure patients: cardiac protection through preservation of mitochondrial function and substrate utilization? CURRENT OPINION IN PHYSIOLOGY 2023. [DOI: 10.1016/j.cophys.2023.100656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
|
10
|
Kim HK, Kim M, Marquez JC, Jeong SH, Ko TH, Noh YH, Kha PT, Choi HM, Kim DH, Kim JT, Yang YI, Ko KS, Rhee BD, Shubina LK, Makarieva TN, Yashunsky DY, Gerbst AG, Nifantiev NE, Stonik VA, Han J. Novel GSK-3β Inhibitor Neopetroside A Protects Against Murine Myocardial Ischemia/Reperfusion Injury. JACC Basic Transl Sci 2022; 7:1102-1116. [PMID: 36687267 PMCID: PMC9849271 DOI: 10.1016/j.jacbts.2022.05.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 03/31/2022] [Accepted: 05/09/2022] [Indexed: 02/01/2023]
Abstract
Recent trends suggest novel natural compounds as promising treatments for cardiovascular disease. The authors examined how neopetroside A, a natural pyridine nucleoside containing an α-glycoside bond, regulates mitochondrial metabolism and heart function and investigated its cardioprotective role against ischemia/reperfusion injury. Neopetroside A treatment maintained cardiac hemodynamic status and mitochondrial respiration capacity and significantly prevented cardiac fibrosis in murine models. These effects can be attributed to preserved cellular and mitochondrial function caused by the inhibition of glycogen synthase kinase-3 beta, which regulates the ratio of nicotinamide adenine dinucleotide to nicotinamide adenine dinucleotide, reduced, through activation of the nuclear factor erythroid 2-related factor 2/NAD(P)H quinone oxidoreductase 1 axis in a phosphorylation-independent manner.
Collapse
Key Words
- ATP, adenosine triphosphate
- GSK-3, glycogen synthase kinase–3
- GSK-3β inhibition
- I/R, ischemia/reperfusion
- MI, myocardial infarction
- NAD+, nicotinamide adenine dinucleotide
- NADH, nicotinamide adenine dinucleotide, reduced
- NPS A
- NPS A, neopetroside A
- Nqo1, NAD(P)H:quinone oxidoreductase 1
- Nrf2, nuclear factor erythroid 2–related factor 2
- OCR, oxygen consumption rate
- ischemia/reperfusion injury
- mPTP, mitochondrial permeability transition pore
- mTOR, mammalian target of rapamycin
- marine pyridine α-nucleoside
- mitochondria
Collapse
Affiliation(s)
- Hyoung Kyu Kim
- Cardiovascular and Metabolic Disease Center, Inje University, Busan, South Korea,Department of Health Sciences and Technology, Graduate School, Inje University, Busan, South Korea
| | - Min Kim
- Cardiovascular and Metabolic Disease Center, Inje University, Busan, South Korea,Department of Physiology, BK Plus Project Team, College of Medicine, Inje University, Busan, South Korea
| | - Jubert C. Marquez
- Cardiovascular and Metabolic Disease Center, Inje University, Busan, South Korea,Department of Health Sciences and Technology, Graduate School, Inje University, Busan, South Korea
| | - Seung Hun Jeong
- Cardiovascular and Metabolic Disease Center, Inje University, Busan, South Korea,Department of Physiology, BK Plus Project Team, College of Medicine, Inje University, Busan, South Korea
| | - Tae Hee Ko
- Cardiovascular and Metabolic Disease Center, Inje University, Busan, South Korea,Department of Physiology, BK Plus Project Team, College of Medicine, Inje University, Busan, South Korea
| | - Yeon Hee Noh
- Cardiovascular and Metabolic Disease Center, Inje University, Busan, South Korea,Department of Physiology, BK Plus Project Team, College of Medicine, Inje University, Busan, South Korea
| | - Pham Trong Kha
- Cardiovascular and Metabolic Disease Center, Inje University, Busan, South Korea,Department of Physiology, BK Plus Project Team, College of Medicine, Inje University, Busan, South Korea
| | - Ha Min Choi
- Cardiovascular and Metabolic Disease Center, Inje University, Busan, South Korea,Department of Physiology, BK Plus Project Team, College of Medicine, Inje University, Busan, South Korea
| | - Dong Hyun Kim
- Department of Pharmacology and Pharmaco-Genomics Research Center, College of Medicine, Inje University, Busan, South Korea
| | - Jong Tae Kim
- Paik Institute for Clinical Research, Inje University College of Medicine, Busan, South Korea
| | - Young Il Yang
- Paik Institute for Clinical Research, Inje University College of Medicine, Busan, South Korea
| | - Kyung Soo Ko
- Cardiovascular and Metabolic Disease Center, Inje University, Busan, South Korea,Department of Health Sciences and Technology, Graduate School, Inje University, Busan, South Korea
| | - Byoung Doo Rhee
- Cardiovascular and Metabolic Disease Center, Inje University, Busan, South Korea,Department of Health Sciences and Technology, Graduate School, Inje University, Busan, South Korea
| | - Larisa K. Shubina
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science, Vladivostok, Russia
| | - Tatyana N. Makarieva
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science, Vladivostok, Russia
| | - Dmitry Y. Yashunsky
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Alexey G. Gerbst
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Nikolay E. Nifantiev
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Valentin A. Stonik
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science, Vladivostok, Russia
| | - Jin Han
- Cardiovascular and Metabolic Disease Center, Inje University, Busan, South Korea,Department of Health Sciences and Technology, Graduate School, Inje University, Busan, South Korea,Department of Physiology, BK Plus Project Team, College of Medicine, Inje University, Busan, South Korea,Address for correspondence: Dr Jin Han, National Research Laboratory for Mitochondrial Signaling, Department of Physiology, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan 47393, South Korea.
| |
Collapse
|
11
|
Tao LC, Wang TT, Zheng L, Hua F, Li JJ. The Role of Mitochondrial Biogenesis Dysfunction in Diabetic Cardiomyopathy. Biomol Ther (Seoul) 2022; 30:399-408. [PMID: 35410981 PMCID: PMC9424338 DOI: 10.4062/biomolther.2021.192] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 01/28/2022] [Accepted: 02/22/2022] [Indexed: 11/26/2022] Open
Abstract
Diabetic cardiomyopathy (DCM) is described as abnormalities of myocardial structure and function in diabetic patients without other well-established cardiovascular factors. Although multiple pathological mechanisms involving in this unique myocardial disorder, mitochondrial dysfunction may play an important role in its development of DCM. Recently, considerable progresses have suggested that mitochondrial biogenesis is a tightly controlled process initiating mitochondrial generation and maintaining mitochondrial function, appears to be associated with DCM. Nonetheless, an outlook on the mechanisms and clinical relevance of dysfunction in mitochondrial biogenesis among patients with DCM is not completely understood. In this review, hence, we will summarize the role of mitochondrial biogenesis dysfunction in the development of DCM, especially the molecular underlying mechanism concerning the signaling pathways beyond the stimulation and inhibition of mitochondrial biogenesis. Additionally, the evaluations and potential therapeutic strategies regarding mitochondrial biogenesis dysfunction in DCM is also presented.
Collapse
Affiliation(s)
- Li-Chan Tao
- The Third Affiliated Hospital of Soochow University, Juqian Road, Changzhou 213000, China
| | - Ting-ting Wang
- The Third Affiliated Hospital of Soochow University, Juqian Road, Changzhou 213000, China
| | - Lu Zheng
- The Third Affiliated Hospital of Soochow University, Juqian Road, Changzhou 213000, China
| | - Fei Hua
- The Third Affiliated Hospital of Soochow University, Juqian Road, Changzhou 213000, China
| | - Jian-Jun Li
- State Key Laboratory of Cardiovascular Diseases, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| |
Collapse
|
12
|
Sorriento D, Di Vaia E, Iaccarino G. Physical Exercise: A Novel Tool to Protect Mitochondrial Health. Front Physiol 2021; 12:660068. [PMID: 33986694 PMCID: PMC8110831 DOI: 10.3389/fphys.2021.660068] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/29/2021] [Indexed: 12/12/2022] Open
Abstract
Mitochondrial dysfunction is a crucial contributor to heart diseases. Alterations in energetic metabolism affect crucial homeostatic processes, such asATP production, the generation of reactive oxygen species, and the release of pro-apoptotic factors, associated with metabolic abnormalities. In response to energetic deficiency, the cardiomyocytes activate the Mitochondrial Quality Control (MQC), a critical process in maintaining mitochondrial health. This process is compromised in cardiovascular diseases depending on the pathology's severity and represents, therefore, a potential therapeutic target. Several potential targeting molecules within this process have been identified in the last years, and therapeutic strategies have been proposed to ameliorate mitochondria monitoring and function. In this context, physical exercise is considered a non-pharmacological strategy to protect mitochondrial health. Physical exercise regulates MQC allowing the repair/elimination of damaged mitochondria and synthesizing new ones, thus recovering the metabolic state. In this review, we will deal with the effect of physical exercise on cardiac mitochondrial function tracing its ability to modulate specific steps in MQC both in physiologic and pathologic conditions.
Collapse
Affiliation(s)
- Daniela Sorriento
- Department of Advanced Biomedical Sciences, Federico II University of Naples, Naples, Italy
- CIRIAPA Interdepartmental Center for Research on Arterial Hypertension and Associated Conditions, Federico II University of Naples, Naples, Italy
| | - Eugenio Di Vaia
- Department of Advanced Biomedical Sciences, Federico II University of Naples, Naples, Italy
| | - Guido Iaccarino
- Department of Advanced Biomedical Sciences, Federico II University of Naples, Naples, Italy
- CIRIAPA Interdepartmental Center for Research on Arterial Hypertension and Associated Conditions, Federico II University of Naples, Naples, Italy
| |
Collapse
|
13
|
Seo DY, Heo JW, No MH, Yoo SZ, Ko JR, Park DH, Kang JH, Kim CJ, Jung SJ, Han J, Kwak HB. Exercise Training Protects against Atorvastatin-Induced Skeletal Muscle Dysfunction and Mitochondrial Dysfunction in the Skeletal Muscle of Rats. J Clin Med 2020; 9:E2292. [PMID: 32707695 PMCID: PMC7408828 DOI: 10.3390/jcm9072292] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 06/30/2020] [Accepted: 07/16/2020] [Indexed: 12/17/2022] Open
Abstract
Statins are used to prevent and treat atherosclerotic cardiovascular disease, but they also induce myopathy and mitochondrial dysfunction. Here, we investigated whether exercise training prevents glucose intolerance, muscle impairment, and mitochondrial dysfunction in the skeletal muscles of Wistar rats treated with atorvastatin (5 mg kg-1 day-1) for 12 weeks. The rats were assigned to the following three groups: the control (CON), atorvastatin-treated (ATO), and ATO plus aerobic exercise training groups (ATO+EXE). The ATO+EXE group exhibited higher glucose tolerance and forelimb strength and lower creatine kinase levels than the other groups. Mitochondrial respiratory and Ca2+ retention capacity was significantly lower in the ATO group than in the other groups, but exercise training protected against atorvastatin-induced impairment in both the soleus and white gastrocnemius muscles. The mitochondrial H2O2 emission rate was relatively higher in the ATO group and lower in the ATO+EXE group, in both the soleus and white gastrocnemius muscles, than in the CON group. In the soleus muscle, the Bcl-2, SOD1, SOD2, Akt, and AMPK phosphorylation levels were significantly higher in the ATO+EXE group than in the ATO group. In the white gastrocnemius muscle, the SOD2, Akt, and AMPK phosphorylation levels were significantly higher in the ATO+EXE group than in the ATO group. Therefore, exercise training might regulate atorvastatin-induced muscle damage, muscle fatigue, and mitochondrial dysfunction in the skeletal muscles.
Collapse
Affiliation(s)
- Dae Yun Seo
- Department of Physiology, National Research Laboratory for Mitochondrial Signaling, BK21 Plus Project Team, College of Medicine, Smart Marine Therapeutics Center, Cardiovascular and Metabolic Disease Center, Inje University, Busan 47392, Korea; (D.Y.S.); (J.R.K.)
| | - Jun-Won Heo
- Department of Kinesiology, Inha University, Incheon 22212, Korea; (J.-W.H.); (M.-H.N.); (S.-Z.Y.); (D.-H.P.)
| | - Mi-Hyun No
- Department of Kinesiology, Inha University, Incheon 22212, Korea; (J.-W.H.); (M.-H.N.); (S.-Z.Y.); (D.-H.P.)
| | - Su-Zi Yoo
- Department of Kinesiology, Inha University, Incheon 22212, Korea; (J.-W.H.); (M.-H.N.); (S.-Z.Y.); (D.-H.P.)
| | - Jeong Rim Ko
- Department of Physiology, National Research Laboratory for Mitochondrial Signaling, BK21 Plus Project Team, College of Medicine, Smart Marine Therapeutics Center, Cardiovascular and Metabolic Disease Center, Inje University, Busan 47392, Korea; (D.Y.S.); (J.R.K.)
| | - Dong-Ho Park
- Department of Kinesiology, Inha University, Incheon 22212, Korea; (J.-W.H.); (M.-H.N.); (S.-Z.Y.); (D.-H.P.)
| | - Ju-Hee Kang
- Department of Pharmacology and Medicinal Toxicology Research Center, Inha University School of Medicine, Incheon 22212, Korea;
| | - Chang-Ju Kim
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul 02447, Korea;
| | - Su-Jeen Jung
- Department of Leisure Sports, Seoil University, Seoul 02192, Korea;
| | - Jin Han
- Department of Physiology, National Research Laboratory for Mitochondrial Signaling, BK21 Plus Project Team, College of Medicine, Smart Marine Therapeutics Center, Cardiovascular and Metabolic Disease Center, Inje University, Busan 47392, Korea; (D.Y.S.); (J.R.K.)
| | - Hyo-Bum Kwak
- Department of Kinesiology, Inha University, Incheon 22212, Korea; (J.-W.H.); (M.-H.N.); (S.-Z.Y.); (D.-H.P.)
| |
Collapse
|
14
|
Sun J, Zhang L, Fang J, Yang S, Chen L. Galectin-3 mediates high-glucose-induced cardiomyocyte injury by the NADPH oxidase/reactive oxygen species pathway. Can J Physiol Pharmacol 2020; 98:826-833. [PMID: 32311288 DOI: 10.1139/cjpp-2019-0708] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Galectin-3 is a member of the β-galactoside-binding lectin family taking part in the regulation of inflammation, angiogenesis, and fibrosis. This study was designed to study the improved effect of galectin-3 inhibition on diabetic cardiomyopathy (DCM). Sprague-Dawley rats were randomized into the control, DCM, and DCM + modified citrus pectin (MCP) (a galectin-3 pharmacological inhibitor) groups. After 8 weeks, streptozotocin-induced DCM led to high blood glucose level, oxidative stress, cardiac injury, and dysfunction accompanied by suppressed body mass. On the contrary, MCP (100 mg·kg-1·day-1) administration improved body mass and blood glucose level and attenuated cardiac injury and dysfunction in DCM rats. Additionally, MCP attenuated pathological changes in plasma and myocardial tissue markers of oxidative stress, such as hydrogen peroxide and malonyldialdehyde, although it did not change superoxide dismutase activities, which were decreased in the DCM group. The levels of oxidative stress associated proteins evaluated by Western blot, such as p67phox and NADPH oxidase 4, were obviously increased in the DCM group, while they were reversed by MCP treatment. Therefore, galectin-3-mediated high-glucose-induced cardiomyocyte injury and galectin-3 inhibition attenuated DCM by suppressing NADPH oxidase. These findings suggested that galectin-3 could be a potential target for treatment of patients with DCM.
Collapse
Affiliation(s)
- Jingang Sun
- Linyi Central Hospital, Linyi, China, 276400
| | | | | | - Shuguo Yang
- Linyi Central Hospital, Linyi, China, 276400
| | | |
Collapse
|
15
|
Verboven M, Van Ryckeghem L, Belkhouribchia J, Dendale P, Eijnde BO, Hansen D, Bito V. Effect of Exercise Intervention on Cardiac Function in Type 2 Diabetes Mellitus: A Systematic Review. Sports Med 2020; 49:255-268. [PMID: 30357657 DOI: 10.1007/s40279-018-1003-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND The effect of exercise on cardiac function/structure in type 2 diabetes mellitus (T2DM) with or without diabetic cardiomyopathy (DCM) is not yet completely understood. To date, results of studies have been controversial with variable outcomes due to the variety of exercise modalities. OBJECTIVES The aim of the present review was to examine the impact of exercise intervention, and different types of exercise, on cardiac function and structure in T2DM through a systematic literature review, combining both pre-clinical and clinical studies. METHODS A systematic literature search was performed on PubMed, Web of Science, and PEDro to identify studies up to 2 April 2018. Articles were included when well-defined exercise protocols were provided, and cardiac function in T2DM patients or validated animal models was examined. RESULTS In diabetic animals, improvements in both diastolic and systolic function through exercise therapy were mainly attributed to reduced collagen deposition. In T2DM patients, improvements were observed in diastolic function, but not consistently in systolic function, after endurance (and combined resistance) exercise training. Different exercise intervention modalities and exercise types seemed equally effective in improving cardiac structure and function. CONCLUSION Exercise training elicits significant improvements in diastolic function and beneficial remodeling in T2DM and DCM animal models, but not necessarily improvements in systolic function and left ventricular structure, regardless of exercise type. Therefore, exercise intervention should be a cornerstone in the treatment of T2DM patients not only to improve glycemic control but also to specifically enhance cardiac function.
Collapse
Affiliation(s)
- Maxim Verboven
- BIOMED-Biomedical Research Centre, Faculty of Medicine and Life Sciences, Hasselt University, Agoralaan building C, 3590, Diepenbeek, Belgium
| | - Lisa Van Ryckeghem
- BIOMED-Biomedical Research Centre, Faculty of Medicine and Life Sciences, Hasselt University, Agoralaan building C, 3590, Diepenbeek, Belgium
- REVAL-Rehabilitation Research Centre, Faculty of Rehabilitation Sciences, Hasselt University, Agoralaan building A, 3590, Diepenbeek, Belgium
| | - Jamal Belkhouribchia
- BIOMED-Biomedical Research Centre, Faculty of Medicine and Life Sciences, Hasselt University, Agoralaan building C, 3590, Diepenbeek, Belgium
- REVAL-Rehabilitation Research Centre, Faculty of Rehabilitation Sciences, Hasselt University, Agoralaan building A, 3590, Diepenbeek, Belgium
| | - Paul Dendale
- BIOMED-Biomedical Research Centre, Faculty of Medicine and Life Sciences, Hasselt University, Agoralaan building C, 3590, Diepenbeek, Belgium
- Heart Centre Hasselt, Jessa Hospital, Hasselt, Belgium
| | - Bert O Eijnde
- BIOMED-Biomedical Research Centre, Faculty of Medicine and Life Sciences, Hasselt University, Agoralaan building C, 3590, Diepenbeek, Belgium
| | - Dominique Hansen
- BIOMED-Biomedical Research Centre, Faculty of Medicine and Life Sciences, Hasselt University, Agoralaan building C, 3590, Diepenbeek, Belgium.
- REVAL-Rehabilitation Research Centre, Faculty of Rehabilitation Sciences, Hasselt University, Agoralaan building A, 3590, Diepenbeek, Belgium.
- Heart Centre Hasselt, Jessa Hospital, Hasselt, Belgium.
| | - Virginie Bito
- BIOMED-Biomedical Research Centre, Faculty of Medicine and Life Sciences, Hasselt University, Agoralaan building C, 3590, Diepenbeek, Belgium
| |
Collapse
|
16
|
Seo DY, Yoon CS, Dizon LA, Lee SR, Youm JB, Yang WS, Kwak HB, Ko TH, Kim HK, Han J, McGregor RA. Circadian modulation of the cardiac proteome underpins differential adaptation to morning and evening exercise training: an LC-MS/MS analysis. Pflugers Arch 2020; 472:259-269. [PMID: 32025886 DOI: 10.1007/s00424-020-02350-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/09/2020] [Accepted: 01/16/2020] [Indexed: 12/11/2022]
Abstract
All living beings on earth are influenced by the circadian rhythm, the rising and the setting of the sun. The ubiquitous effect of exercise is widely believed to maximize health benefits but has not been formally investigated for cardiac responses in the exercise-induced circadian rhythms. We hypothesized that the exercise-related proteome is differentially influenced by circadian rhythm and analyzed the differences between the effects of morning and evening exercise. Twenty-four Sprague-Dawley rats were randomly divided into four groups (n = 6 per group): morning control, morning exercise, evening control, and evening exercise groups. The exercise groups were subjected to 12-week treadmill exercise (5 days/week) performed either during daytime or nighttime. After 12 weeks, the physiological characteristics (e.g., body weight, heart weight, visceral fat, and blood metabolites), cardiovascular capacity (ejection fraction (%) and fractional shortening (%)), circadian gene expression levels (clock, ball1, per1, per2, cry1, and cry2), and the proteomic data were obtained and subjected to univariate and multivariate analysis. The mRNA levels of per1 and cry2 increased in the evening group compared with those in the morning group. We also found that per2 decreased and cry2 increased in the evening exercise groups. The evening exercise groups showed more decreased triacylglycerides and increased blood insulin levels than the morning exercise group. The principal component analysis, partial least squares discriminant analysis, and orthogonal partial least squares discriminant analysis indicated that the circadian rhythm differently influenced the protein networks of the exercise groups. In the morning exercise group, the transcription-translation feedback loop (TTFL) (clock, per1, per2, cry1, and cry2) formed a protein-protein interaction network with Nme2, Hint1, Ddt, Ndufb8, Ldha, and Eef1a2. In contrast, the TTFL group appeared close to Maoa, Hist2h4, and Macrod1 in the evening exercise group. Interestingly, the evening exercise group decreased the mRNA level of per2 but not per1. Per1 and Per2 are known to transport Cry1 and Cry2 into the nucleus. Taken together, we summarized the characteristics of enriched proteins in the aspect of their molecular function, cellular component, and biological process. Our results might provide a better understanding of the circadian effect on exercise-related proteins.
Collapse
Affiliation(s)
- Dae Yun Seo
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Department of Health Sciences and Technology, BK21 Project Team, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Bokji-ro 75, Busanjin-gu, Busan, 47392, South Korea
| | - Chang Shin Yoon
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Department of Health Sciences and Technology, BK21 Project Team, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Bokji-ro 75, Busanjin-gu, Busan, 47392, South Korea
| | - Louise Anne Dizon
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Department of Health Sciences and Technology, BK21 Project Team, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Bokji-ro 75, Busanjin-gu, Busan, 47392, South Korea
| | - Sung Ryul Lee
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Department of Health Sciences and Technology, BK21 Project Team, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Bokji-ro 75, Busanjin-gu, Busan, 47392, South Korea
| | - Jae Boum Youm
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Department of Health Sciences and Technology, BK21 Project Team, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Bokji-ro 75, Busanjin-gu, Busan, 47392, South Korea
| | - Won Suk Yang
- Medicinal Bioconvergence Research Center, College of Pharmacy, Seoul National University, Seoul, 151-742, South Korea
| | - Hyo-Bum Kwak
- Department of Kinesiology, Inha University, 100 Inha-ro, Michuhol-gu, Incheon, 22212, South Korea
| | - Tae Hee Ko
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Department of Health Sciences and Technology, BK21 Project Team, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Bokji-ro 75, Busanjin-gu, Busan, 47392, South Korea
| | - Hyoung Kyu Kim
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Department of Health Sciences and Technology, BK21 Project Team, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Bokji-ro 75, Busanjin-gu, Busan, 47392, South Korea
| | - Jin Han
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Department of Health Sciences and Technology, BK21 Project Team, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Bokji-ro 75, Busanjin-gu, Busan, 47392, South Korea.
| | - Robin A McGregor
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Department of Health Sciences and Technology, BK21 Project Team, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Bokji-ro 75, Busanjin-gu, Busan, 47392, South Korea
| |
Collapse
|
17
|
Chen X, Li H, Wang K, Liang X, Wang W, Hu X, Huang Z, Wang Y. Aerobic Exercise Ameliorates Myocardial Inflammation, Fibrosis and Apoptosis in High-Fat-Diet Rats by Inhibiting P2X7 Purinergic Receptors. Front Physiol 2019; 10:1286. [PMID: 31681001 PMCID: PMC6798156 DOI: 10.3389/fphys.2019.01286] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 09/25/2019] [Indexed: 01/21/2023] Open
Abstract
Background High-fat-diet (HFD) is associated with chronic low-grade inflammation. P2X7 purinergic receptors (P2X7R) are key regulators of inflammasome activation. The benefits of exercise are partly attributed to its anti-inflammatory effect, but whether it regulates P2X7R expression to improve remodeling in cardiac myocytes treated by HFD is not completely clarified. Methods Three groups of Sprague-Dawley (SD) rats were studied: (1) control group (fed a normal chow diet), (2) HFD group, and (3) HFD+ exercise group. H9c2 myocytes were pretreated with or without A438079 (a P2X7R inhibitor) and then exposed to 200 μM palmitic acid (PA) for 24 h. The levels of mRNA and protein were measured by real-time PCR and Western blot, respectively. Masson staining and hematoxylin-eosin (HE) staining were used to identify remodeling of the heart. The concentration of IL-1β in serum or supernatants were measured by ELISA. Results In vivo, collagen deposition and the number of disordered cells significantly increased in the hearts of the HFD group compared to the control group. However, exercise markedly reversed these changes in the myocardium, and the same trends were observed in the expression of MMP9, collagen I and TGF-β. Notably, the expression of P2X7R, NLRP3, caspase-1 in the hearts, and serum IL-1β level were also greatly upregulated in the heart of the HFD diet rats, and all these changes were ameliorated in the HFD + EX group. As expected, exercise also reduced the number of TUNEL-positive cells, which was consistent with the caspase-3, Bax, and Bcl-2 results. Moreover, exercise reduced body weight and blood lipid concentrations in the HFD diet rats. In vitro, we observed that the hallmark of fibrosis, inflammation and apoptosis in H9c2 myocytes enhanced by PA, and the P2X7R inhibitor treatment significantly reduced the expression of the NLRP3, caspase-1, suppressed the secretion of IL-1β of H9c2 cells, inhibited collagen I, TGF-β, MMP9, Bax, caspase-3 levels and increased the expression of Bcl-2, compared with the PA group. In addition, a decrease of the number of TUNEL-positive cells used by A438079 further support that cardiomyocytes apoptosis could be inhibited. Conclusion Aerobic exercise reversed the cardiac remodeling via the reduction of inflammation, fibrosis and apoptosis in HFD rats, at least in part through inhibiting P2X7R expression in cardiomyocytes.
Collapse
Affiliation(s)
- Xudong Chen
- The Key Lab of Cardiovascular Disease of Wenzhou, Department of Cardiology, Wenzhou Medical University, Wenzhou, China.,Department of Cardiology, Ningbo Hangzhou Bay Hospital, Ningbo, China
| | - Haiyan Li
- Department of Rehabilitation, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Kangwei Wang
- The Key Lab of Cardiovascular Disease of Wenzhou, Department of Cardiology, Wenzhou Medical University, Wenzhou, China
| | - Xiaohe Liang
- The Key Lab of Cardiovascular Disease of Wenzhou, Department of Cardiology, Wenzhou Medical University, Wenzhou, China
| | - Weiqi Wang
- The Key Lab of Cardiovascular Disease of Wenzhou, Department of Cardiology, Wenzhou Medical University, Wenzhou, China
| | - Xiaokang Hu
- The Key Lab of Cardiovascular Disease of Wenzhou, Department of Cardiology, Wenzhou Medical University, Wenzhou, China
| | - Zhouqing Huang
- Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yonghua Wang
- Department of Physical Education, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
18
|
Mitochondrial Uncoupling: A Key Controller of Biological Processes in Physiology and Diseases. Cells 2019; 8:cells8080795. [PMID: 31366145 PMCID: PMC6721602 DOI: 10.3390/cells8080795] [Citation(s) in RCA: 286] [Impact Index Per Article: 47.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/26/2019] [Accepted: 07/28/2019] [Indexed: 12/27/2022] Open
Abstract
Mitochondrial uncoupling can be defined as a dissociation between mitochondrial membrane potential generation and its use for mitochondria-dependent ATP synthesis. Although this process was originally considered a mitochondrial dysfunction, the identification of UCP-1 as an endogenous physiological uncoupling protein suggests that the process could be involved in many other biological processes. In this review, we first compare the mitochondrial uncoupling agents available in term of mechanistic and non-specific effects. Proteins regulating mitochondrial uncoupling, as well as chemical compounds with uncoupling properties are discussed. Second, we summarize the most recent findings linking mitochondrial uncoupling and other cellular or biological processes, such as bulk and specific autophagy, reactive oxygen species production, protein secretion, cell death, physical exercise, metabolic adaptations in adipose tissue, and cell signaling. Finally, we show how mitochondrial uncoupling could be used to treat several human diseases, such as obesity, cardiovascular diseases, or neurological disorders.
Collapse
|
19
|
Kim GS, Park JH, Won JC. The Role of Glucagon-Like Peptide 1 Receptor Agonists and Sodium-Glucose Cotransporter 2 Inhibitors in Reducing Cardiovascular Events in Patients with Type 2 Diabetes. Endocrinol Metab (Seoul) 2019; 34:106-116. [PMID: 31099200 PMCID: PMC6599901 DOI: 10.3803/enm.2019.34.2.106] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/25/2019] [Accepted: 03/04/2019] [Indexed: 12/18/2022] Open
Abstract
The prevalence of type 2 diabetes mellitus (T2DM), which is associated with cardiovascular morbidity and mortality, is increasing worldwide. Although there have been advances in diabetes treatments that reduce microvascular complications (nephropathy, neuropathy, retinopathy), many clinical studies have found that conventional oral hypoglycemic agents and glucose control alone failed to reduce cardiovascular disease. Thus, incretin-based therapies including glucagon-like peptide 1 (GLP-1) receptor agonists (RAs) and sodium-glucose cotransporter 2 inhibitors (SGLT-2Is) represent a new area of research, and may serve as novel therapeutics for treating hyperglycemia and modifying other cardiovascular risk factors. Recently, it has been confirmed that several drugs in these classes, including canagliflozin, empagliflozin, semaglutide, and liraglutide, are safe and possess cardioprotective effects. We review the most recent cardiovascular outcome trials on GLP-1RAs and SGLT-2Is, and discuss their implications for treating patients with T2DM in terms of protective effects against cardiovascular disease.
Collapse
Affiliation(s)
- Gwang Sil Kim
- Department of Internal Medicine, Inje University Sanggye Paik Hospital, Inje University College of Medicine, Seoul, Korea
- Cardiovascular and Metabolic Disease Center (CMDC), Inje University, Busan, Korea
| | - Joong Hyun Park
- Department of Neurology, Inje University Sanggye Paik Hospital, Inje University College of Medicine, Seoul, Korea
| | - Jong Chul Won
- Department of Internal Medicine, Inje University Sanggye Paik Hospital, Inje University College of Medicine, Seoul, Korea
- Cardiovascular and Metabolic Disease Center (CMDC), Inje University, Busan, Korea.
| |
Collapse
|
20
|
Mitochondrial dynamics in exercise physiology. Pflugers Arch 2019; 472:137-153. [DOI: 10.1007/s00424-019-02258-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Accepted: 01/17/2019] [Indexed: 12/11/2022]
|
21
|
Pan P, Wang X, Liu D. The potential mechanism of mitochondrial dysfunction in septic cardiomyopathy. J Int Med Res 2018; 46:2157-2169. [PMID: 29637807 PMCID: PMC6023059 DOI: 10.1177/0300060518765896] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Septic cardiomyopathy is one of the most serious complications of sepsis or septic shock. Basic and clinical research has studied the mechanism of cardiac dysfunction for more than five decades. It has become clear that myocardial depression is not related to hypoperfusion. As the heart is highly dependent on abundant adenosine triphosphate (ATP) levels to maintain its contraction and diastolic function, impaired mitochondrial function is lethally detrimental to the heart. Research has shown that mitochondria play an important role in organ damage during sepsis. The mitochondria-related mechanisms in septic cardiomyopathy have been discussed in terms of restoring mitochondrial function. Mitochondrial uncoupling proteins located in the mitochondrial inner membrane can promote proton leakage across the mitochondrial inner membrane. Recent studies have demonstrated that proton leakage is the essential regulator of mitochondrial membrane potential and the generation of reactive oxygen species (ROS) and ATP. Other mechanisms involved in septic cardiomyopathy include mitochondrial ROS production and oxidative stress, mitochondria Ca2+ handling, mitochondrial DNA in sepsis, mitochondrial fission and fusion, mitochondrial biogenesis, mitochondrial gene regulation and mitochondria autophagy. This review will provide an overview of recent insights into the factors contributing to septic cardiomyopathy.
Collapse
Affiliation(s)
- Pan Pan
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaoting Wang
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Dawei Liu
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
22
|
Zheng J, Cheng J, Zheng S, Zhang L, Guo X, Zhang J, Xiao X. Physical Exercise and Its Protective Effects on Diabetic Cardiomyopathy: What Is the Evidence? Front Endocrinol (Lausanne) 2018; 9:729. [PMID: 30559720 PMCID: PMC6286969 DOI: 10.3389/fendo.2018.00729] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 11/16/2018] [Indexed: 12/25/2022] Open
Abstract
As one of the most serious complications of diabetes, diabetic cardiomyopathy (DCM) imposes a huge burden on individuals and society, and represents a major public health problem. It has long been recognized that physical exercise has important health benefits for patients with type 2 diabetes, and regular physical exercise can delay or prevent the complications of diabetes. Current studies show that physical exercise has been regarded as an importantly non-pharmacological treatment for diabetes and DCM, with high efficacy and low adverse events. It can inhibit the pathological processes of myocardial apoptosis, myocardial fibrosis, and myocardial microvascular diseases through improving myocardial metabolism, enhancing the regulation of Ca2+, and protecting the function of mitochondria. Eventually, it can alleviate the occurrence and development of diabetic complications. Describing the mechanisms of physical exercise on DCM may provide a new theory for alleviating, or even reversing the development of DCM, and prevent it from developing to heart failure.
Collapse
Affiliation(s)
- Jia Zheng
- Key Laboratory of Endocrinology, Department of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Department of Endocrinology, Peking University First Hospital, Beijing, China
| | - Jing Cheng
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health & The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Shandong University Qilu Hospital, Shandong, China
| | - Sheng Zheng
- Department of Orthopedics, XiangYang Hospital of Traditional Chinese Medicine, Hubei, China
| | - Ling Zhang
- Department of Endocrinology, Peking University First Hospital, Beijing, China
| | - Xiaohui Guo
- Department of Endocrinology, Peking University First Hospital, Beijing, China
| | - Junqing Zhang
- Department of Endocrinology, Peking University First Hospital, Beijing, China
- Junqing Zhang
| | - Xinhua Xiao
- Key Laboratory of Endocrinology, Department of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- *Correspondence: Xinhua Xiao
| |
Collapse
|