1
|
Covarrubias M, Liang Q, Nguyen-Phuong L, Kennedy KJ, Alexander TD, Sam A. Structural insights into the function, dysfunction and modulation of Kv3 channels. Neuropharmacology 2025; 275:110483. [PMID: 40288604 DOI: 10.1016/j.neuropharm.2025.110483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 04/03/2025] [Accepted: 04/24/2025] [Indexed: 04/29/2025]
Abstract
The third subfamily of voltage-gated K+ (Kv) channels includes four members, Kv3.1, Kv3.2, Kv3.3 and Kv3.4. Fast gating and activation at relatively depolarized membrane potentials allows Kv3 channels to be major drivers of fast action potential repolarization in the nervous system. Consequently, they help determine the fast-spiking phenotype of inhibitory interneurons and regulate fast synaptic transmission at glutamatergic synapses and the neuromuscular junction. Recent studies from our group and a team of collaborators have used cryo-EM to demonstrate the surprising gating role of the Kv3.1 cytoplasmic T1 domain, the structural basis of a developmental epileptic encephalopathy caused by the Kv3.2-C125Y variant and the mechanism of action of positive allosteric modulators involving unexpected interactions and conformational changes in Kv3.1 and Kv3.2. Furthermore, our recent work has shown that Kv3.4 regulates use-dependent spike broadening in a manner that depends on gating modulation by phosphorylation of the channel's N-terminal inactivation domain, which can impact activity-dependent synaptic facilitation. Here, we review and integrate these studies to provide a perspective on our current understanding of Kv3 channel function, dysfunction and pain modulation in the nervous system.
Collapse
Affiliation(s)
- Manuel Covarrubias
- Department of Neuroscience, Sidney Kimmel Medical College of Thomas Jefferson University, Bluemle Life Science Building, 233 South 10th Street, Room 231, Philadelphia, PA, 19107, USA; Vickie and Jack Farber Institute for Neuroscience, USA; Jefferson Synaptic Biology Center, USA.
| | - Qiansheng Liang
- Department of Neuroscience, Sidney Kimmel Medical College of Thomas Jefferson University, Bluemle Life Science Building, 233 South 10th Street, Room 231, Philadelphia, PA, 19107, USA; Vickie and Jack Farber Institute for Neuroscience, USA; Jefferson Synaptic Biology Center, USA
| | - Linh Nguyen-Phuong
- Department of Neuroscience, Sidney Kimmel Medical College of Thomas Jefferson University, Bluemle Life Science Building, 233 South 10th Street, Room 231, Philadelphia, PA, 19107, USA; Vickie and Jack Farber Institute for Neuroscience, USA; Jefferson Synaptic Biology Center, USA
| | - Kyle J Kennedy
- Department of Neuroscience, Sidney Kimmel Medical College of Thomas Jefferson University, Bluemle Life Science Building, 233 South 10th Street, Room 231, Philadelphia, PA, 19107, USA; Vickie and Jack Farber Institute for Neuroscience, USA; Jefferson Synaptic Biology Center, USA
| | - Tyler D Alexander
- Department of Neuroscience, Sidney Kimmel Medical College of Thomas Jefferson University, Bluemle Life Science Building, 233 South 10th Street, Room 231, Philadelphia, PA, 19107, USA; Vickie and Jack Farber Institute for Neuroscience, USA; Jefferson Synaptic Biology Center, USA
| | - Andrew Sam
- Department of Neuroscience, Sidney Kimmel Medical College of Thomas Jefferson University, Bluemle Life Science Building, 233 South 10th Street, Room 231, Philadelphia, PA, 19107, USA; Vickie and Jack Farber Institute for Neuroscience, USA; Jefferson Synaptic Biology Center, USA
| |
Collapse
|
2
|
Vávra J, Sergunin A, Jeřábek P, Shimizu T, Martínková M. Signal transduction mechanisms in heme-based globin-coupled oxygen sensors with a focus on a histidine kinase ( AfGcHK) and a diguanylate cyclase (YddV or EcDosC). Biol Chem 2022; 403:1031-1042. [PMID: 36165459 DOI: 10.1515/hsz-2022-0185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 09/08/2022] [Indexed: 01/19/2023]
Abstract
Heme is a vital cofactor of proteins with roles in oxygen transport (e.g. hemoglobin), storage (e.g. myoglobin), and activation (e.g. P450) as well as electron transfer (e.g. cytochromes) and many other functions. However, its structural and functional role in oxygen sensing proteins differs markedly from that in most other enzymes, where it serves as a catalytic or functional center. This minireview discusses the mechanism of signal transduction in two heme-based oxygen sensors: the histidine kinase AfGcHK and the diguanylate cyclase YddV (EcDosC), both of which feature a heme-binding domain containing a globin fold resembling that of hemoglobin and myoglobin.
Collapse
Affiliation(s)
- Jakub Vávra
- Department of Biochemistry, Faculty of Science, Charles University, Prague 2, 128 43 Czech Republic
| | - Artur Sergunin
- Department of Biochemistry, Faculty of Science, Charles University, Prague 2, 128 43 Czech Republic
| | - Petr Jeřábek
- Department of Biochemistry, Faculty of Science, Charles University, Prague 2, 128 43 Czech Republic
| | - Toru Shimizu
- Department of Biochemistry, Faculty of Science, Charles University, Prague 2, 128 43 Czech Republic
| | - Markéta Martínková
- Department of Biochemistry, Faculty of Science, Charles University, Prague 2, 128 43 Czech Republic
| |
Collapse
|
3
|
Gessner G, Jamili M, Tomczyk P, Menche D, Schönherr R, Hoshi T, Heinemann SH. Extracellular hemin is a reverse use-dependent gating modifier of cardiac voltage-gated Na + channels. Biol Chem 2022; 403:1067-1081. [PMID: 36038266 DOI: 10.1515/hsz-2022-0194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/10/2022] [Indexed: 02/07/2023]
Abstract
Heme (Fe2+-protoporphyrin IX) is a well-known protein prosthetic group; however, heme and hemin (Fe3+-protoporphyrin IX) are also increasingly viewed as signaling molecules. Among the signaling targets are numerous ion channels, with intracellular-facing heme-binding sites modulated by heme and hemin in the sub-µM range. Much less is known about extracellular hemin, which is expected to be more abundant, in particular after hemolytic insults. Here we show that the human cardiac voltage-gated sodium channel hNaV1.5 is potently inhibited by extracellular hemin (IC 50 ≈ 80 nM), while heme, dimethylhemin, and protoporphyrin IX are ineffective. Hemin is selective for hNaV1.5 channels: hNaV1.2, hNaV1.4, hNaV1.7, and hNaV1.8 are insensitive to 1 µM hemin. Using domain chimeras of hNaV1.5 and rat rNaV1.2, domain II was identified as the critical determinant. Mutation N803G in the domain II S3/S4 linker largely diminished the impact of hemin on the cardiac channel. This profile is reminiscent of the interaction of some peptide voltage-sensor toxins with NaV channels. In line with a mechanism of select gating modifiers, the impact of hemin on NaV1.5 channels is reversely use dependent, compatible with an interaction of hemin and the voltage sensor of domain II. Extracellular hemin thus has potential to modulate the cardiac function.
Collapse
Affiliation(s)
- Guido Gessner
- Department of Biophysics, Center for Molecular Biomedicine, Friedrich Schiller University Jena and Jena University Hospital, Hans-Knöll-Straße 2, D-07745 Jena, Germany
| | - Mahdi Jamili
- Department of Biophysics, Center for Molecular Biomedicine, Friedrich Schiller University Jena and Jena University Hospital, Hans-Knöll-Straße 2, D-07745 Jena, Germany
| | - Pascal Tomczyk
- Kekulé-Institute for Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, D-53121 Bonn, Germany
| | - Dirk Menche
- Kekulé-Institute for Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, D-53121 Bonn, Germany
| | - Roland Schönherr
- Department of Biophysics, Center for Molecular Biomedicine, Friedrich Schiller University Jena and Jena University Hospital, Hans-Knöll-Straße 2, D-07745 Jena, Germany
| | - Toshinori Hoshi
- Department of Physiology, University of Pennsylvania, Philadelphia, PA 19104-6085, USA
| | - Stefan H Heinemann
- Department of Biophysics, Center for Molecular Biomedicine, Friedrich Schiller University Jena and Jena University Hospital, Hans-Knöll-Straße 2, D-07745 Jena, Germany
| |
Collapse
|
4
|
Intracellular hemin is a potent inhibitor of the voltage-gated potassium channel Kv10.1. Sci Rep 2022; 12:14645. [PMID: 36030326 PMCID: PMC9420133 DOI: 10.1038/s41598-022-18975-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 08/23/2022] [Indexed: 11/08/2022] Open
Abstract
Heme, an iron-protoporphyrin IX complex, is a cofactor bound to various hemoproteins and supports a broad range of functions, such as electron transfer, oxygen transport, signal transduction, and drug metabolism. In recent years, there has been a growing recognition of heme as a non-genomic modulator of ion channel functions. Here, we show that intracellular free heme and hemin modulate human ether à go-go (hEAG1, Kv10.1) voltage-gated potassium channels. Application of hemin to the intracellular side potently inhibits Kv10.1 channels with an IC50 of about 4 nM under ambient and 63 nM under reducing conditions in a weakly voltage-dependent manner, favoring inhibition at resting potential. Functional studies on channel mutants and biochemical analysis of synthetic and recombinant channel fragments identified a heme-binding motif CxHx8H in the C-linker region of the Kv10.1 C terminus, with cysteine 541 and histidines 543 and 552 being important for hemin binding. Binding of hemin to the C linker may induce a conformational constraint that interferes with channel gating. Our results demonstrate that heme and hemin are endogenous modulators of Kv10.1 channels and could be exploited to modulate Kv10.1-mediated cellular functions.
Collapse
|
5
|
Wrzosek A, Gałecka S, Żochowska M, Olszewska A, Kulawiak B. Alternative Targets for Modulators of Mitochondrial Potassium Channels. Molecules 2022; 27:299. [PMID: 35011530 PMCID: PMC8746388 DOI: 10.3390/molecules27010299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/30/2021] [Accepted: 12/31/2021] [Indexed: 12/17/2022] Open
Abstract
Mitochondrial potassium channels control potassium influx into the mitochondrial matrix and thus regulate mitochondrial membrane potential, volume, respiration, and synthesis of reactive oxygen species (ROS). It has been found that pharmacological activation of mitochondrial potassium channels during ischemia/reperfusion (I/R) injury activates cytoprotective mechanisms resulting in increased cell survival. In cancer cells, the inhibition of these channels leads to increased cell death. Therefore, mitochondrial potassium channels are intriguing targets for the development of new pharmacological strategies. In most cases, however, the substances that modulate the mitochondrial potassium channels have a few alternative targets in the cell. This may result in unexpected or unwanted effects induced by these compounds. In our review, we briefly present the various classes of mitochondrial potassium (mitoK) channels and describe the chemical compounds that modulate their activity. We also describe examples of the multidirectional activity of the activators and inhibitors of mitochondrial potassium channels.
Collapse
Affiliation(s)
- Antoni Wrzosek
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland; (A.W.); (S.G.); (M.Ż.)
| | - Shur Gałecka
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland; (A.W.); (S.G.); (M.Ż.)
| | - Monika Żochowska
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland; (A.W.); (S.G.); (M.Ż.)
| | - Anna Olszewska
- Department of Histology, Medical University of Gdansk, 1a Debinki, 80-211 Gdansk, Poland;
| | - Bogusz Kulawiak
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland; (A.W.); (S.G.); (M.Ż.)
| |
Collapse
|
6
|
Palmaers NE, Wiegand SB, Herzog C, Echtermeyer FG, Eberhardt MJ, Leffler A. Distinct Mechanisms Account for In Vitro Activation and Sensitization of TRPV1 by the Porphyrin Hemin. Int J Mol Sci 2021; 22:ijms221910856. [PMID: 34639197 PMCID: PMC8509749 DOI: 10.3390/ijms221910856] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/03/2021] [Accepted: 10/04/2021] [Indexed: 12/02/2022] Open
Abstract
TRPV1 mediates pain occurring during sickling episodes in sickle cell disease (SCD). We examined if hemin, a porphyrin released during intravascular hemolysis modulates TRPV1. Calcium imaging and patch clamp were employed to examine effects of hemin on mouse dorsal root ganglion (DRG) neurons and HEK293t cells expressing TRPV1 and TRPA1. Hemin induced a concentration-dependent calcium influx in DRG neurons which was abolished by the unspecific TRP-channel inhibitor ruthenium red. The selective TRPV1-inhibitor BCTC or genetic deletion of TRPV1 only marginally impaired hemin-induced calcium influx in DRG neurons. While hTRPV1 expressed in HEK293 cells mediated a hemin-induced calcium influx which was blocked by BCTC, patch clamp recordings only showed potentiated proton- and heat-evoked currents. This effect was abolished by the PKC-inhibitor chelerythrine chloride and in protein kinase C (PKC)-insensitive TRPV1-mutants. Hemin-induced calcium influx through TRPV1 was only partly PKC-sensitive, but it was abolished by the reducing agent dithiothreitol (DTT). In contrast, hemin-induced potentiation of inward currents was not reduced by DTT. Hemin also induced a redox-dependent calcium influx, but not inward currents on hTRPA1. Our data suggest that hemin induces a PKC-mediated sensitization of TRPV1. However, it also acts as a photosensitizer when exposed to UVA-light used for calcium imaging. The resulting activation of redox-sensitive ion channels such as TRPV1 and TRPA1 may be an in vitro artifact with limited physiological relevance.
Collapse
|
7
|
A new world of heme function. Pflugers Arch 2020; 472:547-548. [PMID: 32388730 DOI: 10.1007/s00424-020-02388-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 04/24/2020] [Accepted: 04/28/2020] [Indexed: 10/24/2022]
|