1
|
Benini R, Oliveira LA, Gomes-de-Souza L, Santos A, Casula LC, Crestani CC. Influence of strain on expression and habituation of autonomic and cardiovascular responses to restraint stress in rats. Physiol Behav 2025; 290:114781. [PMID: 39672485 DOI: 10.1016/j.physbeh.2024.114781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 12/01/2024] [Accepted: 12/10/2024] [Indexed: 12/15/2024]
Abstract
This study aimed to evaluate the influence of rat strain in expression of autonomic and cardiovascular changes during acute exposure to restraint stress, as well as in habituation of these physiological responses upon repeated exposure to restraint. For this, blood pressure, heart rate (HR) and sympathetically-mediated cutaneous vasoconstriction were assessed in Wistar (control strain), Long-Evans, Holtzman and spontaneously hypertensive (SHR) rats during acute or 10th 60-min session of restraint stress. We observed that HR returned faster to baseline values during recovery of the acute session of restraint in Long-Evans and SHR rats in relation to Wistar, thus indicating shorter tachycardia in these strains. Long-Evans also presented enhanced sympathetically-mediated cutaneous vasoconstriction to acute restraint stress. Habituation of the tachycardiac response evidenced as a faster HR return to baseline values during recovery of the 10th restraint session in relation to acute stress was similarly identified in both Wistar and Holtzman rats. However, cardiovascular changes were similarly evoked during acute and 10th restraint stress session in SHR and Long-Evans rats. Taken together, these findings indicate that both cardiovascular responses during acute stress and habituation of these physiological adjustments upon repeated exposure to the same stressor are strain-dependent. Differences were mainly observed in Long-Evans and SHR strains, whereas Holtzman rats seem to present similar autonomic and cardiovascular changes in relation to Wistar rats.
Collapse
Affiliation(s)
- Ricardo Benini
- Laboratory of Pharmacology, Department of Natural Active Principles and Toxicology, São Paulo State University (UNESP), School of Pharmaceutical Sciences Rodovia Araraquara KM 01 (Campus Universitário), Araraquara, SP 14800-903, Brazil
| | - Leandro A Oliveira
- Laboratory of Pharmacology, Department of Natural Active Principles and Toxicology, São Paulo State University (UNESP), School of Pharmaceutical Sciences Rodovia Araraquara KM 01 (Campus Universitário), Araraquara, SP 14800-903, Brazil
| | - Lucas Gomes-de-Souza
- Laboratory of Pharmacology, Department of Natural Active Principles and Toxicology, São Paulo State University (UNESP), School of Pharmaceutical Sciences Rodovia Araraquara KM 01 (Campus Universitário), Araraquara, SP 14800-903, Brazil
| | - Adrielly Santos
- Laboratory of Pharmacology, Department of Natural Active Principles and Toxicology, São Paulo State University (UNESP), School of Pharmaceutical Sciences Rodovia Araraquara KM 01 (Campus Universitário), Araraquara, SP 14800-903, Brazil
| | - Lígia C Casula
- Laboratory of Pharmacology, Department of Natural Active Principles and Toxicology, São Paulo State University (UNESP), School of Pharmaceutical Sciences Rodovia Araraquara KM 01 (Campus Universitário), Araraquara, SP 14800-903, Brazil
| | - Carlos C Crestani
- Laboratory of Pharmacology, Department of Natural Active Principles and Toxicology, São Paulo State University (UNESP), School of Pharmaceutical Sciences Rodovia Araraquara KM 01 (Campus Universitário), Araraquara, SP 14800-903, Brazil.
| |
Collapse
|
2
|
Busnardo C, Crestani CC, Fassini A, Scarambone BM, Packard BA, Resstel LBM, Herman JP, Correa FMA. The influence of paraventricular nucleus of the hypothalamus soluble guanylate cyclase on autonomic and neuroendocrine responses to acute restraint stress in rats. Eur J Neurosci 2024; 60:5849-5860. [PMID: 39235324 DOI: 10.1111/ejn.16527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/29/2024] [Accepted: 08/19/2024] [Indexed: 09/06/2024]
Abstract
The paraventricular nucleus of the hypothalamus (PVN) regulates physiological and behavioural responses evoked by stressful stimuli, but the local neurochemical and signalling mechanisms involved are not completely understood. The soluble guanylate cyclase (sGC) within the PVN is implicated in autonomic and cardiovascular control in rodents under resting conditions. However, the involvement of PVN sGC-mediated signalling in stress responses is unknown. Therefore, we investigated the role of sGC within the PVN in cardiovascular, autonomic, neuroendocrine, and local neuronal responses to acute restraint stress in rats. Bilateral microinjection of the selective sGC inhibitor ODQ (1 nmol/100 nl) into the PVN reduced both the increased arterial pressure and the drop in cutaneous tail temperature evoked by restraint stress, while the tachycardia was enhanced. Intra-PVN injection of ODQ did not alter the number of Fos-immunoreactive neurons in either the dorsal cap parvocellular (PaDC), ventromedial (PaV), medial parvocellular (PaMP), or lateral magnocelllular (PaLM) portions of the PVN following acute restraint stress. Local microinjection of ODQ into the PVN did not affect the restraint-induced increases in plasma corticosterone concentration. Taken together, these findings suggest that sGC-mediated signalling in the PVN plays a key role in acute stress-induced pressor responses and sympathetically mediated cutaneous vasoconstriction, whereas the tachycardiac response is inhibited. Absence of an effect of ODQ on corticosterone and PVN neuronal activation in and the PaV and PaMP suggests that PVN sGC is not involved in restraint-evoked hypothalamus-pituitary-adrenal (HPA) axis activation and further indicates that autonomic and neuroendocrine responses are dissociable at the level of the PVN.
Collapse
Affiliation(s)
- Cristiane Busnardo
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Carlos C Crestani
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, Ohio, USA
| | - Aline Fassini
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
| | - Bianca M Scarambone
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Benjamin A Packard
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, Ohio, USA
| | - Leonardo B M Resstel
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - James P Herman
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, Ohio, USA
| | - Fernando M A Correa
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
3
|
Vavřínová A, Behuliak M, Vodička M, Bencze M, Ergang P, Vaněčková I, Zicha J. More efficient adaptation of cardiovascular response to repeated restraint in spontaneously hypertensive rats: the role of autonomic nervous system. Hypertens Res 2024; 47:2377-2392. [PMID: 38956283 PMCID: PMC11374672 DOI: 10.1038/s41440-024-01765-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 05/15/2024] [Accepted: 06/06/2024] [Indexed: 07/04/2024]
Abstract
We hypothesized that sympathetic hyperactivity and parasympathetic insuficiency in spontaneously hypertensive rats (SHR) underlie their exaggerated cardiovascular response to acute stress and impaired adaptation to repeated restraint stress exposure compared to Wistar-Kyoto rats (WKY). Cardiovascular responses to single (120 min) or repeated (daily 120 min for 1 week) restraint were measured by radiotelemetry and autonomic balance was evaluated by power spectral analysis of systolic blood pressure variability (SBPV) and heart rate variability (HRV). Baroreflex sensitivity (BRS) was measured by the pharmacological Oxford technique. Stress-induced pressor response and vascular sympathetic activity (low-frequency component of SBPV) were enhanced in SHR subjected to single restraint compared to WKY, whereas stress-induced tachycardia was similar in both strains. SHR exhibited attenuated cardiac parasympathetic activity (high-frequency component of HRV) and blunted BRS compared to WKY. Repeated restraint did not affect the stress-induced increase in blood pressure. However, cardiovascular response during the post-stress recovery period of the 7th restraint was reduced in both strains. The repeatedly restrained SHR showed lower basal heart rate during the dark (active) phase and slightly decreased basal blood pressure during the light phase compared to stress-naive SHR. SHR subjected to repeated restraint also exhibited attenuated stress-induced tachycardia, augmented cardiac parasympathetic activity, attenuated vascular sympathetic activity and improved BRS during the last seventh restraint compared to single-stressed SHR. Thus, SHR exhibited enhanced cardiovascular and sympathetic responsiveness to novel stressor exposure (single restraint) compared to WKY. Unexpectedly, the adaptation of cardiovascular and autonomic responses to repeated restraint was more effective in SHR.
Collapse
Affiliation(s)
- Anna Vavřínová
- Institute of Physiology, Czech Academy of Sciences, Prague, Czechia
| | - Michal Behuliak
- Institute of Physiology, Czech Academy of Sciences, Prague, Czechia
| | - Martin Vodička
- Institute of Physiology, Czech Academy of Sciences, Prague, Czechia
| | - Michal Bencze
- Institute of Physiology, Czech Academy of Sciences, Prague, Czechia
| | - Peter Ergang
- Institute of Physiology, Czech Academy of Sciences, Prague, Czechia
| | - Ivana Vaněčková
- Institute of Physiology, Czech Academy of Sciences, Prague, Czechia
| | - Josef Zicha
- Institute of Physiology, Czech Academy of Sciences, Prague, Czechia.
| |
Collapse
|
4
|
Mofaz M, Yechezkel M, Einat H, Kronfeld-Schor N, Yamin D, Shmueli E. Real-time sensing of war's effects on wellbeing with smartphones and smartwatches. COMMUNICATIONS MEDICINE 2023; 3:55. [PMID: 37069232 PMCID: PMC10109229 DOI: 10.1038/s43856-023-00284-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 03/31/2023] [Indexed: 04/19/2023] Open
Abstract
BACKGROUND Modern wars have a catastrophic effect on the wellbeing of civilians. However, the nature of this effect remains unclear, with most insights gleaned from subjective, retrospective studies. METHODS We prospectively monitored 954 Israelis (>40 years) from two weeks before the May 2021 Israel-Gaza war until four weeks after the ceasefire using smartwatches and a dedicated mobile application with daily questionnaires on wellbeing. This war severely affected civilians on both sides, where over 4300 rockets and missiles were launched towards Israeli cities, and 1500 aerial, land, and sea strikes were launched towards 16,500 targets in the Gaza Strip. RESULTS We identify considerable changes in all the examined wellbeing indicators during missile attacks and throughout the war, including spikes in heart rate levels, excessive screen-on time, and a reduction in sleep duration and quality. These changes, however, fade shortly after the war, with all affected measures returning to baseline in nearly all the participants. Greater changes are observed in individuals living closer to the battlefield, women, and younger individuals. CONCLUSIONS The demonstrated ability to monitor objective and subjective wellbeing indicators during crises in real-time is pivotal for the early detection of and prompt assistance to populations in need.
Collapse
Affiliation(s)
- Merav Mofaz
- Department of Industrial Engineering, Tel-Aviv University, Tel-Aviv, Israel
| | - Matan Yechezkel
- Department of Industrial Engineering, Tel-Aviv University, Tel-Aviv, Israel
| | - Haim Einat
- School of Behavioral Sciences, The Academic College of Tel Aviv-Yafo, Tel-Aviv, Israel
| | - Noga Kronfeld-Schor
- School of Zoology and Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel
| | - Dan Yamin
- Department of Industrial Engineering, Tel-Aviv University, Tel-Aviv, Israel
- Center for Combating Pandemics, Tel-Aviv University, Tel-Aviv, Israel
| | - Erez Shmueli
- Department of Industrial Engineering, Tel-Aviv University, Tel-Aviv, Israel.
- MIT Media Lab, Cambridge, MA, USA.
| |
Collapse
|
5
|
Duarte JO, Planeta CS, Crestani CC. Vulnerability and resilience to cardiovascular and neuroendocrine effects of stress in adult rats with historical of chronic stress during adolescence. Life Sci 2023; 318:121473. [PMID: 36746355 DOI: 10.1016/j.lfs.2023.121473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/20/2023] [Accepted: 02/01/2023] [Indexed: 02/07/2023]
Abstract
AIMS This study investigated the influence of exposure to stress during adolescence in autonomic, cardiovascular, neuroendocrine and somatic changes evoked by chronic stress in adult rats. MAIN METHODS Animals were subjected to a 10-days protocol of repeated restraint stress (RRS, habituating) or chronic variable stress (CVS, non-habituating) during adolescence, adulthood, or repeated exposure to either RRS or CVS in adolescence and adulthood (adolescence+adulthood group). The trials to measure autonomic, cardiovascular, neuroendocrine and somatic changes in all experimental groups were performed in adulthood. KEY FINDINGS CVS increased basal circulating corticosterone levels and caused adrenal hypertrophy in the adolescence+adulthood group, an effect not identified in animals subjected to this stressor only in adulthood or adolescence. CVS also caused a sympathetically-mediated resting tachycardia in the adulthood group. This effect of CVS was not identified in the adolescence+adulthood group once the increased cardiac sympathetic activity was buffered by a decrease in intrinsic heart rate in these animals. Moreover, the impairment in baroreflex function observed in the adulthood group subjected to CVS was shifted to an improvement in animals subjected to repeated exposure to this stressor during adolescence and adulthood. The RRS in the adolescence+adulthood group caused a sympathetically-mediated resting tachycardia, which was not observed in the adulthood group. SIGNIFICANCE Our findings suggest that enduring effects of adverse events during adolescence included a vulnerability to neuroendocrine changes and a resilience to autonomic and cardiovascular dysfunctions caused by the CVS. Furthermore, results of RRS indicated a vulnerability to cardiovascular and autonomic changes evoked by homotypic stressors.
Collapse
Affiliation(s)
- Josiane O Duarte
- Laboratory of Pharmacology, Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Cleopatra S Planeta
- Laboratory of Pharmacology, Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Carlos C Crestani
- Laboratory of Pharmacology, Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil.
| |
Collapse
|
6
|
Gomes-de-Souza L, Santana FG, Duarte JO, Barretto-de-Souza L, Crestani CC. Angiotensinergic neurotransmission in the bed nucleus of the stria terminalis is involved in cardiovascular responses to acute restraint stress in rats. Pflugers Arch 2023; 475:517-526. [PMID: 36715761 DOI: 10.1007/s00424-023-02791-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/11/2023] [Accepted: 01/21/2023] [Indexed: 01/31/2023]
Abstract
The brain angiotensin II acting via AT1 receptors is a prominent mechanism involved in physiological and behavioral responses during aversive situations. The AT2 receptor has also been implicated in stress responses, but its role was less explored. Despite these pieces of evidence, the brain sites related to control of the changes during aversive threats by the brain renin-angiotensin system (RAS) are poorly understood. The bed nucleus of the stria terminalis (BNST) is a limbic structure related to the cardiovascular responses by stress, and components of the RAS system were identified in this forebrain region. Therefore, we investigated the role of angiotensinergic neurotransmission present within the BNST acting via local AT1 and AT2 receptors in cardiovascular responses evoked by an acute session of restraint stress in rats. For this, rats were subjected to bilateral microinjection of either the angiotensin-converting enzyme inhibitor captopril, the selective AT1 receptor antagonist losartan, or the selective AT2 receptor antagonist PD123319 before they underwent the restraint stress session. We observed that BNST treatment with captopril reduced the decrease in tail skin temperature evoked by restraint stress, without affecting the pressor and tachycardic responses. Local AT2 receptor antagonism within the BNST reduced both the tachycardia and the drop in tail skin temperature during restraint. Bilateral microinjection of losartan into the BNST did not affect the restraint-evoked cardiovascular changes. Taken together, these data indicate an involvement of BNST angiotensinergic neurotransmission acting via local AT2 receptors in cardiovascular responses during stressful situations.
Collapse
Affiliation(s)
- Lucas Gomes-de-Souza
- Laboratory of Pharmacology, Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Flávia G Santana
- Laboratory of Pharmacology, Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Josiane O Duarte
- Laboratory of Pharmacology, Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Lucas Barretto-de-Souza
- Laboratory of Pharmacology, Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Carlos C Crestani
- Laboratory of Pharmacology, Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil.
| |
Collapse
|
7
|
Goulart MT, Busnardo C, Belém-Filho IJA, Benini R, Fassini A, Crestani CC, Godoy AC, Correa FMA, Alves FHF. NMDA receptors in the insular cortex modulate cardiovascular and autonomic but not neuroendocrine responses to restraint stress in rats. Prog Neuropsychopharmacol Biol Psychiatry 2022; 119:110598. [PMID: 35798175 DOI: 10.1016/j.pnpbp.2022.110598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 06/27/2022] [Accepted: 06/30/2022] [Indexed: 11/26/2022]
Abstract
The insular cortex (IC) is a brain structure involved in physiological and behavioural responses during stressful events. However, the local neurochemical mechanisms involved in control of stress responses by the IC are poorly understood. Thus, this study aimed to investigate the involvement of glutamatergic neurotransmission within the IC in cardiovascular, autonomic and neuroendocrine responses to an acute session of restraint stress. For this, the selective NMDA glutamate receptor antagonist LY235959 (1 nmol/100 nL) or the selective non-NMDA glutamate receptor antagonist NBQX (1 nmol/100 nL) were microinjected into the IC 10 min before the onset of the 60 min session of restraint stress. We observed that the antagonism of NMDA receptors within the IC enhanced the restraint-evoked increase in arterial pressure and heart rate, while blockade of non-NMDA receptors did not affect these cardiovascular responses. Spontaneous baroreflex analysis demonstrated that microinjection of LY235959 into the IC decreased baroreflex activity during restraint stress. The decrease in tail skin temperature during restraint stress was shifted to an increase in animals treated with the NMDA receptor antagonist. Nevertheless, the blockade of either NMDA or non-NMDA glutamate receptors within the IC did not affect the increase in circulating corticosterone levels during restraint stress. Overall, our findings provide evidence that IC glutamatergic neurotransmission, acting via local NMDA receptors, plays a prominent role in the control of autonomic and cardiovascular responses to restraint stress, but without affecting neuroendocrine adjustments.
Collapse
Affiliation(s)
- Melissa T Goulart
- Department of Health Sciences, Faculty of Medicine - Federal University of Lavras, Lavras, Minas Gerais, Brazil
| | - Cristiane Busnardo
- Departments of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Ivaldo J A Belém-Filho
- Departments of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Ricardo Benini
- Department of Drugs and Pharmaceutics, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Aline Fassini
- Departments of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Carlos C Crestani
- Department of Drugs and Pharmaceutics, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Ana C Godoy
- Department of Health Sciences, Faculty of Medicine - Federal University of Lavras, Lavras, Minas Gerais, Brazil
| | - Fernando M A Correa
- Departments of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Fernando H F Alves
- Department of Health Sciences, Faculty of Medicine - Federal University of Lavras, Lavras, Minas Gerais, Brazil.
| |
Collapse
|
8
|
Tomeo RA, Gomes-de-Souza L, Benini R, Reis-Silva LL, Crestani CC. Site-Specific Regulation of Stress Responses Along the Rostrocaudal Axis of the Insular Cortex in Rats. Front Neurosci 2022; 16:878927. [PMID: 35620667 PMCID: PMC9127339 DOI: 10.3389/fnins.2022.878927] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
The insular cortex (IC) has been described as a part of the central network implicated in the integration and processing of limbic information, being related to the behavioral and physiological responses to stressful events. Besides, a site-specific control of physiological functions has been reported along the rostrocaudal axis of the IC. However, a functional topography of the IC in the regulation of stress responses has never been reported. Therefore, this study aimed to investigate the impact of acute restraint stress in neuronal activation at different sites along the rostrocaudal axis of the IC. Furthermore, we evaluated the involvement of IC rostrocaudal subregions in the cardiovascular responses to acute restraint stress. We observed that an acute session of restraint stress increased the number of Fos-immunoreactive cells in the rostral posterior region of the IC, while fewer activated cells were identified in the anterior and caudal posterior regions. Bilateral injection of the non-selective synaptic inhibitor CoCl2 into the anterior region of the IC did not affect the blood pressure and heart rate increases and the sympathetically mediated cutaneous vasoconstriction to acute restraint stress. However, synaptic ablation of the rostral posterior IC decreased the restraint-evoked arterial pressure increase, whereas tachycardia was reduced in animals in which the caudal posterior IC was inhibited. Taken together, these pieces of evidence indicate a site-specific regulation of cardiovascular stress response along the rostrocaudal axis of the IC.
Collapse
Affiliation(s)
| | | | | | | | - Carlos C. Crestani
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| |
Collapse
|
9
|
Oliveira LA, Carvalho II, Kurokawa RY, Duarte JDO, Busnardo C, Crestani CC. Differential roles of prelimbic and infralimbic cholinergic neurotransmissions in control of cardiovascular responses to restraint stress in rats. Brain Res Bull 2022; 181:175-182. [DOI: 10.1016/j.brainresbull.2022.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 01/07/2022] [Accepted: 02/02/2022] [Indexed: 11/02/2022]
|
10
|
Oliveira LA, Pollo TRS, Rosa EA, Duarte JO, Xavier CH, Crestani CC. Both Prelimbic and Infralimbic Noradrenergic Neurotransmissions Modulate Cardiovascular Responses to Restraint Stress in Rats. Front Physiol 2021; 12:700540. [PMID: 34483957 PMCID: PMC8415160 DOI: 10.3389/fphys.2021.700540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/16/2021] [Indexed: 11/27/2022] Open
Abstract
The prelimbic (PL) and infralimbic (IL) subareas of the medial prefrontal cortex (mPFC) have been implicated in physiological and behavioral responses during aversive threats. The previous studies reported the noradrenaline release within the mPFC during stressful events, and the lesions of catecholaminergic terminals in this cortical structure affected stress-evoked local neuronal activation. Nevertheless, the role of mPFC adrenoceptors on cardiovascular responses during emotional stress is unknown. Thus, we investigated the role of adrenoceptors present within the PL and IL on the increase in both arterial pressure and heart rate (HR) and on the sympathetically mediated cutaneous vasoconstriction evoked by acute restraint stress. For this, bilateral guide cannulas were implanted into either the PL or IL of male rats. All animals were also subjected to catheter implantation into the femoral artery for cardiovascular recording. The increase in both arterial pressure and HR and the decrease in the tail skin temperature as an indirect measurement of sympathetically mediated cutaneous vasoconstriction were recorded during the restraint session. We observed that the microinjection of the selective α2-adrenoceptor antagonist RX821002 into either the PL or IL decreased the pressor response during restraint stress. Treatment of the PL or IL with either the α1-adrenoceptor antagonist WB4101 or the α2-adrenoceptor antagonist reduced the restraint-evoked tachycardia. The drop in the tail skin temperature was decreased by PL treatment with the β-adrenoceptor antagonist propranolol and with the α1- or α2-adrenoceptor antagonists. The α2-adrenoceptor antagonist into the IL also decreased the skin temperature response. Our results suggest that the noradrenergic neurotransmission in both PL and IL mediates the cardiovascular responses to aversive threats.
Collapse
Affiliation(s)
- Leandro A Oliveira
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil.,Joint Federal University of São Carlos (UFSCar) - São Paulo State University (UNESP) Graduate Program in Physiological Sciences, São Carlos, Brazil
| | - Taciana R S Pollo
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | - Elinéia A Rosa
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | - Josiane O Duarte
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil.,Joint Federal University of São Carlos (UFSCar) - São Paulo State University (UNESP) Graduate Program in Physiological Sciences, São Carlos, Brazil
| | - Carlos H Xavier
- Institute of Biological Sciences, Federal University of Goiás, Goiânia, Brazil
| | - Carlos C Crestani
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil.,Joint Federal University of São Carlos (UFSCar) - São Paulo State University (UNESP) Graduate Program in Physiological Sciences, São Carlos, Brazil
| |
Collapse
|
11
|
Feriani DJ, Sousa AS, Delbin MA, Ruberti OM, Crestani CC, Rodrigues B. Spleen tissue changes after restraint stress: effects of aerobic exercise training. Stress 2021; 24:572-583. [PMID: 33792481 DOI: 10.1080/10253890.2021.1895112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Inflammation has been described as a prominent mechanism involved in dysfunctions and diseases evoked by chronic stress. Notably, the spleen is an immune organ controlled by sympathetic and glucocorticoid mechanisms, but the impact of chronic stress in the spleen is not entirely understood. Besides, the impact of aerobic exercise training on the effects of chronic stress in the spleen has never been reported. Therefore, this study aimed to assess the changes caused in the spleen by repeated restraint stress and the effect of aerobic exercise training performed after a period of chronic restraint stress in rats. We identified that daily exposure to restraint stress (120 min per session, for 14 consecutive days) increased corticosterone and noradrenaline content, gene expression of glucocorticoid and β2-adrenergic receptors, TNF-α and IL-6 levels, and increased pro-oxidant substances in the spleen. Circulating levels of corticosterone were also increased in chronically stressed animals. Exercise training (1 h a day/5 days per week, for 60 days) increased glucocorticoid receptor gene expression, interleukin (IL)-10 and antioxidant mechanisms in the spleen. Exercise also decreased splenic noradrenaline, tumoral necrosis factor (TNF)-α, and IL-6 contents. Lastly, the effects of repeated restraint stress in the spleen were mitigated in animals subjected to aerobic training. Taken together, the results reported in the present study indicate that aerobic exercise training is a relevant non-pharmacological therapeutic approach to dysfunctions in the spleen caused by a period of stress.
Collapse
Affiliation(s)
- Daniele J Feriani
- Laboratory of Cardiovascular Investigation and Exercise (LICE), School of Physical Education, University of Campinas (UNICAMP), Campinas, Brazil
| | - Andressa S Sousa
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Maria Andreia Delbin
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Olívia M Ruberti
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Carlos C Crestani
- Department of Drugs and Pharmaceutics, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | - Bruno Rodrigues
- Laboratory of Cardiovascular Investigation and Exercise (LICE), School of Physical Education, University of Campinas (UNICAMP), Campinas, Brazil
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| |
Collapse
|
12
|
Gomes-de-Souza L, Bianchi PC, Costa-Ferreira W, Tomeo RA, Cruz FC, Crestani CC. CB 1 and CB 2 receptors in the bed nucleus of the stria terminalis differently modulate anxiety-like behaviors in rats. Prog Neuropsychopharmacol Biol Psychiatry 2021; 110:110284. [PMID: 33609604 DOI: 10.1016/j.pnpbp.2021.110284] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 01/01/2023]
Abstract
The endocannabinoid system is implicated in anxiety, but the brain sites involved are not completely understood. The bed nucleus of the stria terminalis (BNST) has been related to anxiety and responses to aversive threats. Besides, endocannabinoid neurotransmission acting via CB1 receptors was identified in the BNST. However, the presence of CB2 receptors and the role of BNST endocannabinoid system in anxiety-like behaviors have never been reported. Therefore, this study investigated the presence of CB1 and CB2 receptors in the BNST and their role in anxiety-like behaviors. For this, gene expression of the endocannabinoid receptors was evaluated in samples from anterior and posterior BNST. Besides, behaviors were evaluated in the elevated plus-maze (EPM) in unstressed rats (trait anxiety-like behavior) and after exposure to restraint stress (restraint-evoked anxiety-like behavior) in rats treated with either the CB1 receptor antagonist AM251 or the CB2 receptor antagonist JTE907 into the anterior BNST. The presence of CB1 and CB2 receptors gene expression was identified in anterior and posterior divisions of the BNST. Bilateral microinjection of AM251 into the anterior BNST dose-dependently increased EPM open arms exploration in unstressed animals and inhibited the anxiety-like behavior in the EPM evoked by restraint. Conversely, intra-BNST microinjection of JTE907 decreased EPM open arms exploration in a dose-dependent manner and inhibited restraint-evoked behavioral changes in the EPM. Taken together, these results indicate that CB1 and CB2 receptors present in the BNST are involved in control of anxiety-like behaviors, and control by the latter is affected by previous stress experience.
Collapse
Affiliation(s)
- Lucas Gomes-de-Souza
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, Brazil; Joint UFSCar-UNESP Graduate Program in Physiological Sciences, São Carlos, SP, Brazil
| | - Paula C Bianchi
- Department of Pharmacology, Paulista Medicine School, São Paulo Federal University, São Paulo, Brazil
| | - Willian Costa-Ferreira
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, Brazil; Joint UFSCar-UNESP Graduate Program in Physiological Sciences, São Carlos, SP, Brazil
| | - Rodrigo A Tomeo
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, Brazil; Joint UFSCar-UNESP Graduate Program in Physiological Sciences, São Carlos, SP, Brazil
| | - Fábio C Cruz
- Department of Pharmacology, Paulista Medicine School, São Paulo Federal University, São Paulo, Brazil
| | - Carlos C Crestani
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, Brazil; Joint UFSCar-UNESP Graduate Program in Physiological Sciences, São Carlos, SP, Brazil.
| |
Collapse
|
13
|
Gomes-de-Souza L, Costa-Ferreira W, Mendonça MM, Xavier CH, Crestani CC. Lateral hypothalamus involvement in control of stress response by bed nucleus of the stria terminalis endocannabinoid neurotransmission in male rats. Sci Rep 2021; 11:16133. [PMID: 34373508 PMCID: PMC8352993 DOI: 10.1038/s41598-021-95401-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/26/2021] [Indexed: 11/08/2022] Open
Abstract
The endocannabinoid neurotransmission acting via local CB1 receptor in the bed nucleus of the stria terminalis (BNST) has been implicated in behavioral and physiological responses to emotional stress. However, the neural network related to this control is poorly understood. In this sense, the lateral hypothalamus (LH) is involved in stress responses, and BNST GABAergic neurons densely innervate this hypothalamic nucleus. However, a role of BNST projections to the LH in physiological responses to stress is unknown. Therefore, using male rats, we investigated the role of LH GABAergic neurotransmission in the regulation of cardiovascular responses to stress by CB1 receptors within the BNST. We observed that microinjection of the selective CB1 receptor antagonist AM251 into the BNST decreased the number of Fos-immunoreactive cells within the LH of rats submitted to acute restraint stress. Treatment of the BNST with AM251 also enhanced restraint-evoked tachycardia. Nevertheless, arterial pressure increase and sympathetically-mediated cutaneous vasoconstriction to restraint was not affected by CB1 receptor antagonism within the BNST. The effect of AM251 in the BNST on restraint-evoked tachycardia was abolished in animals pretreated with the selective GABAA receptor antagonist SR95531 in the LH. These results indicate that regulation of cardiovascular responses to stress by CB1 receptors in the BNST is mediated by GABAergic neurotransmission in the LH. Present data also provide evidence of the BNST endocannabinoid neurotransmission as a mechanism involved in LH neuronal activation during stressful events.
Collapse
Affiliation(s)
- Lucas Gomes-de-Souza
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
- Joint UFSCar-UNESP Graduate Program in Physiological Sciences, São Carlos, São Paulo, Brazil
| | - Willian Costa-Ferreira
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
- Joint UFSCar-UNESP Graduate Program in Physiological Sciences, São Carlos, São Paulo, Brazil
| | - Michelle M Mendonça
- Institute of Biological Sciences, Federal University of Goiás, Goiania, Goiás, Brazil
| | - Carlos H Xavier
- Institute of Biological Sciences, Federal University of Goiás, Goiania, Goiás, Brazil
| | - Carlos C Crestani
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil.
- Joint UFSCar-UNESP Graduate Program in Physiological Sciences, São Carlos, São Paulo, Brazil.
- Laboratory of Pharmacology, Department of Department of Drugs and Pharmaceutics, School of Pharmaceutical Sciences, São Paulo State University - UNESP, Rodovia Araraquara-Jau Km 01 (Campus Universitário), Campus Ville, Araraquara, SP, 14800-903, Brazil.
| |
Collapse
|
14
|
Costa-Ferreira W, Gomes-de-Souza L, Crestani CC. Role of angiotensin receptors in the medial amygdaloid nucleus in autonomic, baroreflex and cardiovascular changes evoked by chronic stress in rats. Eur J Neurosci 2021; 53:763-777. [PMID: 33372338 DOI: 10.1111/ejn.15094] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 12/09/2020] [Accepted: 12/22/2020] [Indexed: 01/27/2023]
Abstract
This study investigated the role of AT1 , AT2 and Mas angiotensinergic receptors within the MeA in autonomic, cardiovascular and baroreflex changes evoked by a 10-day (1 hr daily) repeated restraint stress (RRS) protocol. Analysis of cardiovascular function after the end of the RRS protocol indicated increased values of arterial pressure, without heart rate changes. Arterial pressure increase was not affected by acute MeA treatment after the RRS with either the selective AT1 receptor antagonist losartan, the selective AT2 receptor antagonist PD123319 or the selective Mas receptor antagonist A-779. Analysis of heart rate variability indicated that RRS increased the sympathetic tone to the heart, which was inhibited by MeA treatment with either losartan, PD123319 or A-779. Baroreflex function assessed using the pharmacological approach via intravenous infusion of vasoactive agents revealed a facilitation of tachycardia evoked by blood pressure decrease in chronically stressed animals, which was inhibited by MeA treatment with losartan. Conversely, baroreflex responses during spontaneous fluctuations of blood pressure were impaired by RRS, and this effect was not affected by injection of the angiotensinergic receptor antagonists into the MeA. Altogether, the data reported in the present study suggest an involvement of both angiotensinergic receptors present in the MeA in autonomic imbalance evoked by RRS, as well as an involvement of MeA AT1 receptor in the enhanced baroreflex responses during full range of blood pressure changes. Results also indicate that RRS-evoked increase in arterial pressure and impairment of baroreflex responses during spontaneous variations of arterial pressure are independent of MeA angiotensinergic receptors.
Collapse
Affiliation(s)
- Willian Costa-Ferreira
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil.,Joint UFSCar-UNESP Graduate Program in Physiological Sciences, São Carlos, Brazil
| | - Lucas Gomes-de-Souza
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil.,Joint UFSCar-UNESP Graduate Program in Physiological Sciences, São Carlos, Brazil
| | - Carlos C Crestani
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil.,Joint UFSCar-UNESP Graduate Program in Physiological Sciences, São Carlos, Brazil
| |
Collapse
|
15
|
Barretto-de-Souza L, Benini R, Reis-Silva LL, Crestani CC. Corticotropin-releasing factor neurotransmission in the lateral hypothalamus modulates the tachycardiac response during acute emotional stress in rats. Brain Res Bull 2020; 166:102-109. [PMID: 33227387 DOI: 10.1016/j.brainresbull.2020.11.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/25/2020] [Accepted: 11/14/2020] [Indexed: 12/29/2022]
Abstract
The lateral hypothalamus (LH) is implicated in the physiological and behavioral responses during stressful events. However, the local neurochemical mechanisms related to control of stress responses by this hypothalamic area are not completely understood. Therefore, in this study we evaluated the involvement of CRFergic neurotransmission acting through the CRF1 receptor within the LH in cardiovascular responses evoked by an acute session of restraint stress in rats. For this, we investigated the effect of bilateral microinjection of different doses (0.01, 0.1 and 1 nmol/100 nL) of the selective CRF1 receptor antagonist CP376395 into the LH on arterial pressure and heart rate increases and decrease in tail skin temperature evoked by acute restraint stress. We found that all doses of the CRF1 receptor antagonist microinjected into the LH decreased the restraint-evoked tachycardia, but without affecting the arterial pressure and tail skin temperature responses. Additionally, treatment of the LH with CP376395 at the doses of 0.1 and 1 nmol/100 nL increased the basal values of both heart rate and arterial pressure, whereas the dose of 0.1 nmol/100 nL decreased the skin temperature. Taken together, these findings indicate that CRFergic neurotransmission in the LH, acting through activation of local CRF1 receptors, plays a facilitatory role in the tachycardia observed during aversive threats, but without affecting the pressor and tail skin temperature responses. Our results also provide evidence that LH CRFergic neurotransmission in involved in tonic maintenance of cardiovascular function.
Collapse
Affiliation(s)
- Lucas Barretto-de-Souza
- Laboratory of Pharmacology, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil; Joint UFSCar-UNESP Graduate Program in Physiological Sciences, São Carlos, SP, Brazil
| | - Ricardo Benini
- Laboratory of Pharmacology, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil; Joint UFSCar-UNESP Graduate Program in Physiological Sciences, São Carlos, SP, Brazil
| | - Lilian L Reis-Silva
- Laboratory of Pharmacology, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil; Joint UFSCar-UNESP Graduate Program in Physiological Sciences, São Carlos, SP, Brazil
| | - Carlos C Crestani
- Laboratory of Pharmacology, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil; Joint UFSCar-UNESP Graduate Program in Physiological Sciences, São Carlos, SP, Brazil.
| |
Collapse
|