1
|
Ma CN, Shi SR, Zhang XY, Xin GS, Zou X, Li WL, Guo SD. Targeting PDGF/PDGFR Signaling Pathway by microRNA, lncRNA, and circRNA for Therapy of Vascular Diseases: A Narrow Review. Biomolecules 2024; 14:1446. [PMID: 39595622 PMCID: PMC11592287 DOI: 10.3390/biom14111446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/05/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
Despite the significant progress in diagnostic and therapeutic strategies, vascular diseases, such as cardiovascular diseases (CVDs) and respiratory diseases, still cannot be successfully eliminated. Vascular cells play a key role in maintaining vascular homeostasis. Notably, a variety of cells produce and secrete platelet-derived growth factors (PDGFs), which promote mitosis and induce the division, proliferation, and migration of vascular cells including vascular smooth muscle cells (SMCs), aortic SMCs, endothelial cells, and airway SMCs. Therefore, PDGF/PDGR receptor signaling pathways play vital roles in regulating the homeostasis of blood vessels and the onset and development of CVDs, such as atherosclerosis, and respiratory diseases including asthma and pulmonary arterial hypertension. Recently, accumulating evidence has demonstrated that microRNA, long-chain non-coding RNA, and circular RNA are involved in the regulation of PDGF/PDGFR signaling pathways through competitive interactions with target mRNAs, contributing to the occurrence and development of the above-mentioned diseases. These novel findings are useful for laboratory research and clinical studies. The aim of this article is to conclude the recent progresses in this field, particular the mechanisms of action of these non-coding RNAs in regulating vascular remodeling, providing potential strategies for the diagnosis, prevention, and treatment of vascular-dysfunction-related diseases, particularly CVDs and respiratory diseases.
Collapse
Affiliation(s)
- Chao-Nan Ma
- Institute of Lipid Metabolism and Atherosclerosis, School of Pharmacy, Shandong Second Medical University, Weifang 261053, China; (C.-N.M.); (S.-R.S.); (X.-Y.Z.)
| | - Shan-Rui Shi
- Institute of Lipid Metabolism and Atherosclerosis, School of Pharmacy, Shandong Second Medical University, Weifang 261053, China; (C.-N.M.); (S.-R.S.); (X.-Y.Z.)
| | - Xue-Ying Zhang
- Institute of Lipid Metabolism and Atherosclerosis, School of Pharmacy, Shandong Second Medical University, Weifang 261053, China; (C.-N.M.); (S.-R.S.); (X.-Y.Z.)
| | - Guo-Song Xin
- School of Pharmacy, Engineering Research Center for Medicine, Harbin University of Commerce, Harbin 150076, China; (G.-S.X.); (X.Z.)
| | - Xiang Zou
- School of Pharmacy, Engineering Research Center for Medicine, Harbin University of Commerce, Harbin 150076, China; (G.-S.X.); (X.Z.)
| | - Wen-Lan Li
- School of Pharmacy, Engineering Research Center for Medicine, Harbin University of Commerce, Harbin 150076, China; (G.-S.X.); (X.Z.)
| | - Shou-Dong Guo
- Institute of Lipid Metabolism and Atherosclerosis, School of Pharmacy, Shandong Second Medical University, Weifang 261053, China; (C.-N.M.); (S.-R.S.); (X.-Y.Z.)
- School of Pharmacy, Engineering Research Center for Medicine, Harbin University of Commerce, Harbin 150076, China; (G.-S.X.); (X.Z.)
| |
Collapse
|
2
|
Millet M, Auroux M, Beaudart C, Demonceau C, Ladang A, Cavalier E, Reginster JY, Bruyère O, Chapurlat R, Rousseau JC. Association of circulating hsa-miRNAs with sarcopenia: the SarcoPhAge study. Aging Clin Exp Res 2024; 36:70. [PMID: 38485856 PMCID: PMC10940485 DOI: 10.1007/s40520-024-02711-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 01/23/2024] [Indexed: 03/18/2024]
Abstract
OBJECTIVE To identify a microRNA signature associated to sarcopenia in community-dwelling older adults form the SarcoPhAge cohort. METHODS In a screening phase by next generation sequencing (NGS), we compared the hsa-miRome expression of 18 subjects with sarcopenia (79.6 ± 6.8 years, 9 men) and 19 healthy subjects without sarcopenia (77.1 ± 6 years, 9 men) at baseline. Thereafter, we have selected eight candidate hsa-miRNAs according to the NGS results and after a critical assessment of previous literature. In a validation phase and by real-time qPCR, we then analyzed the expression levels of these 8 hsa-miRNAs at baseline selecting 92 healthy subjects (74.2 ± 10 years) and 92 subjects with sarcopenia (75.3 ± 6.8 years). For both steps, the groups were matched for age and sex. RESULTS In the validation phase, serum has-miRNA-133a-3p and has-miRNA-200a-3p were significantly decreased in the group with sarcopenia vs controls [RQ: relative quantification; median (interquartile range)]: -0.16 (-1.26/+0.90) vs +0.34 (-0.73/+1.33) (p < 0.01) and -0.26 (-1.07/+0.68) vs +0.27 (-0.55/+1.10) (p < 0.01) respectively. Has-miRNA-744-5p was decreased and has-miRNA-151a-3p was increased in the group with sarcopenia vs controls, but this barely reached significance: +0.16 (-1.34/+0.79) vs +0.44 (-0.31/+1.00) (p = 0.050) and +0.35 (-0.22/+0.90) vs +0.03 (-0.68/+0.75) (p = 0.054). CONCLUSION In subjects with sarcopenia, serum hsa-miRNA-133a-3p and hsa-miRNA-200a-3p expression were downregulated, consistent with their potential targets inhibiting muscle cells proliferation and differentiation.
Collapse
Affiliation(s)
| | - Maxime Auroux
- INSERM 1033, Lyon, France
- Hôpital E. Herriot, Hospices Civils de Lyon, Lyon, France
| | - Charlotte Beaudart
- Clinical Pharmacology and Toxicology Research Unit (URPC), NARILIS, Department of Biomedical Sciences, Faculty of Medicine, University of Namur, Namur, Belgium
- WHO Collaborating Center for Epidemiology of Musculoskeletal Health and Aging, Division of Public Health, Epidemiology and Health Economics, University of Liège, Liege, Belgium
| | - Céline Demonceau
- WHO Collaborating Center for Epidemiology of Musculoskeletal Health and Aging, Division of Public Health, Epidemiology and Health Economics, University of Liège, Liege, Belgium
| | - Aurélie Ladang
- Department of Clinical Chemistry, CHU de Liège, University of Liège, Liege, Belgium
| | - Etienne Cavalier
- Department of Clinical Chemistry, CHU de Liège, University of Liège, Liege, Belgium
| | - Jean-Yves Reginster
- WHO Collaborating Center for Epidemiology of Musculoskeletal Health and Aging, Division of Public Health, Epidemiology and Health Economics, University of Liège, Liege, Belgium
| | - Olivier Bruyère
- WHO Collaborating Center for Epidemiology of Musculoskeletal Health and Aging, Division of Public Health, Epidemiology and Health Economics, University of Liège, Liege, Belgium
| | - Roland Chapurlat
- INSERM 1033, Lyon, France
- PMO, Lyon, France
- Hôpital E. Herriot, Hospices Civils de Lyon, Lyon, France
- University of Lyon, Lyon, France
| | | |
Collapse
|
3
|
Jiang F, Zhang B, Zhang X, Zhang R, Lu Q, Shi F, Xu J, Deng L. miRNA‑92a inhibits vascular smooth muscle cell phenotypic modulation and may help prevent in‑stent restenosis. Mol Med Rep 2023; 27:40. [PMID: 36601739 PMCID: PMC9835053 DOI: 10.3892/mmr.2023.12927] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 11/23/2022] [Indexed: 01/03/2023] Open
Abstract
The modulation of vascular smooth muscle cell (VSMC) phenotype during cellular proliferation and migration may represent a potential therapeutic approach for vascular intimal hyperplasia prevention. However, the precise role of this process in VSMC biology and remodeling remains unclear. In the present study, western blotting, PCR, MTT and Transwell assays were used to analyze related protein and mRNA expression, cell viability and cell migration, respectively. It was demonstrated that miR‑92a modulated VSMCs into a synthetic phenotype via the Kruppel‑like factor 4 (KLF4) pathway. Targeting microRNA (miRNA/miR)‑92a in VSMCs using a KLF4 inhibitor suppressed the synthetic phenotype and inhibited VSMC proliferation and migration. To further confirm this finding, the expression levels of miR‑92a were measured in patients undergoing coronary artery intervention. The serum miR‑92a expression levels were significantly higher in patients with in‑stent restenosis (ISR) compared with those in patients without ISR, whereas KLF4 expression was significantly reduced in the non‑ISR group. Bioinformatic analysis and promoter‑luciferase reporter assays were used to examine the regulatory mechanisms underlying KLF4 expression. KLF4 was demonstrated to be transcriptionally upregulated by miR‑92a in VSMCs. miRNA transfection was also performed to regulate the level of miR‑92a expression. miR‑92a overexpression inhibited VSMC proliferation and migration, and also increased the mRNA and protein expression levels of certain differentiated VSMC‑related genes. Finally, miR‑92a inhibition promoted the proliferation and migration of VSMCs, which could be reversed using a KLF4 inhibitor. Collectively, these results indicated that the local delivery of a KLF4 inhibitor may act as a novel therapeutic option for the prevention of ISR.
Collapse
Affiliation(s)
- Fenfen Jiang
- Department of Cardiology, Huzhou Central Hospital, Affiliated Central Hospital of Huzhou University, Huzhou, Zhejiang 313003, P.R. China,Department of Cardiology, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, P.R. China
| | - Bin Zhang
- Department of Anaesthesiology, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, P.R. China
| | - Xiangyu Zhang
- Department of Cardiology, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, P.R. China
| | - Ran Zhang
- Department of Cardiology, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, P.R. China
| | - Qin Lu
- Department of Cardiology, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, P.R. China
| | - Fengjie Shi
- Department of Cardiology, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, P.R. China
| | - Jianjiang Xu
- Department of Cardiology, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, P.R. China
| | - Lang Deng
- Department of Cardiology, Huzhou Central Hospital, Affiliated Central Hospital of Huzhou University, Huzhou, Zhejiang 313003, P.R. China,Correspondence to: Dr Lang Deng, Department of Cardiology, Huzhou Central Hospital, Affiliated Central Hospital of Huzhou University, 198 Hongqi Road, Huzhou, Zhejiang 313003, P.R. China, E-mail:
| |
Collapse
|
4
|
Lu LY, Pan N, Huang ZH, Wang JS, Tang YB, Sun HS, Han H, Yang HY, Zhu JZ, Guan YY, Zhang B, Li DZ, Wang GL. CFTR Suppresses Neointimal Formation Through Attenuating Proliferation and Migration of Aortic Smooth Muscle Cells. J Cardiovasc Pharmacol 2022; 79:914-924. [PMID: 35266910 PMCID: PMC9162269 DOI: 10.1097/fjc.0000000000001257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 02/06/2022] [Indexed: 12/14/2022]
Abstract
ABSTRACT Cystic fibrosis transmembrane conductance regulator (CFTR) plays important roles in arterial functions and the fate of cells. To further understand its function in vascular remodeling, we examined whether CFTR directly regulates platelet-derived growth factor-BB (PDGF-BB)-stimulated vascular smooth muscle cells (VSMCs) proliferation and migration, as well as the balloon injury-induced neointimal formation. The CFTR adenoviral gene delivery was used to evaluate the effects of CFTR on neointimal formation in a rat model of carotid artery balloon injury. The roles of CFTR in PDGF-BB-stimulated VSMC proliferation and migration were detected by mitochondrial tetrazolium assay, wound healing assay, transwell chamber method, western blot, and qPCR. We found that CFTR expression was declined in injured rat carotid arteries, while adenoviral overexpression of CFTR in vivo attenuated neointimal formation in carotid arteries. CFTR overexpression inhibited PDGF-BB-induced VSMC proliferation and migration, whereas CFTR silencing caused the opposite results. Mechanistically, CFTR suppressed the phosphorylation of PDGF receptor β, serum and glucocorticoid-inducible kinase 1, JNK, p38 and ERK induced by PDGF-BB, and the increased mRNA expression of matrix metalloproteinase-9 and MMP2 induced by PDGF-BB. In conclusion, our results indicated that CFTR may attenuate neointimal formation by suppressing PDGF-BB-induced activation of serum and glucocorticoid-inducible kinase 1 and the JNK/p38/ERK signaling pathway.
Collapse
Affiliation(s)
- Liu-Yi Lu
- Institute of Pediatrics, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, China
| | - Ni Pan
- Institute of Pediatrics, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, China
| | - Ze-Han Huang
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jing-Song Wang
- Vascular surgery department, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Science, Guangzhou, China; and
| | - Yong-Bo Tang
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Hong-Shuo Sun
- Departments of Surgery, Physiology and Pharmacology, Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Hui Han
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Han-Yan Yang
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jun-Zhen Zhu
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yong-Yuan Guan
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Bin Zhang
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Dong-Zhi Li
- Prenatal Diagnostic Center, Guangzhou Women and Children Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Guan-Lei Wang
- Institute of Pediatrics, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
5
|
Choi MR. Commentary for the article: MicroRNA-1246 regulates proliferation, invasion and differentiation in human vascular smooth muscle cell by targeting cystic fibrosis transmembrane conductance regulator (CFTR). Pflugers Arch 2021; 473:135-137. [PMID: 33452915 DOI: 10.1007/s00424-021-02516-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 12/29/2020] [Accepted: 01/04/2021] [Indexed: 11/30/2022]
Affiliation(s)
- Marcelo Roberto Choi
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Anatomía e Histología, Buenos Aires, Argentina.
- Universidad de Buenos Aires, CONICET, Instituto Alberto C. Taquini de Investigaciones en Medicina Traslacional (IATIMET), Buenos Aires, Argentina.
| |
Collapse
|
6
|
Serum microRNAs as Tool to Predict Early Response to Benralizumab in Severe Eosinophilic Asthma. J Pers Med 2021; 11:jpm11020076. [PMID: 33525548 PMCID: PMC7912443 DOI: 10.3390/jpm11020076] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 02/07/2023] Open
Abstract
Severe eosinophilic asthma poses a serious health and economic problem, so new therapy approaches have been developed to control it, including biological drugs such as benralizumab, which is a monoclonal antibody that binds to IL-5 receptor alpha subunit and depletes peripheral blood eosinophils rapidly. Biomarkers that predict the response to this drug are needed so that microRNAs (miRNAs) can be useful tools. This study was performed with fifteen severe eosinophilic asthmatic patients treated with benralizumab, and serum miRNAs were evaluated before and after treatment by semi-quantitative PCR (qPCR). Patients showed a clinical improvement after benralizumab administration. Additionally, deregulation of miR-1246, miR-5100 and miR-338-3p was observed in severe asthmatic patients after eight weeks of therapy, and a correlation was found between miR-1246 and eosinophil counts, including a number of exacerbations per year in these severe asthmatics. In silico pathway analysis revealed that these three miRNAs are regulators of the MAPK signaling pathway, regulating target genes implicated in asthma such as NFKB2, NFATC3, DUSP1, DUSP2, DUSP5 and DUSP16. In this study, we observed an altered expression of miR-1246, miR-5100 and miR-338-3p after eight weeks of benralizumab administration, which could be used as early response markers.
Collapse
|