1
|
Zhang L, Rong S, Dong H. Functional heterogeneity of endothelium-dependent vasorelaxation in different order branches of mesenteric artery in female/male mice. Microvasc Res 2025; 158:104777. [PMID: 39613183 DOI: 10.1016/j.mvr.2024.104777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/20/2024] [Accepted: 11/26/2024] [Indexed: 12/01/2024]
Abstract
Although the mouse mesenteric artery is widely used as a model of resistance vessels, it is unknown which order branch is the best representative and if there is a heterogeneity of vascular activity in different orders. We systematically compared the vasorelaxation between the mouse mesenteric artery's first- and second-order branches. The first- and second-order branches of the mesenteric artery (lumen diameter of >300 μm and 179.9 ± 11.1 μm, respectively) were taken from the location close to their branching points in wide-type (WT) and TRPV4-/- (KO) mice. Vasorelaxation of the mesenteric artery was measured using a Danish DMT520A microvascular system. Acetylcholine (ACh) induced much greater vasorelaxation via TRPV4 channels/endothelium-dependent hyperpolarization (EDH/H2S) in the second-order branch. The store-operated Ca2+ entry (SOCE) mediated much greater vasorelaxation via EDH in the second-order branch than that via NO in the first-order branch. However, capsaicin-induced vasorelaxation was much greater via TRPV1/NO and TRPV1/CGRP in the first-order branch than TRPV4/EDH only in the second-order branch. Moreover, sex differences in ACh-induced vasorelaxation were obviously in the first-order branch but marginally in the second-order branch. Mechanistically, the myoendothelial gap junction (MEGJ) is involved in ACh-induced vasorelaxation in the second-order branch but not in the first-order branch. However, endothelial IKCa and SKCa functions and endothelium-independent vasorelaxation were similar for both first- and second-order branches. TRPV1/NO/CGRP mediates endothelium-dependent vasorelaxation in the first-order branch as the best representative of conduit vessels, but TRPV4/EDH/H2S mediates endothelium-dependent vasorelaxation in the second-order branch as the best representative of resistance vessels in mice.
Collapse
Affiliation(s)
- Luyun Zhang
- Department of Critical Care Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610000, China
| | - Shaoya Rong
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, #1 Ningde Road, Qingdao 266073, China
| | - Hui Dong
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, #1 Ningde Road, Qingdao 266073, China.
| |
Collapse
|
2
|
Zhang L, Wang J, Rong S, Dong H. Elucidating novel mechanism of action of spiperone for drug repurposing to prevent and treat murine colitis and sepsis. Life Sci 2025; 361:123268. [PMID: 39580139 DOI: 10.1016/j.lfs.2024.123268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/12/2024] [Accepted: 11/19/2024] [Indexed: 11/25/2024]
Abstract
AIMS While Ca2+ signaling plays a vital role in maintaining normal endothelial function and vascular activity, aberrant Ca2+ signaling in endothelial dysfunction is involved in the pathogenesis of inflammation. As a safe anti-psychotic drug to mobilize Ca2+ signaling, we repurposed spiperone as a potential drug for two intestinal epithelial injury related diseases, colitis and sepsis. MATERIALS AND METHODS Spiperone-induced vasorelaxation of human submucosal arterioles and mesenteric arterioles from wide-type and TRPV4 KO mice was determined by Mulvany-style wire myograph. The action of spiperone in HUVEC was tested by Ca2+ imaging and patch clamp, and its action on murine mesenteric arterioles was measured in vivo. LPS- and CLP-induced septic mice and DSS-induced colitic mice were used to examine the anti-inflammatory effects of spiperone. KEY FINDINGS Spiperone induced endothelium-dependent hyperpolarization (EDH)-mediated vasorelaxation of healthy arterioles with EC50 of ∼50 nM predominately via PLC/IP3/IP3R pathway to induce endoplasmic reticulum (ER) Ca2+ release and further to promote Ca2+ entry via TRPV4-constituted SOCE. In both LPS- and CLP-induced septic mice, spiperone effectively prevented and treated sepsis by reducing serum proinflammatory factors, alleviating multiple organ dysfunction, rescuing the impaired EDH-mediated vasorelaxation and improving murine survival rate. Similarly, spiperone could also protect against murine colitis. SIGNIFICANCE We reveal new action mode and mechanism of spiperone to induce EDH-mediated vasorelaxation of both human and murine arterioles to protect against colitis and sepsis by innovatively inducing PLC/IP3R/Ca2+ signaling rather than canonically antagonizing GPCR. Spiperone could be repurposed as a potential new drug for the prevention/treatment of colitis and sepsis.
Collapse
Affiliation(s)
- Luyun Zhang
- Department of Intensive Critical Care, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610000, Sichuan, China
| | - Jianxin Wang
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, #1 Ningde Road, Qingdao 266073, China
| | - Shaoya Rong
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, #1 Ningde Road, Qingdao 266073, China
| | - Hui Dong
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, #1 Ningde Road, Qingdao 266073, China.
| |
Collapse
|
3
|
Zhang L, Sunchen S, Lu C, Xu F, Dong H. Zinc-sensing receptor activation induces endothelium-dependent hyperpolarization-mediated vasorelaxation of arterioles. Biochem Pharmacol 2024; 219:115961. [PMID: 38049010 DOI: 10.1016/j.bcp.2023.115961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/06/2023]
Abstract
BACKGROUND The micronutrient zinc (Zn2+) is critical for cell function as intracellular signaling and endogenous ligand for Zn2+ sensing receptor (ZnR). Although cytosolic Zn2+ (cyt) signaling in the vascular system was studied previously, role of the ZnR has not been explored in vascular physiology. METHODS ZnR-mediated relaxation response of human submucosal arterioles and the mesenteric arterioles from wide-type (WT), ZnR-/- and TRPV4-/- mice were determined by a Mulvany-style wire myograph. The perfused vessel density (PVD) of mouse mesenteric arterioles was also measured in in vivo study. The expression of ZnR in arterioles and vascular endothelial cells (VEC) were examined by immunofluorescence staining, and its function was characterized in VEC by Ca2+ imaging and patch clamp study. RESULTS ZnR expression was detected on human submucosal arterioles, murine mesenteric arterioles and VEC but not in ZnR-/- mice. ZnR activation predominately induced endothelium-dependent hyperpolarization (EDH)-mediated vasorelaxation of arterioles in vitro and in vivo via Ca2+ signaling, which is totally different from endothelium-dependent vasorelaxation via Zn2+ (cyt) signaling reported previously. Furthermore, ZnR-induced vasorelaxation via EDH was significantly impaired in ZnR-/- and TRPV4-/- mice. Mechanistically, ZnR induced endothelium-dependent vasorelaxation predominately via PLC/IP3/IP3R and TRPV4/SOCE. The role of ZnR in regulating Ca2+ signaling and ion channels on VEC was verified by Ca2+ imaging and patch clamp techniques. CONCLUSION ZnR activation induces endothelium-dependent vasorelaxation of resistance vessels predominately via TRPV4/Ca2+/EDH pathway. We therefore not only provide new insights into physiological role of ZnR in vascular system but also may pave a potential pathway for developing Zn2+-based treatments for vascular disease.
Collapse
Affiliation(s)
- Luyun Zhang
- Department of Pediatric Intensive Care Unit, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400037, China; Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, #1 Ningde Road, Qingdao 266073, China
| | - Sijin Sunchen
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, #1 Ningde Road, Qingdao 266073, China
| | - Cheng Lu
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Feng Xu
- Department of Pediatric Intensive Care Unit, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400037, China.
| | - Hui Dong
- Department of Pediatric Intensive Care Unit, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400037, China; Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, #1 Ningde Road, Qingdao 266073, China.
| |
Collapse
|
4
|
Wolf L, Vogt J, Alber J, Franjic D, Feger M, Föller M. PKC regulates αKlotho gene expression in MDCK and NRK-52E cells. Pflugers Arch 2024; 476:75-86. [PMID: 37773536 PMCID: PMC10758369 DOI: 10.1007/s00424-023-02863-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 09/20/2023] [Accepted: 09/20/2023] [Indexed: 10/01/2023]
Abstract
Particularly expressed in the kidney, αKlotho is a transmembrane protein that acts together with bone hormone fibroblast growth factor 23 (FGF23) to regulate renal phosphate and vitamin D homeostasis. Soluble Klotho (sKL) is released from the transmembrane form and controls various cellular functions as a paracrine and endocrine factor. αKlotho deficiency accelerates aging, whereas its overexpression favors longevity. Higher αKlotho abundance confers a better prognosis in cardiovascular and renal disease owing to anti-inflammatory, antifibrotic, or antioxidant effects and tumor suppression. Serine/threonine protein kinase C (PKC) is ubiquitously expressed, affects several cellular responses, and is also implicated in heart or kidney disease as well as cancer. We explored whether PKC is a regulator of αKlotho. Experiments were performed in renal MDCK or NRK-52E cells and PKC isoform and αKlotho expression determined by qRT-PCR and Western Blotting. In both cell lines, PKC activation with phorbol ester phorbol-12-myristate-13-acetate (PMA) downregulated, while PKC inhibitor staurosporine enhanced αKlotho mRNA abundance. Further experiments with PKC inhibitor Gö6976 and RNA interference suggested that PKCγ is the major isoform for the regulation of αKlotho gene expression in the two cell lines. In conclusion, PKC is a negative regulator of αKlotho gene expression, an effect which may be relevant for the unfavorable effect of PKC on heart or kidney disease and tumorigenesis.
Collapse
Affiliation(s)
- Lisa Wolf
- Department of Physiology, University of Hohenheim, Garbenstraße 30, 70599, Stuttgart, Germany
| | - Julia Vogt
- Department of Physiology, University of Hohenheim, Garbenstraße 30, 70599, Stuttgart, Germany
| | - Jana Alber
- Department of Physiology, University of Hohenheim, Garbenstraße 30, 70599, Stuttgart, Germany
| | - Domenic Franjic
- Core Facility Hohenheim, Data and Statistical Consulting, University of Hohenheim, 70599, Stuttgart, Germany
| | - Martina Feger
- Department of Physiology, University of Hohenheim, Garbenstraße 30, 70599, Stuttgart, Germany
| | - Michael Föller
- Department of Physiology, University of Hohenheim, Garbenstraße 30, 70599, Stuttgart, Germany.
| |
Collapse
|
5
|
Hodeify R, Machaca K. Methods to Quantify the Dynamic Recycling of Plasma Membrane Channels. Bio Protoc 2023; 13:e4800. [PMID: 37719078 PMCID: PMC10501913 DOI: 10.21769/bioprotoc.4800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/19/2023] [Accepted: 06/19/2023] [Indexed: 09/19/2023] Open
Abstract
Store-operated Ca2+ entry (SOCE) is a ubiquitous Ca2+ signaling modality mediated by Orai Ca2+ channels at the plasma membrane (PM) and the endoplasmic reticulum (ER) Ca2+ sensors STIM1/2. At steady state, Orai1 constitutively cycles between an intracellular compartment and the PM. Orai1 PM residency is modulated by its endocytosis and exocytosis rates. Therefore, Orai1 trafficking represents an important regulatory mechanism to define the levels of Ca2+ influx. Here, we present a protocol using the dually tagged YFP-HA-Orai1 with a cytosolic YFP and extracellular hemagglutinin (HA) tag to quantify Orai1 cycling rates. For measuring Orai1 endocytosis, cells expressing YFP-HA-Orai1 are incubated with mouse anti-HA antibody for various periods of time before being fixed and stained for surface Orai1 with Cy5-labeled anti-mouse IgG. The cells are fixed again, permeabilized, and stained with Cy3-labeled anti-mouse IgG to reveal anti-HA that has been internalized. To quantify Orai1 exocytosis rate, cells are incubated with anti-HA antibody for various incubation periods before being fixed, permeabilized, and then stained with Cy5-labeled anti-mouse IgG. The Cy5/YFP ratio is plotted over time and fitted with a mono-exponential growth curve to determine exocytosis rate. Although the described assays were developed to measure Orai1 trafficking, they are readily adaptable to other PM channels. Key features Detailed protocols to quantify endocytosis and exocytosis rates of Orai1 at the plasma membrane that can be used in various cell lines. The endocytosis and exocytosis assays are readily adaptable to study the trafficking of other plasma membrane channels.
Collapse
Affiliation(s)
- Rawad Hodeify
- Biotechnology Department, School of Arts and
Sciences, American University of Ras Al Khaimah, Ras Al Khaimah, United Arab
Emirates
| | - Khaled Machaca
- Ca
- Department of Physiology and Biophysics, Weill
Cornell Medicine, New York, USA
| |
Collapse
|
6
|
CircRNA_0017076 acts as a sponge for miR-185-5p in the control of epithelial-to-mesenchymal transition of tubular epithelial cells during renal interstitial fibrosis. Hum Cell 2023; 36:1024-1040. [PMID: 36828974 DOI: 10.1007/s13577-023-00877-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 02/04/2023] [Indexed: 02/26/2023]
Abstract
Renal interstitial fibrosis (RIF) is a common pathological hallmark of progressive chronic kidney disease (CKD). Circular RNAs (circRNAs) are involved in certain renal diseases, but their role in RIF is largely unknown. The present study investigated the effects and potential mechanisms of circRNA_0017076 in RIF. CircRNA_0017076 expression was markedly upregulated in transforming growth factor-β1 (TGF-β1)-treated renal tubular epithelial cells (RTECs) and kidney biopsy samples from patients with RIF. Functional assays showed that circRNA_0017076 colocalized with microRNA-185-5p (miR-185-5p) and inhibited miR-185-5p function via direct binding to miR-185-5p. In vitro, the knockdown of circRNA_0017076 inhibited the calcium ion (Ca2+) influx-mediated epithelial-to-mesenchymal transition (EMT) of RTECs and downregulated the expression of stromal interaction molecule 1 (STIM1), which is a target protein of miR-185-5p. Silencing mmu_circ_0004488 reduced fibrotic lesions in the kidneys of unilateral ureteral obstruction (UUO) mice by targeting the miR-185-5p/Stim1 axis. For the first time, we identified circRNA_0017076 as a sponge for miR-185-5p, which regulates STIM1 gene expression and is involved in RIF. Our results support circRNA_0017076 as a potential therapeutic target for RIF disease.
Collapse
|
7
|
Ahmadian E, Eftekhari A, Atakishizada S, Valiyeva M, Ardalan M, Khalilov R, Kavetskyy T. Podocytopathy: The role of actin cytoskeleton. Biomed Pharmacother 2022; 156:113920. [DOI: 10.1016/j.biopha.2022.113920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 10/12/2022] [Accepted: 10/24/2022] [Indexed: 11/02/2022] Open
|
8
|
Enhanced Ca 2+ Entry Sustains the Activation of Akt in Glucose Deprived SH-SY5Y Cells. Int J Mol Sci 2022; 23:ijms23031386. [PMID: 35163310 PMCID: PMC8835965 DOI: 10.3390/ijms23031386] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/23/2022] [Accepted: 01/24/2022] [Indexed: 12/27/2022] Open
Abstract
The two crucial cellular insults that take place during cerebral ischemia are the loss of oxygen and loss of glucose, which can both activate a cascade of events leading to neuronal death. In addition, the toxic overactivation of neuronal excitatory receptors, leading to Ca2+ overload, may contribute to ischemic neuronal injury. Brain ischemia can be simulated in vitro by oxygen/glucose deprivation, which can be reversible by the re-establishment of physiological conditions. Accordingly, we examined the effects of glucose deprivation on the PI3K/Akt survival signaling pathway and its crosstalk with HIF-1α and Ca2+ homeostasis in SH-SY5Y human neuroblastoma cells. It was found that glucose withdrawal decreased HIF-1α protein levels even in the presence of the ischemia-mimicking CoCl2. On the contrary, and despite neuronal death, we identified a strong activation of the master pro-survival kinase Akt, a finding that was also confirmed by the increased phosphorylation of GSK3, a direct target of p-Akt. Remarkably, the elevated Ca2+ influx recorded was found to promptly trigger the activation of Akt, while a re-addition of glucose resulted in rapid restoration of both Ca2+ entry and p-Akt levels, highlighting the plasticity of neurons to respond to ischemic challenges and the important role of glucose homeostasis for multiple neurological disorders.
Collapse
|
9
|
Kim JH, Hwang KH, Dang BTN, Eom M, Kong ID, Gwack Y, Yu S, Gee HY, Birnbaumer L, Park KS, Cha SK. Insulin-activated store-operated Ca 2+ entry via Orai1 induces podocyte actin remodeling and causes proteinuria. Nat Commun 2021; 12:6537. [PMID: 34764278 PMCID: PMC8586150 DOI: 10.1038/s41467-021-26900-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 10/28/2021] [Indexed: 12/28/2022] Open
Abstract
Podocyte, the gatekeeper of the glomerular filtration barrier, is a primary target for growth factor and Ca2+ signaling whose perturbation leads to proteinuria. However, the effects of insulin action on store-operated Ca2+ entry (SOCE) in podocytes remain unknown. Here, we demonstrated that insulin stimulates SOCE by VAMP2-dependent Orai1 trafficking to the plasma membrane. Insulin-activated SOCE triggers actin remodeling and transepithelial albumin leakage via the Ca2+-calcineurin pathway in podocytes. Transgenic Orai1 overexpression in mice causes podocyte fusion and impaired glomerular filtration barrier. Conversely, podocyte-specific Orai1 deletion prevents insulin-stimulated SOCE, synaptopodin depletion, and proteinuria. Podocyte injury and albuminuria coincide with Orai1 upregulation at the hyperinsulinemic stage in diabetic (db/db) mice, which can be ameliorated by the suppression of Orai1-calcineurin signaling. Our results suggest that tightly balanced insulin action targeting podocyte Orai1 is critical for maintaining filter integrity, which provides novel perspectives on therapeutic strategies for proteinuric diseases, including diabetic nephropathy.
Collapse
Affiliation(s)
- Ji-Hee Kim
- Department of Physiology, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
- Department of Global Medical Science, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
- Mitohormesis Research Center, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| | - Kyu-Hee Hwang
- Department of Physiology, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
- Department of Global Medical Science, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
- Mitohormesis Research Center, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| | - Bao T N Dang
- Department of Physiology, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
- Department of Global Medical Science, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
- Mitohormesis Research Center, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| | - Minseob Eom
- Department of Pathology, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| | - In Deok Kong
- Department of Physiology, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
- Department of Global Medical Science, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| | - Yousang Gwack
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Seyoung Yu
- Department of Pharmacology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Heon Yung Gee
- Department of Pharmacology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Lutz Birnbaumer
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, 27709, USA
- Institute of Biomedical Research (BIOMED), School of Medical Sciences, Catholic University of Argentina, C1107AAZ, Buenos Aires, Argentina
| | - Kyu-Sang Park
- Department of Physiology, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
- Department of Global Medical Science, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
- Mitohormesis Research Center, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| | - Seung-Kuy Cha
- Department of Physiology, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea.
- Department of Global Medical Science, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea.
- Mitohormesis Research Center, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea.
| |
Collapse
|
10
|
Zhang L, Bing S, Dong M, Lu X, Xiong Y. Targeting ion channels for the treatment of lung cancer. Biochim Biophys Acta Rev Cancer 2021; 1876:188629. [PMID: 34610420 DOI: 10.1016/j.bbcan.2021.188629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 09/02/2021] [Accepted: 09/19/2021] [Indexed: 02/06/2023]
Abstract
Lung cancer is caused by several environmental and genetic variables and is globally associated with elevated morbidity and mortality. Among these variables, membrane-bound ion channels have a key role in regulating multiple signaling pathways in tumor cells and dysregulation of ion channel expression and function is closely related to proliferation, migration, and metastasis of lung cancer. This work reviews and summarizes current knowledge about the role of ion channels in lung cancer, focusing on the changes in the expression and function of various ion channels in lung cancer and how these changes affect lung cancer cell biology both in vitro and in vivo as evidenced by both genetic and pharmacological studies. It can help understand the molecular mechanisms of various ion channels influencing the initiation and progression of lung cancer and shed new insights into their roles in the development and treatment of this deadly disease.
Collapse
Affiliation(s)
- Liqin Zhang
- The First Affiliated Hospital of Wannan Medical College,Yijishan Hospital,2 Zheshan West Road, Wuhu 241000,China.
| | - Shuya Bing
- The First Affiliated Hospital of Wannan Medical College,Yijishan Hospital,2 Zheshan West Road, Wuhu 241000,China
| | - Mo Dong
- The First Affiliated Hospital of Wannan Medical College,Yijishan Hospital,2 Zheshan West Road, Wuhu 241000,China
| | - Xiaoqiu Lu
- The First Affiliated Hospital of Wannan Medical College,Yijishan Hospital,2 Zheshan West Road, Wuhu 241000,China
| | - Yuancheng Xiong
- The First Affiliated Hospital of Wannan Medical College,Yijishan Hospital,2 Zheshan West Road, Wuhu 241000,China
| |
Collapse
|
11
|
Liu A, Zhou K, Martínez MA, Lopez-Torres B, Martínez M, Martínez-Larrañaga MR, Wang X, Anadón A, Ares I. A "Janus" face of the RASSF4 signal in cell fate. J Cell Physiol 2021; 237:466-479. [PMID: 34553373 DOI: 10.1002/jcp.30592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 09/06/2021] [Accepted: 09/11/2021] [Indexed: 12/19/2022]
Abstract
RASSF4 (Ras-association domain family 4) is a protein-coding gene, regarded as a tumor suppressor regulated by DNA methylation. However, RASSF4 acts as a "Janus" in cell fate: death and survival. This review article focuses on the regulatory mechanisms of RASSF4 on cell death and cell survival and puts forward a comprehensive analysis of the relevant signaling pathways. The participation of RASSF4 in the regulation of intracellular store-operated Ca2+ entry also affects cell survival. Moreover, the mechanism of inducing abnormal expression of RASSF4 was summarized. We highlight recent advances in our knowledge of RASSF4 function in the development of cancer and other clinical diseases, which may provide insight into the controversial functions of RASSF4 and its potential application in disease therapy.
Collapse
Affiliation(s)
- Aimei Liu
- Department of National Reference, Laboratory of Veterinary Drug Residues (HZAU) and MOA Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China.,Department of MOA, Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Wuhan, Hubei, China
| | - Kaixiang Zhou
- Department of National Reference, Laboratory of Veterinary Drug Residues (HZAU) and MOA Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China.,Department of MOA, Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Wuhan, Hubei, China
| | - María Aránzazu Martínez
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid(UCM), and Research Institute Hospital 12 de October (i+12), Madrid, Spain
| | - Bernardo Lopez-Torres
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid(UCM), and Research Institute Hospital 12 de October (i+12), Madrid, Spain
| | - Marta Martínez
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid(UCM), and Research Institute Hospital 12 de October (i+12), Madrid, Spain
| | - María-Rosa Martínez-Larrañaga
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid(UCM), and Research Institute Hospital 12 de October (i+12), Madrid, Spain
| | - Xu Wang
- Department of National Reference, Laboratory of Veterinary Drug Residues (HZAU) and MOA Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China.,Department of MOA, Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Wuhan, Hubei, China
| | - Arturo Anadón
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid(UCM), and Research Institute Hospital 12 de October (i+12), Madrid, Spain
| | - Irma Ares
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid(UCM), and Research Institute Hospital 12 de October (i+12), Madrid, Spain
| |
Collapse
|
12
|
Hanson K, Fisher K, Hooper N. Exploiting the neuroprotective effects of α-klotho to tackle ageing- and neurodegeneration-related cognitive dysfunction. Neuronal Signal 2021; 5:NS20200101. [PMID: 34194816 PMCID: PMC8204227 DOI: 10.1042/ns20200101] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 12/26/2022] Open
Abstract
Cognitive dysfunction is a key symptom of ageing and neurodegenerative disorders, such as Alzheimer's disease (AD). Strategies to enhance cognition would impact the quality of life for a significant proportion of the ageing population. The α-klotho protein may protect against cognitive decline through multiple mechanisms: such as promoting optimal synaptic function via activation of N-methyl-d-aspartate (NMDA) receptor signalling; stimulating the antioxidant defence system; reducing inflammation; promoting autophagy and enhancing clearance of amyloid-β. However, the molecular and cellular pathways by which α-klotho mediates these neuroprotective functions have yet to be fully elucidated. Key questions remain unanswered: which form of α-klotho (transmembrane, soluble or secreted) mediates its cognitive enhancing properties; what is the neuronal receptor for α-klotho and which signalling pathways are activated by α-klotho in the brain to enhance cognition; how does peripherally administered α-klotho mediate neuroprotection; and what is the molecular basis for the beneficial effect of the VS variant of α-klotho? In this review, we summarise the recent research on neuronal α-klotho and discuss how the neuroprotective properties of α-klotho could be exploited to tackle age- and neurodegeneration-associated cognitive dysfunction.
Collapse
Affiliation(s)
- Kelsey Hanson
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, U.K
| | - Kate Fisher
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, U.K
| | - Nigel M. Hooper
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, U.K
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance and University of Manchester, Manchester, U.K
| |
Collapse
|
13
|
Furin Prodomain ppFurin Enhances Ca 2+ Entry Through Orai and TRPC6 Channels' Activation in Breast Cancer Cells. Cancers (Basel) 2021; 13:cancers13071670. [PMID: 33916304 PMCID: PMC8037623 DOI: 10.3390/cancers13071670] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/24/2021] [Accepted: 03/26/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Furin, a proprotein convertase that belongs to a family of Ca2+-dependent serine peptidases, is involved in the maturation of a variety of proproteins, including growth factors, receptors and differentiation factors, adhesion molecules and proteases. Furin have been associated with tumorigenesis and tumor progression and metastasis; therefore, it has been hypothesized that Furin may constitute a new potential target for cancer therapy. In triple negative breast cancer cells, inhibition of Furin by the prodomain ppFurin results in enhancement of Ca2+ influx, which involves both the increase of store-operated calcium entry (SOCE) and the activation of constitutive Ca2+ entry. The latter involves the activation of Orai and TRPC6 channels, while the increase of SOCE observed in ppFurin-expressing cells is entirely dependent on Orai channels. As a result, ppFurin expression reduces triple negative breast cancer cell viability and ability to migrate and enhances their sensitization to hydrogen peroxide-induced apoptosis. Abstract The intracellular calcium concentration ([Ca2+]i) modulation plays a key role in the regulation of cellular growth and survival in normal cells and failure of [Ca2+]i homeostasis is involved in tumor initiation and progression. Here we showed that inhibition of Furin by its naturally occurring inhibitor the prodomain ppFurin in the MDA-MB-231 breast cancer cells resulted in enhanced store-operated calcium entry (SOCE) and reduced the cell malignant phenotype. Expression of ppFurin in a stable manner in MDA-MB-231 and the melanoma MDA-MB-435 cell lines inhibits Furin activity as assessed by in vitro digestion assays. Accordingly, cell transfection experiments revealed that the ppFurin-expressing cells are unable to adequately process the proprotein convertase (PC) substrates vascular endothelial growth factor C (proVEGF-C) and insulin-like growth factor-1 receptor (proIGF-1R). Compared to MDA-MB-435 cells, expression of ppFurin in MDA-MB-231 and BT20 cells significantly enhanced SOCE and induced constitutive Ca2+ entry. The enhanced SOCE is impaired by inhibition of Orai channels while the constitutive Ca2+ entry is attenuated by silencing or inhibition of TRPC6 or inhibition of Orai channels. Analysis of TRPC6 activation revealed its upregulated tyrosine phosphorylation in ppFurin-expressing MDA-MB-231 cells. In addition, while ppFurin had no effect on MDA-MB-435 cell viability, in MDA-MB-231 cells ppFurin expression reduced their viability and ability to migrate and enhanced their sensitization to the apoptosis inducer hydrogen peroxide and similar results were observed in BT20 cells. These findings suggest that Furin inhibition by ppFurin may be a useful strategy to interfere with Ca2+ mobilization, leading to breast cancer cells’ malignant phenotype repression and reduction of their resistance to treatments.
Collapse
|