1
|
Yadav RK, Johnson AO, Peeples ES. The dynamic duo: Decoding the roles of hypoxia-inducible factors in neonatal hypoxic-ischemic brain injury. Exp Neurol 2025; 386:115170. [PMID: 39884332 DOI: 10.1016/j.expneurol.2025.115170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 01/22/2025] [Accepted: 01/27/2025] [Indexed: 02/01/2025]
Abstract
Neonatal hypoxic-ischemic encephalopathy (HIE) results in considerable mortality and neurodevelopmental disability, with a particularly high disease burden in low- and middle-income countries. Improved understanding of the pathophysiology underlying this injury could allow for improved diagnostic and therapeutic options. Specifically, hypoxia-inducible factors (HIF-1α and HIF-2α) likely play a key role, but that role is complex and remains understudied. This review analyses the recent findings seeking to uncover the impacts of HIF-1α and HIF-2α in neonatal hypoxic-ischemic brain injury (HIBI), focusing on their cell specific expression, time-dependant activities, and potential therapeutic implications. Recent findings have revealed temporal patterns of HIF-1α and HIF-2α expression following hypoxic-ischemic injury, with distinct functions for HIF-1α versus HIF-2α within the neonatal brain. Ongoing studies aimed at further revealing the relationship between HIF isoforms and developing targeted interventions offer promising avenues for therapeutic management which could improve long-term neurological outcomes in affected newborns.
Collapse
Affiliation(s)
- Rajnish Kumar Yadav
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE, United States of America; Child Health Research Institute, Omaha, NE, United States of America
| | - Amanda O Johnson
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE, United States of America; Child Health Research Institute, Omaha, NE, United States of America
| | - Eric S Peeples
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE, United States of America; Child Health Research Institute, Omaha, NE, United States of America; Division of Neonatology, Children's Nebraska, Omaha, NE, United States of America.
| |
Collapse
|
2
|
Schreiber T, Scharner B, Thévenod F. Insoluble HIFa protein aggregates by cadmium disrupt hypoxia-prolyl hydroxylase (PHD)-hypoxia inducible factor (HIFa) signaling in renal epithelial (NRK-52E) and interstitial (FAIK3-5) cells. Biometals 2024; 37:1629-1642. [PMID: 39256317 PMCID: PMC11618182 DOI: 10.1007/s10534-024-00631-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 08/24/2024] [Indexed: 09/12/2024]
Abstract
The kidney is the main organ that senses changes in systemic O2 pressure by hypoxia-PHD-HIFa (HPH) signaling, resulting in adaptive target gene activation, including erythropoietin (EPO). The non-essential transition metal cadmium (Cd) is nephrotoxic and disrupts the renal HPH pathway, which may promote Cd-associated chronic renal disease (CKD). A deeper molecular understanding of Cd interference with renal HPH signaling is missing, and no data with renal cell lines are available. In rat kidney NRK-52E cells, which model the proximal tubule, and murine fibroblastoid atypical interstitial kidney (FAIK3-5) cells, which mimic renal EPO-producing cells, the chemical hypoxia mimetic dimethyloxalylglycine (DMOG; 1 mmol/l) or hypoxia (1% O2) activated HPH signaling. Cd2+ (2.5-20 µmol/l for ≤ 24 h) preferentially induced necrosis (trypan blue uptake) of FAIK3-5 cells at high Cd whereas NRK-52E cells specially developed apoptosis (PARP-1 cleavage) at all Cd concentrations. Cd (12.5 µmol/l) abolished HIFa stabilization and prevented upregulation of target genes (quantitative real-time polymerase chain reaction and immunoblotting) induced by DMOG or hypoxia in both cell lines, which was caused by the formation of insoluble HIFa aggregates. Strikingly, hypoxic preconditioning (1% O2 for 18 h) reduced apoptosis of FAIK3-5 and NRK-52E cells at low Cd concentrations and decreased insoluble HIFa proteins. Hence, drugs mimicking hypoxic preconditioning could reduce CKD induced by chronic low Cd exposure.
Collapse
Affiliation(s)
- Timm Schreiber
- Institute of Physiology and Pathophysiology and ZBAF, Faculty of Health, Witten/Herdecke University, Stockumer Str 12 (Thyssenhaus), 58453, Witten, Germany.
| | - Bettina Scharner
- Institute of Physiology and Pathophysiology and ZBAF, Faculty of Health, Witten/Herdecke University, Stockumer Str 12 (Thyssenhaus), 58453, Witten, Germany
| | - Frank Thévenod
- Institute of Physiology and Pathophysiology and ZBAF, Faculty of Health, Witten/Herdecke University, Stockumer Str 12 (Thyssenhaus), 58453, Witten, Germany.
- Physiology and Pathophysiology of Cells and Membranes, Medical School OWL, Bielefeld University, Morgenbreede 1, 33615, Bielefeld, Germany.
| |
Collapse
|
3
|
Lopez-Tello J, Kiu R, Schofield Z, Zhang CXW, van Sinderen D, Le Gall G, Hall LJ, Sferruzzi-Perri AN. Maternal gut Bifidobacterium breve modifies fetal brain metabolism in germ-free mice. Mol Metab 2024; 88:102004. [PMID: 39127167 PMCID: PMC11401360 DOI: 10.1016/j.molmet.2024.102004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/06/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND Recent advances have significantly expanded our understanding of the gut microbiome's influence on host physiology and metabolism. However, the specific role of certain microorganisms in gestational health and fetal development remains underexplored. OBJECTIVE This study investigates the impact of Bifidobacterium breve UCC2003 on fetal brain metabolism when colonized in the maternal gut during pregnancy. METHODS Germ-free pregnant mice were colonized with or without B. breve UCC2003 during pregnancy. The metabolic profiles of fetal brains were analyzed, focusing on the presence of key metabolites and the expression of critical metabolic and cellular pathways. RESULTS Maternal colonization with B. breve resulted in significant metabolic changes in the fetal brain. Specifically, ten metabolites, including citrate, 3-hydroxyisobutyrate, and carnitine, were reduced in the fetal brain. These alterations were accompanied by increased abundance of transporters involved in glucose and branched-chain amino acid uptake. Furthermore, supplementation with this bacterium was associated with elevated expression of critical metabolic pathways such as PI3K-AKT, AMPK, STAT5, and Wnt-β-catenin signaling, including its receptor Frizzled-7. Additionally, there was stabilization of HIF-2 protein and modifications in genes and proteins related to cellular growth, axogenesis, and mitochondrial function. CONCLUSIONS The presence of maternal B. breve during pregnancy plays a crucial role in modulating fetal brain metabolism and growth. These findings suggest that Bifidobacterium could modify fetal brain development, potentially offering new avenues for enhancing gestational health and fetal development through microbiota-targeted interventions.
Collapse
Affiliation(s)
- Jorge Lopez-Tello
- Department of Physiology, Development, and Neuroscience, Centre for Trophoblast Research, University of Cambridge, Cambridge, UK; Department of Physiology, Faculty of Medicine. Autonomous University of Madrid, Spain.
| | - Raymond Kiu
- Food, Microbiome & Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK; Institute of Microbiology & Infection, University of Birmingham, Birmingham, UK; Department of Microbes, Infection & Microbiomes, School of Infection, Inflammation & Immunology, University of Birmingham, Birmingham, UK
| | - Zoe Schofield
- Food, Microbiome & Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Cindy X W Zhang
- Department of Physiology, Development, and Neuroscience, Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| | | | - Gwénaëlle Le Gall
- Norwich Medical School, University of East Anglia, Bob Champion Research and Education Building, James Watson Road, Norwich Research Park, Norwich NR4 7UQ, UK
| | - Lindsay J Hall
- Food, Microbiome & Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK; Institute of Microbiology & Infection, University of Birmingham, Birmingham, UK; Department of Microbes, Infection & Microbiomes, School of Infection, Inflammation & Immunology, University of Birmingham, Birmingham, UK
| | - Amanda N Sferruzzi-Perri
- Department of Physiology, Development, and Neuroscience, Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| |
Collapse
|
4
|
Bautista-Perez SM, Silva-Islas CA, Sandoval-Marquez OU, Toledo-Toledo J, Bello-Martínez JM, Barrera-Oviedo D, Maldonado PD. Antioxidant and Anti-Inflammatory Effects of Garlic in Ischemic Stroke: Proposal of a New Mechanism of Protection through Regulation of Neuroplasticity. Antioxidants (Basel) 2023; 12:2126. [PMID: 38136245 PMCID: PMC10740829 DOI: 10.3390/antiox12122126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/02/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
Stroke represents one of the main causes of death and disability in the world; despite this, pharmacological therapies against stroke remain insufficient. Ischemic stroke is the leading etiology of stroke. Different molecular mechanisms, such as excitotoxicity, oxidative stress, and inflammation, participate in cell death and tissue damage. At a preclinical level, different garlic compounds have been evaluated against these mechanisms. Additionally, there is evidence supporting the participation of garlic compounds in other mechanisms that contribute to brain tissue recovery, such as neuroplasticity. After ischemia, neuroplasticity is activated to recover cognitive and motor function. Some garlic-derived compounds and preparations have shown the ability to promote neuroplasticity under physiological conditions and, more importantly, in cerebral damage models. This work describes damage/repair mechanisms and the importance of garlic as a source of antioxidant and anti-inflammatory agents against damage. Moreover, we examine the less-explored neurotrophic properties of garlic, culminating in proposals and observations based on our review of the available information. The aim of the present study is to propose that garlic compounds and preparations could contribute to the treatment of ischemic stroke through their neurotrophic effects.
Collapse
Affiliation(s)
- Sandra Monserrat Bautista-Perez
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (S.M.B.-P.); (J.M.B.-M.); (D.B.-O.)
- Laboratorio de Patología Vascular Cerebral, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City 14269, Mexico; (C.A.S.-I.); (O.U.S.-M.); (J.T.-T.)
| | - Carlos Alfredo Silva-Islas
- Laboratorio de Patología Vascular Cerebral, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City 14269, Mexico; (C.A.S.-I.); (O.U.S.-M.); (J.T.-T.)
| | - Oscar Uriel Sandoval-Marquez
- Laboratorio de Patología Vascular Cerebral, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City 14269, Mexico; (C.A.S.-I.); (O.U.S.-M.); (J.T.-T.)
| | - Jesús Toledo-Toledo
- Laboratorio de Patología Vascular Cerebral, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City 14269, Mexico; (C.A.S.-I.); (O.U.S.-M.); (J.T.-T.)
- Servicio de Cirugía General, Hospital General de Zona #30, Instituto Mexicano del Seguro Social, Mexico City 08300, Mexico
| | - José Manuel Bello-Martínez
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (S.M.B.-P.); (J.M.B.-M.); (D.B.-O.)
- Departamento Cirugía General, Hospital Central Militar, Mexico City 11600, Mexico
| | - Diana Barrera-Oviedo
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (S.M.B.-P.); (J.M.B.-M.); (D.B.-O.)
| | - Perla D. Maldonado
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (S.M.B.-P.); (J.M.B.-M.); (D.B.-O.)
- Laboratorio de Patología Vascular Cerebral, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City 14269, Mexico; (C.A.S.-I.); (O.U.S.-M.); (J.T.-T.)
| |
Collapse
|
5
|
Wang Y, Liu X, Wang M, Wang Y, Wang S, Jin L, Liu M, Zhou J, Chen Y. UBE3B promotes breast cancer progression by antagonizing HIF-2α degradation. Oncogene 2023; 42:3394-3406. [PMID: 37783786 DOI: 10.1038/s41388-023-02842-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 10/04/2023]
Abstract
Mutations in E3 ubiquitin ligase UBE3B have been linked to Kaufman Oculocerebrofacial Syndrome (KOS). Accumulating evidence indicates that UBE3B may play an important role in cancer. However, the precise role of UBE3B in cancer and the underlying mechanism remain largely uncharted. Here, we reported that UBE3B is an E3 ligase for hypoxia-inducible factor 2α (HIF-2α). Mechanically, UBE3B physically interacts with HIF-2α and promotes its lysine 63 (K63)-linked polyubiquitination, thereby inhibiting the Von Hippel-Lindau (VHL) E3 ligase complex-mediated HIF-2α degradation. UBE3B depletion inhibits breast cancer cell proliferation, colony formation, migration, and invasion in vitro and suppresses breast tumor growth and lung metastasis in vivo. We further identified K394, K497, and K503 of HIF-2α as key ubiquitination sites for UBE3B. K394/497/503R mutation of HIF-2α dramatically abolishes UBE3B-mediated breast cancer growth and lung metastasis. Intriguingly, the protein levels of UBE3B are upregulated and positively correlated with HIF-2α protein levels in breast cancer tissues. These findings uncover a critical mechanism underlying the role of UBE3B in HIF-2α regulation and breast cancer progression.
Collapse
Affiliation(s)
- Yijie Wang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Center for Cell Structure and Function, Institute of Biomedical Science, College of Life Sciences, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Xiong Liu
- School of Medicine, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Min Wang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Center for Cell Structure and Function, Institute of Biomedical Science, College of Life Sciences, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Yu Wang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Center for Cell Structure and Function, Institute of Biomedical Science, College of Life Sciences, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Shuo Wang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Center for Cell Structure and Function, Institute of Biomedical Science, College of Life Sciences, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Lai Jin
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Min Liu
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Center for Cell Structure and Function, Institute of Biomedical Science, College of Life Sciences, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Jun Zhou
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Center for Cell Structure and Function, Institute of Biomedical Science, College of Life Sciences, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Yan Chen
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Center for Cell Structure and Function, Institute of Biomedical Science, College of Life Sciences, Shandong Normal University, Jinan, Shandong, 250014, China.
- School of Medicine, Jinan University, Guangzhou, Guangdong, 510632, China.
| |
Collapse
|
6
|
Aboouf MA, Thiersch M, Soliz J, Gassmann M, Schneider Gasser EM. The Brain at High Altitude: From Molecular Signaling to Cognitive Performance. Int J Mol Sci 2023; 24:10179. [PMID: 37373327 DOI: 10.3390/ijms241210179] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/13/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
The brain requires over one-fifth of the total body oxygen demand for normal functioning. At high altitude (HA), the lower atmospheric oxygen pressure inevitably challenges the brain, affecting voluntary spatial attention, cognitive processing, and attention speed after short-term, long-term, or lifespan exposure. Molecular responses to HA are controlled mainly by hypoxia-inducible factors. This review aims to summarize the cellular, metabolic, and functional alterations in the brain at HA with a focus on the role of hypoxia-inducible factors in controlling the hypoxic ventilatory response, neuronal survival, metabolism, neurogenesis, synaptogenesis, and plasticity.
Collapse
Affiliation(s)
- Mostafa A Aboouf
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zürich, 8057 Zurich, Switzerland
- Department of Biochemistry, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
- Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, 8057 Zurich, Switzerland
| | - Markus Thiersch
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zürich, 8057 Zurich, Switzerland
- Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, 8057 Zurich, Switzerland
| | - Jorge Soliz
- Institute Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), Faculty of Medicine, Université Laval, Québec, QC G1V 4G5, Canada
| | - Max Gassmann
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zürich, 8057 Zurich, Switzerland
- Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, 8057 Zurich, Switzerland
| | - Edith M Schneider Gasser
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zürich, 8057 Zurich, Switzerland
- Institute Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), Faculty of Medicine, Université Laval, Québec, QC G1V 4G5, Canada
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, 8057 Zurich, Switzerland
| |
Collapse
|
7
|
Leu T, Denda J, Wrobeln A, Fandrey J. Hypoxia-Inducible Factor-2alpha Affects the MEK/ERK Signaling Pathway via Primary Cilia in Connection with the Intraflagellar Transport Protein 88 Homolog. Mol Cell Biol 2023; 43:174-183. [PMID: 37074220 PMCID: PMC10153011 DOI: 10.1080/10985549.2023.2198931] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/25/2023] [Indexed: 04/20/2023] Open
Abstract
The ability of cells to communicate with their surrounding is a prerequisite for essential processes such as proliferation, apoptosis, migration, and differentiation. To this purpose, primary cilia serve as antennae-like structures on the surface of most mammalian cell types. Cilia allow signaling via hedgehog, Wnt or TGF-beta pathways. Their length, in part controlled by the activity of intraflagellar transport (IFT), is a parameter for adequate function of primary cilia. Here we show, in murine neuronal cells, that intraflagellar transport protein 88 homolog (IFT88) directly interacts with the hypoxia-inducible factor-2α (HIF-2α), hitherto known as an oxygen-regulated transcription factor. Furthermore, HIF-2α accumulates in the ciliary axoneme and promotes ciliary elongation under hypoxia. Loss of HIF-2α affected ciliary signaling in neuronal cells by decreasing transcription of Mek1/2 and Erk1/2. Targets of the MEK/ERK signaling pathway, such as Fos and Jun, were significantly decreased. Our results suggest that HIF-2α influences ciliary signaling by interacting with IFT88 under hypoxic conditions. This implies an unexpected and far more extensive function of HIF-2α than described before.
Collapse
Affiliation(s)
- Tristan Leu
- Institute of Physiology, University Duisburg-Essen, Essen, Germany
| | - Jannik Denda
- Institute of Physiology, University Duisburg-Essen, Essen, Germany
| | - Anna Wrobeln
- Institute of Physiology, University Duisburg-Essen, Essen, Germany
| | - Joachim Fandrey
- Institute of Physiology, University Duisburg-Essen, Essen, Germany
| |
Collapse
|