1
|
Liu Q, Li F, Hu S, Ding N, Ma F, Hao Y, Li G, Xiong J, Zhang H, Jiang Y. Pyruvate dehydrogenase alleviates macrophage autophagy in Hcy-induced ApoE -/- mice. Acta Biochim Biophys Sin (Shanghai) 2025. [PMID: 39980347 DOI: 10.3724/abbs.2025021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2025] Open
Abstract
Macrophages play a protective role in atherosclerosis, whereas homocysteine (Hcy) is recognized as an independent risk factor for atherosclerosis. Defects in macrophage autophagy contribute to the formation of atherosclerotic plaques, and dysregulated energy metabolism is closely linked to the process of autophagy. However, the regulation of macrophage autophagy by pyruvate dehydrogenase (PDH), a key component of the PDH complex involved in energy and metabolic homeostasis, remains poorly understood in the context of atherosclerosis induced by Hcy. In our study, proteomic profiling identifies 748 upregulated proteins and 760 downregulated proteins in Hcy-treated macrophages. KEGG pathway analysis reveals significant enrichment of differentially expressed proteins in metabolism-related pathways, including those related to the biosynthesis of amino acids, carbon metabolism, and glycolysis/gluconeogenesis. Additionally, we explore the role of PDH in mediating Hcy-induced atherosclerosis in ApoE -/- mice. The results show a marked reduction in PDH expression and activity in Hcy-treated macrophages, leading to impaired autophagy. Notably, PDH activation enhances the assembly of the autophagy initiator ULK1-FIP200-Atg13 complex through the modulation of the AMPK/mTOR signaling pathway, suggesting a potential therapeutic target for Hcy-induced atherosclerosis.
Collapse
Affiliation(s)
- Qiujun Liu
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan 750004, China
- Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan 750004, China
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Feng Li
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan 750004, China
- Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan 750004, China
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
- Center of Laboratory Medicine, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Shutong Hu
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan 750004, China
- Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan 750004, China
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Ning Ding
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan 750004, China
- Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan 750004, China
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Fang Ma
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan 750004, China
- Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan 750004, China
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Yinju Hao
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan 750004, China
- Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan 750004, China
| | - Guizhong Li
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan 750004, China
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Jiantuan Xiong
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan 750004, China
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Huiping Zhang
- Department of Medical Genetics, Maternal and Child Health of Hunan Province, Changsha 410008, China
- Medical Experimental Center, General Hospital of Ningxia Medical University, Yinchuan 750004, China
| | - Yideng Jiang
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan 750004, China
- Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan 750004, China
| |
Collapse
|
2
|
Meng X, Zhang H, Zhao Z, Li S, Zhang X, Guo R, Liu H, Yuan Y, Li W, Song Q, Liu J. Type 3 diabetes and metabolic reprogramming of brain neurons: causes and therapeutic strategies. Mol Med 2025; 31:61. [PMID: 39966707 PMCID: PMC11834690 DOI: 10.1186/s10020-025-01101-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 01/22/2025] [Indexed: 02/20/2025] Open
Abstract
Abnormal glucose metabolism inevitably disrupts normal neuronal function, a phenomenon widely observed in Alzheimer's disease (AD). Investigating the mechanisms of metabolic adaptation during disease progression has become a central focus of research. Considering that impaired glucose metabolism is closely related to decreased insulin signaling and insulin resistance, a new concept "type 3 diabetes mellitus (T3DM)" has been coined. T3DM specifically refers to the brain's neurons becoming unresponsive to insulin, underscoring the strong link between diabetes and AD. Recent studies reveal that during brain insulin resistance, neurons exhibit mitochondrial dysfunction, reduced glucose metabolism, and elevated lactate levels. These findings suggest that impaired insulin signaling caused by T3DM may lead to a compensatory metabolic shift in neurons toward glycolysis. Consequently, this review aims to explore the underlying causes of T3DM and elucidate how insulin resistance drives metabolic reprogramming in neurons during AD progression. Additionally, it highlights therapeutic strategies targeting insulin sensitivity and mitochondrial function as promising avenues for the successful development of AD treatments.
Collapse
Affiliation(s)
- Xiangyuan Meng
- Department of Toxicology, School of Public Health, Jilin University, Changchun, 130021, China
| | - Hui Zhang
- Institute of Agricultural Quality Standard and Testing Technology, Jilin Academy of Agricultural Sciences, Changchun, 130021, China
| | - Zhenhu Zhao
- Department of Toxicology, School of Public Health, Jilin University, Changchun, 130021, China
| | - Siyao Li
- Department of Toxicology, School of Public Health, Jilin University, Changchun, 130021, China
| | - Xin Zhang
- Department of Toxicology, School of Public Health, Jilin University, Changchun, 130021, China
| | - Ruihan Guo
- Department of Toxicology, School of Public Health, Jilin University, Changchun, 130021, China
| | - Huimin Liu
- Department of Toxicology, School of Public Health, Jilin University, Changchun, 130021, China
| | - Yiling Yuan
- Department of Toxicology, School of Public Health, Jilin University, Changchun, 130021, China
| | - Wanrui Li
- Department of Toxicology, School of Public Health, Jilin University, Changchun, 130021, China
| | - Qi Song
- Department of Toxicology, School of Public Health, Jilin University, Changchun, 130021, China
| | - Jinyu Liu
- Department of Toxicology, School of Public Health, Jilin University, Changchun, 130021, China.
| |
Collapse
|
3
|
Hsieh CY, Lai YC, Lu KY, Lin G. Advancements, Challenges, and Future Prospects in Clinical Hyperpolarized Magnetic Resonance Imaging: A Comprehensive Review. Biomed J 2024:100802. [PMID: 39442802 DOI: 10.1016/j.bj.2024.100802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 09/21/2024] [Accepted: 10/19/2024] [Indexed: 10/25/2024] Open
Abstract
Hyperpolarized (HP) magnetic resonance imaging (MRI) is a groundbreaking imaging platform advancing from research to clinical practice, offering new possibilities for real-time, non-invasive metabolic imaging. This review explores the latest advancements, challenges, and future directions of HP MRI, emphasizing its transformative impact on both translational research and clinical applications. By employing techniques such as dissolution Dynamic Nuclear Polarization (dDNP), Parahydrogen-Induced Polarization (PHIP), Signal Amplification by Reversible Exchange (SABRE), and Spin-Exchange Optical Pumping (SEOP), HP MRI achieves enhanced nuclear spin polarization, enabling in vivo visualization of metabolic pathways with exceptional sensitivity. Current challenges, such as limited imaging windows, complex pre-scan protocols, and data processing difficulties, are addressed through innovative solutions like advanced pulse sequences, bolus tracking, and kinetic modeling. We highlight the evolution of HP MRI technology, focusing on its potential to revolutionize disease diagnosis and monitoring by revealing metabolic processes beyond the reach of conventional MRI and positron emission tomography (PET). Key advancements include the development of novel tracers like [2-13C]pyruvate and [1-13C]-alpha-ketoglutarate and improved data analysis techniques, broadening the scope of clinical metabolic imaging. Future prospects emphasize integrating artificial intelligence, standardizing imaging protocols, and developing new hyperpolarized agents to enhance reproducibility and expand clinical capabilities particularly in oncology, cardiology, and neurology. Ultimately, we envisioned HP MRI as a standardized modality for dynamic metabolic imaging in clinical practice.
Collapse
Affiliation(s)
- Ching-Yi Hsieh
- Research Center for Radiation Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; Clinical Metabolomics Core Laboratory, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Ying-Chieh Lai
- Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan, Taiwan; Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; Clinical Metabolomics Core Laboratory, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Kuan-Ying Lu
- Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan, Taiwan; Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Gigin Lin
- Research Center for Radiation Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan, Taiwan; Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; Clinical Metabolomics Core Laboratory, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.
| |
Collapse
|
4
|
Bai W, Cheng L, Xiong L, Wang M, Liu H, Yu K, Wang W. Protein succinylation associated with the progress of hepatocellular carcinoma. J Cell Mol Med 2022; 26:5702-5712. [PMID: 36308411 PMCID: PMC9667522 DOI: 10.1111/jcmm.17507] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 07/09/2022] [Accepted: 07/19/2022] [Indexed: 12/01/2022] Open
Abstract
Although post‐translational modification is critical to tumorigenesis, how succinylation modification of lysine sites influences hepatocellular carcinoma (HCC) remains obscure. 90 tumours and paired adjacent normal tissue of liver cancer were enrolled for succinylation staining. 423 HCC samples with 20 genes related to succinylation modification from TCGA were downloaded for model construction. Statistical methods were employed to analyse the data, including the Non‐Negative Matrix Factorization (NMF) algorithm, t‐Distributed Stochastic Neighbour Embedding (t‐SNE) algorithm, and Cox regression analysis. The staining pan‐succinyllysine antibody staining indicated that tumour tissues had a higher succinyllysine level than adjacent tissues (p < 0.001), which could be associated with a worse prognosis (p = 0.02). The survival was associated with pathological stage, tumour recurrence status and succinyllysine intensity in the univariate or multivariable cox survival analysis model. The risk model from 20 succinyllysine‐related genes had the best prognosis prediction. The high expression of succinylation modification in HCC contributed to the worse patient survival prognosis. Model construction of 20 genes related to succinylation modification (MEAF6, OXCT1, SIRT2, CREBBP, KAT5, SIRT4, SIRT6, SIRT7, CPT1A, GLYATL1, SDHA, SDHB, SDHC, SDHD, SIRT1, SIRT3, SIRT5, SUCLA2, SUCLG1 and SUCLG2) could be reliable in predicting prognosis in HCC.
Collapse
Affiliation(s)
- Wenhui Bai
- Department of Hepatobiliary Surgery, Eastern Campus Renmin Hospital of Wuhan University Wuhan China
| | - Li Cheng
- Department of Intensive Care Unit, Eastern Campus Renmin Hospital of Wuhan University Wuhan China
| | - Liangkun Xiong
- Department of Hepatobiliary Surgery, Eastern Campus Renmin Hospital of Wuhan University Wuhan China
| | - Maoming Wang
- Department of Hepatobiliary Surgery, Eastern Campus Renmin Hospital of Wuhan University Wuhan China
| | - Hao Liu
- Department of Hepatobiliary Surgery, Eastern Campus Renmin Hospital of Wuhan University Wuhan China
| | - Kaihuan Yu
- Department of Hepatobiliary Surgery, Eastern Campus Renmin Hospital of Wuhan University Wuhan China
| | - Weixing Wang
- Department of Hepatobiliary Surgery Renmin Hospital of Wuhan University Wuhan China
| |
Collapse
|
5
|
Ragavan M, McLeod MA, Rushin A, Merritt ME. Detecting de novo Hepatic Ketogenesis Using Hyperpolarized [2- 13C] Pyruvate. Front Physiol 2022; 13:832403. [PMID: 35197867 PMCID: PMC8859440 DOI: 10.3389/fphys.2022.832403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 01/14/2022] [Indexed: 11/28/2022] Open
Abstract
The role of ketones in metabolic health has progressed over the past two decades, moving from what was perceived as a simple byproduct of fatty acid oxidation to a central player in a multiplicity of disease states. Previous work with hyperpolarized (HP) 13C has shown that ketone production can be detected when using precursors that labeled acetyl-CoA at the C1 position, often in tissues that are not normally recognized as ketogenic. Here, we assay metabolism of HP [2-13C]pyruvate in the perfused mouse liver, a classic metabolic testbed where nutritional conditions can be precisely controlled. Livers perfused with long-chain fatty acids or the medium-chain fatty acid octanoate showed no evidence of ketogenesis in the 13C spectrum. In contrast, addition of dichloroacetate, a potent inhibitor of pyruvate dehydrogenase kinase, resulted in significant production of both acetoacetate and 3-hydroxybutyrate from the pyruvate precursor. This result indicates that ketones are readily produced from carbohydrates, but only in the case where pyruvate dehydrogenase activity is upregulated.
Collapse
Affiliation(s)
| | | | | | - Matthew E. Merritt
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, United States
| |
Collapse
|