1
|
Pandey AK, Madhu P, Bhat BV. Down-Regulation of CYP79A1 Gene Through Antisense Approach Reduced the Cyanogenic Glycoside Dhurrin in [ Sorghum bicolor (L.) Moench] to Improve Fodder Quality. Front Nutr 2019; 6:122. [PMID: 31544105 PMCID: PMC6729101 DOI: 10.3389/fnut.2019.00122] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 07/24/2019] [Indexed: 11/13/2022] Open
Abstract
A major limitation for the utilization of sorghum forage is the production of the cyanogenic glycoside dhurrin in its leaves and stem that may cause the death of cattle feeding on it at the pre-flowering stage. Therefore, we attempted to develop transgenic sorghum plants with reduced levels of hydrogen cyanide (HCN) by antisense mediated down-regulation of the expression of cytochrome P450 CYP79A1, the key enzyme of the dhurrin biosynthesis pathway. CYP79A1 cDNA was isolated and cloned in antisense orientation, driven by rice Act1 promoter. Shoot meristem explants of sorghum cultivar CSV 15 were transformed by the particle bombardment method and 27 transgenics showing the integration of transgene were developed. The biochemical assay for HCN in the transgenic sorghum plants confirmed significantly reduced HCN levels in transgenic plants and their progenies. The HCN content in the transgenics varied from 5.1 to 149.8 μg/g compared to 192.08 μg/g in the non-transformed control on dry weight basis. Progenies with reduced HCN content were advanced after each generation till T3. In T3 generation, progenies of two promising events were tested which produced highly reduced levels of HCN (mean of 62.9 and 76.2 μg/g, against the control mean of 221.4 μg/g). The reduction in the HCN levels of transgenics confirmed the usefulness of this approach for reducing HCN levels in forage sorghum plants. The study effectively demonstrated that the antisense CYP79A1 gene deployment was effective in producing sorghum plants with lower HCN content which are safer for cattle to feed on.
Collapse
Affiliation(s)
- Arun K. Pandey
- ICAR-Indian Institute of Millets Research (IIMR), Hyderabad, India
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Pusuluri Madhu
- ICAR-Indian Institute of Millets Research (IIMR), Hyderabad, India
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | | |
Collapse
|
2
|
Thermostabilization of a thermophilic 1,4-α-glucan branching enzyme through C-terminal truncation. Int J Biol Macromol 2018; 107:1510-1518. [DOI: 10.1016/j.ijbiomac.2017.10.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 06/07/2017] [Accepted: 10/04/2017] [Indexed: 12/26/2022]
|
3
|
Chen L, Lu D, Wang T, Li Z, Zhao Y, Jiang Y, Zhang Q, Cao Q, Fang K, Xing Y, Qin L. Identification and expression analysis of starch branching enzymes involved in starch synthesis during the development of chestnut (Castanea mollissima Blume) cotyledons. PLoS One 2017; 12:e0177792. [PMID: 28542293 PMCID: PMC5441625 DOI: 10.1371/journal.pone.0177792] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Accepted: 05/03/2017] [Indexed: 12/21/2022] Open
Abstract
Chinese chestnut (Castanea mollissima Blume) is native to China and distributes widely in arid and semi-arid mountain area with barren soil. As a perennial crop, chestnut is an alternative food source and acts as an important commercial nut tree in China. Starch is the major metabolite in nuts, accounting for 46 ~ 64% of the chestnut dry weight. The accumulation of total starch and amylopectin showed a similar increasing trend during the development of nut. Amylopectin contributed up to 76% of the total starch content at 80 days after pollination (DAP). The increase of total starch mainly results from amylopectin synthesis. Among genes associated with starch biosynthesis, CmSBEs (starch branching enzyme) showed significant increase during nut development. Two starch branching enzyme isoforms, CmSBE I and CmSBE II, were identified from chestnut cotyledon using zymogram analysis. CmSBE I and CmSBE II showed similar patterns of expression during nut development. The accumulations of CmSBE transcripts and proteins in developing cotyledons were characterized. The expressions of two CmSBE genes increased from 64 DAP and reached the highest levels at 77 DAP, and SBE activity reached its peak at 74 DAP. These results suggested that the CmSBE enzymes mainly contributed to amylopectin synthesis and influenced the amylopectin content in the developing cotyledon, which would be beneficial to chestnut germplasm selection and breeding.
Collapse
Affiliation(s)
- Liangke Chen
- College of Plant Science and Technology, Beijing Collaborative Innovation Center for Eco-Environmental Improvement with Forestry and Fruit Trees, Beijing University of Agriculture, Beijing, China
| | - Dan Lu
- College of Plant Science and Technology, Beijing Collaborative Innovation Center for Eco-Environmental Improvement with Forestry and Fruit Trees, Beijing University of Agriculture, Beijing, China
| | - Teng Wang
- College of Plant Science and Technology, Beijing Collaborative Innovation Center for Eco-Environmental Improvement with Forestry and Fruit Trees, Beijing University of Agriculture, Beijing, China
| | - Zhi Li
- College of Plant Science and Technology, Beijing Collaborative Innovation Center for Eco-Environmental Improvement with Forestry and Fruit Trees, Beijing University of Agriculture, Beijing, China
| | - Yanyan Zhao
- College of Plant Science and Technology, Beijing Collaborative Innovation Center for Eco-Environmental Improvement with Forestry and Fruit Trees, Beijing University of Agriculture, Beijing, China
| | - Yichen Jiang
- College of Plant Science and Technology, Beijing Collaborative Innovation Center for Eco-Environmental Improvement with Forestry and Fruit Trees, Beijing University of Agriculture, Beijing, China
| | - Qing Zhang
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, China
| | - Qingqin Cao
- Key Laboratory of Urban Agriculture (North China), Ministry of Agriculture, Beijing, China
| | - Kefeng Fang
- College of Landscape Architecture, Beijing University of Agriculture, Beijing, China
| | - Yu Xing
- College of Plant Science and Technology, Beijing Collaborative Innovation Center for Eco-Environmental Improvement with Forestry and Fruit Trees, Beijing University of Agriculture, Beijing, China
- * E-mail: (YX); (LQ)
| | - Ling Qin
- College of Plant Science and Technology, Beijing Collaborative Innovation Center for Eco-Environmental Improvement with Forestry and Fruit Trees, Beijing University of Agriculture, Beijing, China
- * E-mail: (YX); (LQ)
| |
Collapse
|
4
|
Mohtar NS, Abdul Rahman MB, Raja Abd Rahman RNZ, Leow TC, Salleh AB, Mat Isa MN. Expression and characterization of thermostable glycogen branching enzyme from Geobacillus mahadia Geo-05. PeerJ 2016; 4:e2714. [PMID: 27957389 PMCID: PMC5144683 DOI: 10.7717/peerj.2714] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 10/24/2016] [Indexed: 11/20/2022] Open
Abstract
The glycogen branching enzyme (EC 2.4.1.18), which catalyses the formation of α-1,6-glycosidic branch points in glycogen structure, is often used to enhance the nutritional value and quality of food and beverages. In order to be applicable in industries, enzymes that are stable and active at high temperature are much desired. Using genome mining, the nucleotide sequence of the branching enzyme gene (glgB) was extracted from the Geobacillus mahadia Geo-05 genome sequence provided by the Malaysia Genome Institute. The size of the gene is 2013 bp, and the theoretical molecular weight of the protein is 78.43 kDa. The gene sequence was then used to predict the thermostability, function and the three dimensional structure of the enzyme. The gene was cloned and overexpressed in E. coli to verify the predicted result experimentally. The purified enzyme was used to study the effect of temperature and pH on enzyme activity and stability, and the inhibitory effect by metal ion on enzyme activity. This thermostable glycogen branching enzyme was found to be most active at 55 °C, and the half-life at 60 °C and 70 °C was 24 h and 5 h, respectively. From this research, a thermostable glycogen branching enzyme was successfully isolated from Geobacillus mahadia Geo-05 by genome mining together with molecular biology technique.
Collapse
Affiliation(s)
- Nur Syazwani Mohtar
- Faculty of Science, Universiti Putra Malaysia , Serdang , Selangor , Malaysia
| | - Mohd Basyaruddin Abdul Rahman
- Faculty of Science, Universiti Putra Malaysia, Serdang, Selangor, Malaysia; Malaysia Genome Institute, Kajang, Selangor, Malaysia
| | | | - Thean Chor Leow
- Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia , Serdang , Selangor , Malaysia
| | - Abu Bakar Salleh
- Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia , Serdang , Selangor , Malaysia
| | | |
Collapse
|
5
|
Boyer L, Roussel X, Courseaux A, Ndjindji OM, Lancelon-Pin C, Putaux JL, Tetlow IJ, Emes MJ, Pontoire B, D' Hulst C, Wattebled F. Expression of Escherichia coli glycogen branching enzyme in an Arabidopsis mutant devoid of endogenous starch branching enzymes induces the synthesis of starch-like polyglucans. PLANT, CELL & ENVIRONMENT 2016; 39:1432-1447. [PMID: 26715025 DOI: 10.1111/pce.12702] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 12/08/2015] [Accepted: 12/16/2015] [Indexed: 06/05/2023]
Abstract
Starch synthesis requires several enzymatic activities including branching enzymes (BEs) responsible for the formation of α(1 → 6) linkages. Distribution and number of these linkages are further controlled by debranching enzymes that cleave some of them, rendering the polyglucan water-insoluble and semi-crystalline. Although the activity of BEs and debranching enzymes is mandatory to sustain normal starch synthesis, the relative importance of each in the establishment of the plant storage polyglucan (i.e. water insolubility, crystallinity and presence of amylose) is still debated. Here, we have substituted the activity of BEs in Arabidopsis with that of the Escherichia coli glycogen BE (GlgB). The latter is the BE counterpart in the metabolism of glycogen, a highly branched water-soluble and amorphous storage polyglucan. GlgB was expressed in the be2 be3 double mutant of Arabidopsis, which is devoid of BE activity and consequently free of starch. The synthesis of a water-insoluble, partly crystalline, amylose-containing starch-like polyglucan was restored in GlgB-expressing plants, suggesting that BEs' origin only has a limited impact on establishing essential characteristics of starch. Moreover, the balance between branching and debranching is crucial for the synthesis of starch, as an excess of branching activity results in the formation of highly branched, water-soluble, poorly crystalline polyglucan.
Collapse
Affiliation(s)
- Laura Boyer
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France
| | - Xavier Roussel
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France
| | - Adeline Courseaux
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France
| | - Ofilia M Ndjindji
- Université Grenoble Alpes, Centre de Recherches sur les Macromolécules Végétales (CERMAV), F-38000, Grenoble, France
- CNRS, CERMAV, F-38000, Grenoble, France
| | - Christine Lancelon-Pin
- Université Grenoble Alpes, Centre de Recherches sur les Macromolécules Végétales (CERMAV), F-38000, Grenoble, France
- CNRS, CERMAV, F-38000, Grenoble, France
| | - Jean-Luc Putaux
- Université Grenoble Alpes, Centre de Recherches sur les Macromolécules Végétales (CERMAV), F-38000, Grenoble, France
- CNRS, CERMAV, F-38000, Grenoble, France
| | - Ian J Tetlow
- Department of Molecular and Cellular Biology, Science Complex, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Michael J Emes
- Department of Molecular and Cellular Biology, Science Complex, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | | | - Christophe D' Hulst
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France
| | - Fabrice Wattebled
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France
| |
Collapse
|
6
|
Li C, Gilbert RG. Progress in controlling starch structure by modifying starch-branching enzymes. PLANTA 2016; 243:13-22. [PMID: 26486516 DOI: 10.1007/s00425-015-2421-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 10/10/2015] [Indexed: 06/05/2023]
Abstract
This paper reviews the progress of development of plants with desirable starch structure by modifying starch branching enzymes. Starch-branching enzyme (SBE) is responsible for the creation of branches during starch biosynthesis in plastids, and is a major determinant of the final fine structure and physical properties of the starch. Multiple isoforms of SBE have been found in plants, with each playing a different role in amylopectin synthesis. Different methods have been used to develop desirable starch structures by modifying the SBE activity. These can involve changing its expression level (either up-regulation or down-regulation), genetically modifying the activity of the SBE itself, and varying the length of its transferred chains. Changing the activity and the transferred chain length of SBE has been less studied than changing the expression level of SBE in vivo. This article reviews and summarizes new tools for developing plants producing the next generation of starches.
Collapse
|
7
|
Characterization of the time evolution of starch structure from rice callus. Carbohydr Polym 2015; 127:116-23. [DOI: 10.1016/j.carbpol.2015.03.046] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 03/08/2015] [Accepted: 03/09/2015] [Indexed: 11/23/2022]
|
8
|
Sun MM, Lee HJ, Abdula SE, Jee MG, Cho YG. Overexpression of starch branching enzyme 1 gene improves eating quality in japonica rice. ACTA ACUST UNITED AC 2013. [DOI: 10.5010/jpb.2013.40.2.088] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
9
|
Abstract
Regions of DNA that bind to the nuclear matrix, or nucleoskeleton, are known as Matrix Attachment Regions (MARs). MARs are thought to play an important role in higher-order structure and chromatin organization within the nucleus. MARs are also thought to act as boundaries of chromosomal domains that act to separate regions of gene-rich, decondensed euchromatin from highly repetitive, condensed heterochromatin. Herein I will present evidence that MARs do indeed act as domain boundaries and can prevent the spread of silencing into active genes. Many fundamental questions remain unanswered about how MARs function in the nucleus. New findings in epigenetics indicate that MARs may also play an important role in the organization of genes and the eventual transport of their mRNAs through the nuclear pore.
Collapse
|
10
|
Han Y, Gasic K, Sun F, Xu M, Korban SS. A gene encoding starch branching enzyme I (SBEI) in apple (Malusxdomestica, Rosaceae) and its phylogenetic relationship to Sbe genes from other angiosperms. Mol Phylogenet Evol 2006; 43:852-63. [PMID: 17049282 DOI: 10.1016/j.ympev.2006.09.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2006] [Revised: 08/25/2006] [Accepted: 09/05/2006] [Indexed: 11/29/2022]
Abstract
An apple starch-branching enzyme SbeI gene (GenBank Accession No. DQ115404) has been isolated, cloned, and sequenced. The SbeI is a single copy gene in the apple genome, consisting of 14 exons and 13 introns, and covering 6075bp. As detected by RT-PCR, the apple SbeI is expressed at very low levels during early stages of fruit development; while, the highest levels of mRNA transcripts are observed at approximately 44 days post-pollination. Besides fruits, the apple SbeI is also expressed in buds and flowers, and very weakly in leaves. The genomic structure of SbeI in apple is strikingly similar to those reported so far in grasses (Poaceae), with exons 4 through 13 being of identical lengths in both apple and grasses. Moreover, structure similarities in exon lengths have also been detected in SbeII genes of both grasses and eudicots. These findings prompted the investigation of the evolutionary process of the Sbe gene family in angiosperms. A total of 26 Sbe sequences, representing an array of monocots and eudicots, are investigated in this study. Phylogenetic analysis has suggested that Sbe genes have duplicated into SbeI and SbeII prior to the divergence of moncots from eudicots. The SbeII gene is further duplicated into SbeIIa and SbeIIb prior to the radiation of grasses; however, it is not yet clear whether this duplication event has occurred before or after the radiation of the eudicots.
Collapse
MESH Headings
- 1,4-alpha-Glucan Branching Enzyme/genetics
- Base Sequence
- Blotting, Southern
- DNA, Plant/analysis
- DNA, Plant/genetics
- Gene Dosage
- Gene Expression Regulation, Enzymologic
- Gene Expression Regulation, Plant
- Magnoliopsida/classification
- Magnoliopsida/enzymology
- Magnoliopsida/genetics
- Malus/classification
- Malus/enzymology
- Malus/genetics
- Molecular Sequence Data
- Phylogeny
- Plant Proteins/genetics
- Promoter Regions, Genetic/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Sequence Analysis, DNA
Collapse
Affiliation(s)
- Yuepeng Han
- Department of Natural Resources and Environmental Sciences, University of Illinois, Urbana, IL 61801, USA
| | | | | | | | | |
Collapse
|