1
|
Feng C, Hussain MA, Zhao Y, Wang Y, Song Y, Li Y, Gao H, Jing Y, Xu K, Zhang W, Zhou Y, Li H. GmAKT1-mediated K + absorption positively modulates soybean salt tolerance by GmCBL9-GmCIPK6 complex. PLANT BIOTECHNOLOGY JOURNAL 2025; 23:2276-2289. [PMID: 40112140 PMCID: PMC12120911 DOI: 10.1111/pbi.70042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/20/2025] [Accepted: 02/15/2025] [Indexed: 03/22/2025]
Abstract
Soybean is one of the most important crops in the world. However, salt stress poses a major challenge to soybean growth and productivity. Therefore, unravelling the complex mechanisms governing salt tolerance in soybean is imperative for molecular breeding of salt-tolerant varieties to improve yield. Maintaining intracellular Na+/K+ homeostasis is one of the key factors for plant salt tolerance. Although some salt tolerance mechanisms involving Na+ exclusion have been well identified in plants, few studies have been conducted on how K+ influx controls soybean salt tolerance. Here, we characterized the function of soybean K+ channel gene GmAKT1 and identified GmCBL9-GmCIPK6 complex, which modulated GmAKT1-mediated K+ uptake under salt stress. Functional studies found that soybean lines GmAKT1 overexpressing increased K+ content and promoted salt tolerance, while CRISPR/Cas9-mediated disruption of GmAKT1 soybean lines decreased the K+ content and showed salt sensitivity. Furthermore, we identified that GmCIPK6 interacted with GmAKT1 and GmCBL9 interacted with GmCIPK6. In addition, Mn2+-Phos-tag assays proved that GmCIPK6 could phosphorylate GmAKT1. This collaborative activation of the GmCBL9-GmCIPK6-GmAKT1 module promoted K+ influx and enhanced soybean salt tolerance. Our findings reveal a new molecular mechanism in soybeans under salt stress and provide insights for cultivating new salt-tolerant soybean varieties by molecular breeding.
Collapse
Affiliation(s)
- Chen Feng
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication)Hainan UniversitySanya572025HainanChina
| | - Muhammad Azhar Hussain
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication)Hainan UniversitySanya572025HainanChina
| | - Yan Zhao
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication)Hainan UniversitySanya572025HainanChina
| | - Yuning Wang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication)Hainan UniversitySanya572025HainanChina
| | - Yuyan Song
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication)Hainan UniversitySanya572025HainanChina
| | - Yaxin Li
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication)Hainan UniversitySanya572025HainanChina
| | - Hongtao Gao
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication)Hainan UniversitySanya572025HainanChina
| | - Yan Jing
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication)Hainan UniversitySanya572025HainanChina
| | - Keheng Xu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication)Hainan UniversitySanya572025HainanChina
| | - Wenping Zhang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication)Hainan UniversitySanya572025HainanChina
| | - Yonggang Zhou
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication)Hainan UniversitySanya572025HainanChina
| | - Haiyan Li
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication)Hainan UniversitySanya572025HainanChina
| |
Collapse
|
2
|
Zhang J, Liu S, Yang W, Xie Y, Shao C, Zhang ZR, Li C, Yao X. Fusaric acid-mediated S-glutathionylation of MaAKT1 channel confers the virulence of Foc TR4 to banana. PLoS Pathog 2025; 21:e1013066. [PMID: 40203070 PMCID: PMC12040275 DOI: 10.1371/journal.ppat.1013066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 04/29/2025] [Accepted: 03/24/2025] [Indexed: 04/11/2025] Open
Abstract
Our previous studies have demonstrated that the phytotoxin fusaric acid (FSA), secreted by several Fusarium species, acts as a key factor in the development of plant diseases; however, the underlying mechanism remains unknown. In this study, we showed that the symptoms of Fusarium wilt in banana seedlings closely resembled those observed in plants grown under potassium (K+) deficiency conditions. Mechanistically, we found that FSA induces the accumulation of intracellular reactive oxygen species (ROS), which in turn inhibits banana K+ in banana roots. This inhibition occurs via S-glutathionylation of the banana AKT1 (MaAKT1) channel, leading to reduced K+ influx and reduced K+ content in banana roots. Through mutagenesis, electrophysiological studies, immunofluorescence staining, and co-immunoprecipitation experiment, we demonstrated that mutation of Cys202, a highly conserved site in the transmembrane segment 5 of MaAKT1, diminished the biochemical interaction of glutathione (GSH) and the channel induced by FSA, and alleviated Fusarium oxysporum f. sp. cubense tropical race 4 (Foc TR4) and FSA-induced yellowing symptom. The evolutionarily conserved function of this site for S-glutathionylation was also observed in Arabidopsis AKT1 (AtAKT1) channel, as mutation of its homologue site in AtAKT1 similarly reduced the GSH-AtAKT1 interaction under FSA stress. Collectively, our results suggest that FSA contributes to disease progression by decreasing K+ absorption through S-glutathionylation of MaAKT1 channel at the conserved Cys202 residue. These findings uncover a previously unrecognized role of FSA in regulating K+ homeostasis in bananas, and provide a foundation for future strategies to treat Fusarium wilt and increase banana production by targeting the conserved S-glutathionylation site in MaAKT1 channel.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, NHC Key Laboratory of Cell Transplantation, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, China
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Research Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou, China
| | - Siwen Liu
- School of Biomedical Sciences, Li Ka Shing Institute of Health Science, the Chinese University of Hong Kong, Hong Kong, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, China
| | - Wenlong Yang
- School of Biomedical Sciences, Li Ka Shing Institute of Health Science, the Chinese University of Hong Kong, Hong Kong, China
| | - Yanling Xie
- School of Biomedical Sciences, Li Ka Shing Institute of Health Science, the Chinese University of Hong Kong, Hong Kong, China
| | - Chuange Shao
- School of Biomedical Sciences, Li Ka Shing Institute of Health Science, the Chinese University of Hong Kong, Hong Kong, China
| | - Zhi-Ren Zhang
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, NHC Key Laboratory of Cell Transplantation, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, China
| | - Chunyu Li
- School of Biomedical Sciences, Li Ka Shing Institute of Health Science, the Chinese University of Hong Kong, Hong Kong, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, China
| | - Xiaoqiang Yao
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Research Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou, China
- Centre for Cell & Developmental Biology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
3
|
Wang L, Ju C, Han C, Yu Z, Bai MY, Wang C. The interaction of nutrient uptake with biotic and abiotic stresses in plants. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025; 67:455-487. [PMID: 39783785 DOI: 10.1111/jipb.13827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 11/21/2024] [Indexed: 01/12/2025]
Abstract
Plants depend heavily on efficient nutrient uptake and utilization for optimal growth and development. However, plants are constantly subjected to a diverse array of biotic stresses, such as pathogen infections, insect pests, and herbivory, as well as abiotic stress like drought, salinity, extreme temperatures, and nutrient imbalances. These stresses significantly impact the plant's ability to take up nutrient and use it efficiency. Understanding how plants maintain nutrient uptake and use efficiency under biotic and abiotic stress conditions is crucial for improving crop resilience and sustainability. This review explores the recent advancements in elucidating the mechanisms underlying nutrient uptake and utilization efficiency in plants under such stress conditions. Our aim is to offer a comprehensive perspective that can guide the breeding of stress-tolerant and nutrition-efficient crop varieties, ultimately contributing to the advancement of sustainable agriculture.
Collapse
Affiliation(s)
- Lingyan Wang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Chuanfeng Ju
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Chao Han
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Zhenghao Yu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Ming-Yi Bai
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Cun Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| |
Collapse
|
4
|
Teng Z, Zheng Q, Peng Y, Li Y, Meng S, Liu B, Peng Y, Duan M, Yuan D, Zhang J, Ye N. Nitrate reductase-dependent nitric oxide production mediates nitrate-conferred salt tolerance in rice seedlings. PLANT PHYSIOLOGY 2025; 197:kiaf080. [PMID: 39977119 DOI: 10.1093/plphys/kiaf080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 01/03/2025] [Accepted: 01/18/2025] [Indexed: 02/22/2025]
Abstract
Soil salinity is a destructive environmental factor that inhibits plant growth and crop yield. Applying nitrogen fertilizer is a practical method to enhance salt tolerance. However, the underlying mechanisms remain largely unknown. Here, we demonstrated that NO3--enhanced salt tolerance in rice (Oryza sativa L.) seedlings is mediated by nitrate reductase (NR)-dependent nitric oxide (NO) production. Seedlings grown in nitrate condition (N) exhibited much greater salt tolerance compared with those grown in ammonium nitrate and ammonium (A) conditions, a pattern also observed in the MADS-box transcription factor 27 (mads27) mutant. NR activity was highly induced by NO3- under both normal and salt stress conditions. Only the double mutant nr1/2 and the triple mutant nr1/2/3 displayed a dramatic reduction in salt tolerance. Application of tungstate suppressed salt tolerance of wild-type seedlings but not the triple mutants. Furthermore, both NO3--enhanced salt tolerance and salt-induced NO production were totally blocked in triple mutants. However, treatment with exogenous sodium nitroprusside (an NO donor) significantly enhanced salt tolerance in both Nipponbare (NIP) and the triple mutants. Antioxidant enzyme activities in shoots were significantly inhibited in the triple mutants when compared with NIP. Furthermore, expression of OsAKT1 was specifically induced by NO3- but was inhibited in the roots of triple mutants, resulting in a lower potassium/sodium ratio in NR triple mutants. Our results revealed that NO3--conferred salt tolerance is mediated by NR-dependent NO production in rice seedlings.
Collapse
Affiliation(s)
- Zhenning Teng
- Hunan Provincial Key Laboratory of Rice Stress Biology, College of Agronomy, Hunan Agricultural University, Changsha, China
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Qin Zheng
- Hunan Provincial Key Laboratory of Rice Stress Biology, College of Agronomy, Hunan Agricultural University, Changsha, China
- Taoyuan Branch of Changde Tobacco Company of Hunan Province, Taoyuan, China
| | - Yaqiong Peng
- Hengyang Academy of Agricultural Sciences, Hengyang, China
| | - Yi Li
- Hunan Provincial Key Laboratory of Rice Stress Biology, College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Shuan Meng
- Hunan Provincial Key Laboratory of Rice Stress Biology, College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Bohan Liu
- Hunan Provincial Key Laboratory of Rice Stress Biology, College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Yan Peng
- Hunan Provincial Key Laboratory of Rice Stress Biology, College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Meijuan Duan
- Hunan Provincial Key Laboratory of Rice Stress Biology, College of Agronomy, Hunan Agricultural University, Changsha, China
- Hunan Women's University, Changsha, China
| | - Dingyang Yuan
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Jianhua Zhang
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Nenghui Ye
- Hunan Provincial Key Laboratory of Rice Stress Biology, College of Agronomy, Hunan Agricultural University, Changsha, China
- Yuelushan Laboratory, Changsha, China
| |
Collapse
|
5
|
Jing X, Wang P, Liu J, Xiang M, Song X, Wang C, Li P, Li H, Wu Z, Zhang C. A viral protein competitively bound to rice CIPK23 inhibits potassium absorption and facilitates virus systemic infection in rice. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:2348-2363. [PMID: 38578842 PMCID: PMC11258980 DOI: 10.1111/pbi.14350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 02/02/2024] [Accepted: 03/20/2024] [Indexed: 04/07/2024]
Abstract
Potassium (K+) plays a crucial role as a macronutrient in the growth and development of plants. Studies have definitely determined the vital roles of K+ in response to pathogen invasion. Our previous investigations revealed that rice plants infected with rice grassy stunt virus (RGSV) displayed a reduction in K+ content, but the mechanism by which RGSV infection subverts K+ uptake remains unknown. In this study, we found that overexpression of RGSV P1, a specific viral protein encoded by viral RNA1, results in enhanced sensitivity to low K+ stress and exhibits a significantly lower rate of K+ influx compared to wild-type rice plants. Further investigation revealed that RGSV P1 interacts with OsCIPK23, an upstream regulator of Shaker K+ channel OsAKT1. Moreover, we found that the P1 protein recruits the OsCIPK23 to the Cajal bodies (CBs). In vivo assays demonstrated that the P1 protein competitively binds to OsCIPK23 with both OsCBL1 and OsAKT1. In the nucleus, the P1 protein enhances the binding of OsCIPK23 to OsCoilin, a homologue of the signature protein of CBs in Arabidopsis, and facilitates their trafficking through these CB structures. Genetic analysis indicates that mutant in oscipk23 suppresses RGSV systemic infection. Conversely, osakt1 mutants exhibited increased sensitivity to RGSV infection. These findings suggest that RGSV P1 hinders the absorption of K+ in rice plants by recruiting the OsCIPK23 to the CB structures. This process potentially promotes virus systemic infection but comes at the expense of inhibiting OsAKT1 activity.
Collapse
Affiliation(s)
- Xinxin Jing
- The Engineering Research Center for Plant Health Protection Technology in Henan ProvinceCollege of Plant ProtectionHenan Agricultural UniversityZhengzhouChina
- Fujian Province Key Laboratory of Plant VirologyCollege of Plant ProtectionFujian Agriculture and Forestry UniversityFuzhouChina
| | - Pengyue Wang
- The Engineering Research Center for Plant Health Protection Technology in Henan ProvinceCollege of Plant ProtectionHenan Agricultural UniversityZhengzhouChina
- Fujian Province Key Laboratory of Plant VirologyCollege of Plant ProtectionFujian Agriculture and Forestry UniversityFuzhouChina
| | - Jianjian Liu
- The Engineering Research Center for Plant Health Protection Technology in Henan ProvinceCollege of Plant ProtectionHenan Agricultural UniversityZhengzhouChina
- Hubei Engineering Research Center for Pest Forewarning and ManagementCollege of AgronomyYangtze UniversityJingzhouChina
| | - Meirong Xiang
- The Engineering Research Center for Plant Health Protection Technology in Henan ProvinceCollege of Plant ProtectionHenan Agricultural UniversityZhengzhouChina
| | - Xia Song
- Fujian Province Key Laboratory of Plant VirologyCollege of Plant ProtectionFujian Agriculture and Forestry UniversityFuzhouChina
| | - Chaonan Wang
- The Engineering Research Center for Plant Health Protection Technology in Henan ProvinceCollege of Plant ProtectionHenan Agricultural UniversityZhengzhouChina
| | - Pengbai Li
- The Engineering Research Center for Plant Health Protection Technology in Henan ProvinceCollege of Plant ProtectionHenan Agricultural UniversityZhengzhouChina
| | - Honglian Li
- The Engineering Research Center for Plant Health Protection Technology in Henan ProvinceCollege of Plant ProtectionHenan Agricultural UniversityZhengzhouChina
| | - Zujian Wu
- Fujian Province Key Laboratory of Plant VirologyCollege of Plant ProtectionFujian Agriculture and Forestry UniversityFuzhouChina
| | - Chao Zhang
- The Engineering Research Center for Plant Health Protection Technology in Henan ProvinceCollege of Plant ProtectionHenan Agricultural UniversityZhengzhouChina
| |
Collapse
|
6
|
Yuan G, Nong T, Hunpatin OS, Shi C, Su X, Wang Q, Liu H, Dai P, Ning Y. Research Progress on Plant Shaker K + Channels. PLANTS (BASEL, SWITZERLAND) 2024; 13:1423. [PMID: 38794493 PMCID: PMC11125005 DOI: 10.3390/plants13101423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/16/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024]
Abstract
Plant growth and development are driven by intricate processes, with the cell membrane serving as a crucial interface between cells and their external environment. Maintaining balance and signal transduction across the cell membrane is essential for cellular stability and a host of life processes. Ion channels play a critical role in regulating intracellular ion concentrations and potentials. Among these, K+ channels on plant cell membranes are of paramount importance. The research of Shaker K+ channels has become a paradigm in the study of plant ion channels. This study offers a comprehensive overview of advancements in Shaker K+ channels, including insights into protein structure, function, regulatory mechanisms, and research techniques. Investigating Shaker K+ channels has enhanced our understanding of the regulatory mechanisms governing ion absorption and transport in plant cells. This knowledge offers invaluable guidance for enhancing crop yields and improving resistance to environmental stressors. Moreover, an extensive review of research methodologies in Shaker K+ channel studies provides essential reference solutions for researchers, promoting further advancements in ion channel research.
Collapse
Affiliation(s)
- Guang Yuan
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Tongjia Nong
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Oluwaseyi Setonji Hunpatin
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chuhan Shi
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaoqing Su
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Qian Wang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Haobao Liu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Peigang Dai
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Yang Ning
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| |
Collapse
|
7
|
Hornai EML, Aycan M, Mitsui T. The Promising B-Type Response Regulator hst1 Gene Provides Multiple High Temperature and Drought Stress Tolerance in Rice. Int J Mol Sci 2024; 25:2385. [PMID: 38397061 PMCID: PMC10889171 DOI: 10.3390/ijms25042385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/12/2024] [Accepted: 02/16/2024] [Indexed: 02/25/2024] Open
Abstract
High temperatures, drought, and salt stresses severely inhibit plant growth and production due to the effects of climate change. The Arabidopsis ARR1, ARR10, and ARR12 genes were identified as negative salt and drought stress regulators. However, in rice, the tolerance capacity of the hst1 gene, which is orthologous to the ARR1, ARR10, and ARR12 genes, to drought and multiple high temperature and drought stresses remains unknown. At the seedling and reproductive stages, we investigated the drought (DS) high temperature (HT) and multiple high temperature and drought stress (HT+DS) tolerance capacity of the YNU31-2-4 (YNU) genotype, which carries the hst1 gene, and its nearest genomic relative Sister Line (SL), which has a 99% identical genome without the hst1 gene. At the seedling stage, YNU demonstrated greater growth, photosynthesis, antioxidant enzyme activity, and decreased ROS accumulation under multiple HT+DS conditions. The YNU genotype also demonstrated improved yield potential and grain quality due to higher antioxidant enzyme activity and lower ROS generation throughout the reproductive stage under multiple HT+DS settings. Furthermore, for the first time, we discovered that the B-type response regulator hst1 gene controls ROS generation and antioxidant enzyme activities by regulating upstream and downstream genes to overcome yield reduction under multiple high temperatures and drought stress. This insight will help us to better understand the mechanisms of high temperature and drought stress tolerance in rice, as well as the evolution of tolerant crops that can survive increased salinity to provide food security during climate change.
Collapse
Affiliation(s)
- Ermelinda Maria Lopes Hornai
- Department of Life and Food Sciences, Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan
- National Division of Research and Statistics, Timor-Leste Ministry of Agriculture, Fisheries and Forest, Dili 626, Timor-Leste
| | - Murat Aycan
- Laboratory of Biochemistry, Faculty of Agriculture, Niigata University, Niigata 950-2181, Japan
| | - Toshiaki Mitsui
- Laboratory of Biochemistry, Faculty of Agriculture, Niigata University, Niigata 950-2181, Japan
| |
Collapse
|
8
|
Ma X, Khan NU, Dai S, Qin N, Han Z, Guo B, Li J. Transcriptome analysis and identification of the low potassium stress-responsive gene SiSnRK2.6 in foxtail millet (Setaria italica L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:22. [PMID: 38227064 DOI: 10.1007/s00122-023-04532-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 12/19/2023] [Indexed: 01/17/2024]
Abstract
KEY MESSAGE The transcriptome is beneficial for dissecting the mechanism of millet in response to low potassium stress and SiSnRK2.6 was identified as a potential target for improving low potassium stress tolerance. Foxtail millet (Setaria italica L.), which originated in China, has high nutrient utilization character. Nevertheless, the molecular mechanism of its tolerance to low potassium stress is largely unclear. In this research, the low potassium tolerant variety "Yugu28" was screened out by low potassium stress treatment, and the transcriptome of "Yugu28" under low potassium stress was comprehensively analyzed. A total of 4254 differentially expressed genes (DEGs) were identified, including 1618 up-regulated and 2636 down-regulated genes, respectively. In addition, there were 302 transcription factor (TF) genes in the DEGs and MYB TFs accounted for the highest proportion, which was 14.9%. After functional analysis of all DEGs, a total of 7 genes involved in potassium transport and potassium ion channels and 50 genes corresponding to hormones were screened. The expression levels of randomly selected 17 DEGs were verified by qRT-PCR and the results coincided well with the RNA-seq analysis, indicating the reliability of our transcriptome data. Moreover, one of the ABA signaling pathway genes, SiSnRK2.6, was identified and selected for further functional verification. Compared with the wild type, transgenic rice with ecotopic expression of SiSnRK2.6 showed remarkably increased root length and root number, indicating that overexpression of SiSnRK2.6 can enhance the resistance of transgenic plants to low potassium stress.
Collapse
Affiliation(s)
- Xiaoqian Ma
- College of Agriculture, Henan University of Science and Technology, Luoyang, 471000, China
| | - Najeeb Ullah Khan
- College of Agriculture, China Agricultural University, Beijing, 100193, China
| | - Shutao Dai
- Cereal Crops Institute, Henan Academy of Agriculture Sciences, Zhengzhou, 450002, China
| | - Na Qin
- Cereal Crops Institute, Henan Academy of Agriculture Sciences, Zhengzhou, 450002, China
| | - Zanping Han
- College of Agriculture, Henan University of Science and Technology, Luoyang, 471000, China
| | - Bing Guo
- College of Agriculture, Henan University of Science and Technology, Luoyang, 471000, China
| | - Junxia Li
- Cereal Crops Institute, Henan Academy of Agriculture Sciences, Zhengzhou, 450002, China.
| |
Collapse
|
9
|
Degon Z, Dixon S, Rahmatallah Y, Galloway M, Gulutzo S, Price H, Cook J, Glazko G, Mukherjee A. Azospirillum brasilense improves rice growth under salt stress by regulating the expression of key genes involved in salt stress response, abscisic acid signaling, and nutrient transport, among others. FRONTIERS IN AGRONOMY 2023; 5:1216503. [PMID: 38223701 PMCID: PMC10785826 DOI: 10.3389/fagro.2023.1216503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Major food crops, such as rice and maize, display severe yield losses (30-50%) under salt stress. Furthermore, problems associated with soil salinity are anticipated to worsen due to climate change. Therefore, it is necessary to implement sustainable agricultural strategies, such as exploiting beneficial plant-microbe associations, for increased crop yields. Plants can develop associations with beneficial microbes, including arbuscular mycorrhiza and plant growth-promoting bacteria (PGPB). PGPB improve plant growth via multiple mechanisms, including protection against biotic and abiotic stresses. Azospirillum brasilense, one of the most studied PGPB, can mitigate salt stress in different crops. However, little is known about the molecular mechanisms by which A. brasilense mitigates salt stress. This study shows that total and root plant mass is improved in A. brasilense-inoculated rice plants compared to the uninoculated plants grown under high salt concentrations (100 mM and 200 mM NaCl). We observed this growth improvement at seven- and fourteen days post-treatment (dpt). Next, we used transcriptomic approaches and identified differentially expressed genes (DEGs) in rice roots when exposed to three treatments: 1) A. brasilense, 2) salt (200 mM NaCl), and 3) A. brasilense and salt (200 mM NaCl), at seven dpt. We identified 786 DEGs in the A. brasilense-treated plants, 4061 DEGs in the salt-stressed plants, and 1387 DEGs in the salt-stressed A. brasilense-treated plants. In the A. brasilense-treated plants, we identified DEGs involved in defense, hormone, and nutrient transport, among others. In the salt-stressed plants, we identified DEGs involved in abscisic acid and jasmonic acid signaling, antioxidant enzymes, sodium and potassium transport, and calcium signaling, among others. In the salt-stressed A. brasilense-treated plants, we identified some genes involved in salt stress response and tolerance (e.g., abscisic acid and jasmonic acid signaling, antioxidant enzymes, calcium signaling), and sodium and potassium transport differentially expressed, among others. We also identified some A. brasilense-specific plant DEGs, such as nitrate transporters and defense genes. Furthermore, our results suggest genes involved in auxin and ethylene signaling are likely to play an important role during these interactions. Overall, our transcriptomic data indicate that A. brasilense improves rice growth under salt stress by regulating the expression of key genes involved in defense and stress response, abscisic acid and jasmonic acid signaling, and ion and nutrient transport, among others. Our findings will provide essential insights into salt stress mitigation in rice by A. brasilense.
Collapse
Affiliation(s)
- Zachariah Degon
- Department of Biology, University of Central Arkansas, Conway, AR, United States
| | - Seth Dixon
- Department of Biology, University of Central Arkansas, Conway, AR, United States
| | - Yasir Rahmatallah
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Mary Galloway
- Department of Biology, University of Central Arkansas, Conway, AR, United States
| | - Sophia Gulutzo
- Department of Biology, University of Central Arkansas, Conway, AR, United States
| | - Hunter Price
- Department of Biology, University of Central Arkansas, Conway, AR, United States
| | - John Cook
- Department of Biology, University of Central Arkansas, Conway, AR, United States
| | - Galina Glazko
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Arijit Mukherjee
- Department of Biology, University of Central Arkansas, Conway, AR, United States
| |
Collapse
|
10
|
Zhou Y, Zhang Z, Zhao X, Liu L, Tang Q, Fu J, Tang X, Yang R, Lin J, Liu X, Yang Y. Receptor-Like Cytoplasmic Kinase STK Confers Salt Tolerance in Rice. RICE (NEW YORK, N.Y.) 2023; 16:21. [PMID: 37084146 PMCID: PMC10121980 DOI: 10.1186/s12284-023-00637-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 04/16/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND Soil salinization is a major abiotic environmental stress factor threatening crop production throughout the world. Salt stress drastically affects the growth, development, and grain yield of rice (Oryza sativa L.), and the improvement of rice tolerance to salt stress is a desirable approach for meeting increasing food demand. Receptor-like cytoplasmic kinases (RLCKs) play essential roles in plant growth, development and responses to environmental stresses. However, little is known about their functions in salt stress. Previous reports have demonstrated that overexpression of an RLCK gene SALT TOLERANCE KINASE (STK) enhances salt tolerance in rice, and that STK may regulate the expression of GST (Glutathione S-transferase) genes. RESULTS The expression of STK was rapidly induced by ABA. STK was highest expressed in the stem at the heading stage. STK was localized at the plasma membrane. Overexpression of STK in rice increased tolerance to salt stress and oxidative stress by increasing ROS scavenging ability and ABA sensitivity. In contrast, CRISPR/Cas9-mediated knockout of STK increased the sensitivity of rice to salt stress and oxidative stress. Transcriptome sequencing analysis suggested that STK increased the expression of GST genes (LOC_Os03g17480, LOC_Os10g38140 and LOC_Os10g38710) under salt stress. Reverse transcription quantitative PCR (RT-qPCR) suggested that four stress-related genes may be regulated by STK including OsABAR1, Os3BGlu6, OSBZ8 and OsSIK1. CONCLUSIONS These findings suggest that STK plays a positive regulatory role in salt stress tolerance by inducing antioxidant defense and associated with the ABA signaling pathway in rice.
Collapse
Affiliation(s)
- Yanbiao Zhou
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, 410125, Hunan, China.
- Key Laboratory of Southern Rice Innovation and Improvement, Ministry of Agriculture and Rural Affairs, Yuan Longping High-Tech Agriculture Co., Ltd., Changsha, 410001, Hunan, China.
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China.
- College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China.
| | - Zhihui Zhang
- Key Laboratory of Southern Rice Innovation and Improvement, Ministry of Agriculture and Rural Affairs, Yuan Longping High-Tech Agriculture Co., Ltd., Changsha, 410001, Hunan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Xinhui Zhao
- Key Laboratory of Southern Rice Innovation and Improvement, Ministry of Agriculture and Rural Affairs, Yuan Longping High-Tech Agriculture Co., Ltd., Changsha, 410001, Hunan, China
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Lan Liu
- Key Laboratory of Southern Rice Innovation and Improvement, Ministry of Agriculture and Rural Affairs, Yuan Longping High-Tech Agriculture Co., Ltd., Changsha, 410001, Hunan, China
- College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Qianying Tang
- Key Laboratory of Southern Rice Innovation and Improvement, Ministry of Agriculture and Rural Affairs, Yuan Longping High-Tech Agriculture Co., Ltd., Changsha, 410001, Hunan, China
| | - Jun Fu
- Key Laboratory of Southern Rice Innovation and Improvement, Ministry of Agriculture and Rural Affairs, Yuan Longping High-Tech Agriculture Co., Ltd., Changsha, 410001, Hunan, China
| | - Xiaodan Tang
- Key Laboratory of Southern Rice Innovation and Improvement, Ministry of Agriculture and Rural Affairs, Yuan Longping High-Tech Agriculture Co., Ltd., Changsha, 410001, Hunan, China
| | - Runqiu Yang
- Key Laboratory of Southern Rice Innovation and Improvement, Ministry of Agriculture and Rural Affairs, Yuan Longping High-Tech Agriculture Co., Ltd., Changsha, 410001, Hunan, China
| | - Jianzhong Lin
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410082, Hunan, China
| | - Xuanming Liu
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410082, Hunan, China
| | - Yuanzhu Yang
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, 410125, Hunan, China.
- Key Laboratory of Southern Rice Innovation and Improvement, Ministry of Agriculture and Rural Affairs, Yuan Longping High-Tech Agriculture Co., Ltd., Changsha, 410001, Hunan, China.
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, Hunan, China.
- College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China.
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410082, Hunan, China.
| |
Collapse
|
11
|
Chen X, Luo M, Mo C, Li W, Ji Y, Xie Q, Jiang X. MeCIPK10 regulates the transition of the K + transport activity of MeAKT2 between low- and high-affinity molds in cassava. JOURNAL OF PLANT PHYSIOLOGY 2023; 280:153861. [PMID: 36399835 DOI: 10.1016/j.jplph.2022.153861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/04/2022] [Accepted: 11/04/2022] [Indexed: 06/16/2023]
Abstract
AKT1 is an inward-rectifying K+ channel that was originally thought to function only within a low-affinity K+ concentration range. However, the growth of an akt1 mutant of Arabidopsis was shown to be severely inhibited within a high-affinity range. This suggested that AKT1 may also be a high-affinity K+ transporter, but it remains unclear how the two modes of AKT1 coordinate to uptake K+. One gene (MeAKT2) encodes for a putatively inward-rectifying K+ channel and was isolated from cassava. Relative to other tissues, the MeAKT2 gene was expressed mainly in roots, and its transcriptional level was observed to be significantly increased under low-K+ conditions. Functional analyses were performed using a yeast expression system. When MeAKT2 was expressed alone in yeast cells, transgenic yeast could grow only in nutrient media supplied with >0.5 mM potassium. A yeast two-hybrid assay showed that both MeCIPK10 and MeCIPK12 clearly interacted with MeAKT2. Additionally, 0.05 mM K+ was sufficient for the growth of yeast cells co-expressing MeAKT2 with MeCIPK10, but also their co-expression significantly enhanced the growth capacity of yeast cells in the low range of K+ concentrations. Change in K+ uptake rate in co-transgenic yeast cells grown across a wide range of K+ concentrations showed that MeAKT2-mediated K+ uptake displayed a biphasic pattern, but also the switching from low-to high-affinity K+ uptake was regulated by CIPK10. This indicated that MeAKT2 functioned as a dual-affinity transporter to uptake K+ under both low- and high-affinity K+ conditions.
Collapse
Affiliation(s)
- Xiuzhen Chen
- National Center for Technology Innovation of Saline-Alkali Rice/College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China; Hainan Key Laboratory for Biotechnology of Salt Tolerant Crops/Institute of Tropical Crops, Hainan University, Haikou, 570228, China; Lixia District Center for Disease Control and Prevention, Jinan, 250014, China
| | - Minghua Luo
- National Center for Technology Innovation of Saline-Alkali Rice/College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China; Hainan Key Laboratory for Biotechnology of Salt Tolerant Crops/Institute of Tropical Crops, Hainan University, Haikou, 570228, China
| | - Chunyan Mo
- Hainan Key Laboratory for Biotechnology of Salt Tolerant Crops/Institute of Tropical Crops, Hainan University, Haikou, 570228, China
| | - Wenjia Li
- Hainan Key Laboratory for Biotechnology of Salt Tolerant Crops/Institute of Tropical Crops, Hainan University, Haikou, 570228, China
| | - Yiying Ji
- National Center for Technology Innovation of Saline-Alkali Rice/College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Qing Xie
- National Center for Technology Innovation of Saline-Alkali Rice/College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China.
| | - Xingyu Jiang
- National Center for Technology Innovation of Saline-Alkali Rice/College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China; Hainan Key Laboratory for Biotechnology of Salt Tolerant Crops/Institute of Tropical Crops, Hainan University, Haikou, 570228, China.
| |
Collapse
|
12
|
Structural basis for the activity regulation of a potassium channel AKT1 from Arabidopsis. Nat Commun 2022; 13:5682. [PMID: 36167696 PMCID: PMC9515098 DOI: 10.1038/s41467-022-33420-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 09/16/2022] [Indexed: 11/25/2022] Open
Abstract
The voltage-gated potassium channel AKT1 is responsible for primary K+ uptake in Arabidopsis roots. AKT1 is functionally activated through phosphorylation and negatively regulated by a potassium channel α-subunit AtKC1. However, the molecular basis for the modulation mechanism remains unclear. Here we report the structures of AKT1, phosphorylated-AKT1, a constitutively-active variant, and AKT1-AtKC1 complex. AKT1 is assembled in 2-fold symmetry at the cytoplasmic domain. Such organization appears to sterically hinder the reorientation of C-linkers during ion permeation. Phosphorylated-AKT1 adopts an alternate 4-fold symmetric conformation at cytoplasmic domain, which indicates conformational changes associated with symmetry switch during channel activation. To corroborate this finding, we perform structure-guided mutagenesis to disrupt the dimeric interface and identify a constitutively-active variant Asp379Ala mediates K+ permeation independently of phosphorylation. This variant predominantly adopts a 4-fold symmetric conformation. Furthermore, the AKT1-AtKC1 complex assembles in 2-fold symmetry. Together, our work reveals structural insight into the regulatory mechanism for AKT1. Arabidopsis thaliana potassium channel AKT1 is responsible for primary K + uptake from soil, which is functionally activated through phosphorylation and negatively regulated by an α-subunit AtKC1. Here, the authors report the structures of AKT1 at different states, revealing a 2- fold to 4-fold symmetry switch at cytoplasmic domain associated with AKT1 activity regulation.
Collapse
|
13
|
Wen D, Bao L, Huang X, Qian X, Chen E, Shen B. OsABT Is Involved in Abscisic Acid Signaling Pathway and Salt Tolerance of Roots at the Rice Seedling Stage. Int J Mol Sci 2022; 23:10656. [PMID: 36142568 PMCID: PMC9504391 DOI: 10.3390/ijms231810656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/02/2022] [Accepted: 09/08/2022] [Indexed: 12/03/2022] Open
Abstract
Rice is a staple cereal crop worldwide, and increasing its yields is vital to ensuring global food security. Salinity is a major factor that affects rice yield. Therefore, it is necessary to investigate salt tolerance mechanisms in rice. Proteins containing WD40 repeats play important roles in eukaryotic development and environmental adaptation. Here, we showed that overexpression of OsABT, a gene encoding a WD40-repeat protein, enhanced salt tolerance in rice seedlings by regulating root activity, relative conductivity, malondialdehyde and H2O2 content, and O2•- production rate. Root ion concentrations indicated that OsABT overexpression lines could maintain lower Na+ and higher K+/Na+ ratios and upregulated expression of salt-related genes OsSOS1 and OsHAK5 compared with the wild-type (WT) Nipponbare plants. Furthermore, Overexpression of OsABT decreased the abscisic acid (ABA) content, while downregulating the ABA synthesis genes OsNCED3 and OsNCED4 and upregulating the ABA catabolic gene OsABA8ox2. The yeast two-hybrid and bimolecular fluorescence complementation analyses showed that OsABT interacted with the ABA receptor proteins OsPYL4, OsPYL10, and PP2C phosphatase OsABIL2. A transcriptome analysis revealed that the differentially expressed genes between OsABT overexpression lines and WT plants were enriched in plant hormone signal transduction, including ABA signaling pathway under salt stress. Thus, OsABT can improve the salt tolerance in rice seedling roots by inhibiting reactive oxygen species accumulation, thereby regulating the intracellular Na+/K+ balance, ABA content, and ABA signaling pathway.
Collapse
Affiliation(s)
- Danni Wen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Lingran Bao
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Xuanzhu Huang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Xueduo Qian
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Eryong Chen
- Life School of Science and Technology, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Bo Shen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
14
|
Zhu H, Yang X, Li Q, Guo J, Ma T, Liu S, Lin S, Zhou Y, Zhao C, Wang J, Sui J. The Sweetpotato Voltage-Gated K + Channel β Subunit, KIbB1, Positively Regulates Low-K + and High-Salinity Tolerance by Maintaining Ion Homeostasis. Genes (Basel) 2022; 13:genes13061100. [PMID: 35741862 PMCID: PMC9222298 DOI: 10.3390/genes13061100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/17/2022] [Accepted: 06/17/2022] [Indexed: 12/26/2022] Open
Abstract
Voltage-gated K+ channel β subunits act as a structural component of Kin channels in different species. The β subunits are not essential to the channel activity but confer different properties through binding the T1 domain or the C-terminal of α subunits. Here, we studied the physiological function of a novel gene, KIbB1, encoding a voltage-gated K+ channel β subunit in sweetpotato. The transcriptional level of this gene was significantly higher in the low-K+-tolerant line than that in the low-K+-sensitive line under K+ deficiency conditions. In Arabidopsis, KIbB1 positively regulated low-K+ tolerance through regulating K+ uptake and translocation. Under high-salinity stress, the growth conditions of transgenic lines were obviously better than wild typr (WT). Enzymatic and non-enzymatic reactive oxygen species (ROS) scavenging were activated in transgenic plants. Accordingly, the malondialdehyde (MDA) content and the accumulation of ROS such as H2O2 and O2− were lower in transgenic lines under salt stress. It was also found that the overexpression of KIbB1 enhanced K+ uptake, but the translocation from root to shoot was not affected under salt stress. This demonstrates that KIbB1 acted as a positive regulator in high-salinity stress resistance through regulating Na+ and K+ uptake to maintain K+/Na+ homeostasis. These results collectively suggest that the mechanisms of KIbB1 in regulating K+ were somewhat different between low-K+ and high-salinity conditions.
Collapse
Affiliation(s)
- Hong Zhu
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China; (H.Z.); (X.Y.); (Q.L.); (J.G.); (T.M.); (S.L.); (S.L.); (C.Z.); (J.W.)
| | - Xue Yang
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China; (H.Z.); (X.Y.); (Q.L.); (J.G.); (T.M.); (S.L.); (S.L.); (C.Z.); (J.W.)
- Laboratory of Microbiology, Institute of Biology, Hebei Academy of Sciences, Shijiazhuang 050081, China
| | - Qiyan Li
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China; (H.Z.); (X.Y.); (Q.L.); (J.G.); (T.M.); (S.L.); (S.L.); (C.Z.); (J.W.)
| | - Jiayu Guo
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China; (H.Z.); (X.Y.); (Q.L.); (J.G.); (T.M.); (S.L.); (S.L.); (C.Z.); (J.W.)
| | - Tao Ma
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China; (H.Z.); (X.Y.); (Q.L.); (J.G.); (T.M.); (S.L.); (S.L.); (C.Z.); (J.W.)
| | - Shuyan Liu
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China; (H.Z.); (X.Y.); (Q.L.); (J.G.); (T.M.); (S.L.); (S.L.); (C.Z.); (J.W.)
| | - Shunyu Lin
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China; (H.Z.); (X.Y.); (Q.L.); (J.G.); (T.M.); (S.L.); (S.L.); (C.Z.); (J.W.)
| | - Yuanyuan Zhou
- Crop Research Institute, Shandong Academy of Agricultural Sciences/Scientific Observing and Experimental Station of Tuber and Root Crops in Huang-Huai-Hai Region, Ministry of Agriculture and Rural Affairs, Jinan 250100, China;
| | - Chunmei Zhao
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China; (H.Z.); (X.Y.); (Q.L.); (J.G.); (T.M.); (S.L.); (S.L.); (C.Z.); (J.W.)
| | - Jingshan Wang
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China; (H.Z.); (X.Y.); (Q.L.); (J.G.); (T.M.); (S.L.); (S.L.); (C.Z.); (J.W.)
| | - Jiongming Sui
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China; (H.Z.); (X.Y.); (Q.L.); (J.G.); (T.M.); (S.L.); (S.L.); (C.Z.); (J.W.)
- Correspondence:
| |
Collapse
|
15
|
Zhang B, Guo Y, Wang H, Wang X, Lv M, Yang P, Zhang L. Identification and Characterization of Shaker K + Channel Gene Family in Foxtail Millet ( Setaria italica) and Their Role in Stress Response. FRONTIERS IN PLANT SCIENCE 2022; 13:907635. [PMID: 35755660 PMCID: PMC9218596 DOI: 10.3389/fpls.2022.907635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
Potassium (K+) is one of the indispensable elements in plant growth and development. The Shaker K+ channel protein family is involved in plant K+ uptake and distribution. Foxtail millet (Setaria italica), as an important crop, has strong tolerance and adaptability to abiotic stresses. However, no systematic study focused on the Shaker K+ channel family in foxtail millet. Here, ten Shaker K+ channel genes in foxtail millet were identified and divided into five groups through phylogenetic analysis. Gene structures, chromosome locations, cis-acting regulatory elements in promoter, and post-translation modification sites of Shaker K+ channels were analyzed. In silico analysis of transcript level demonstrated that the expression of Shaker K+ channel genes was tissue or developmental stage specific. The transcription levels of Shaker K+ channel genes in foxtail millet under different abiotic stresses (cold, heat, NaCl, and PEG) and phytohormones (6-BA, BR, MJ, IAA, NAA, GA3, SA, and ABA) treatments at 0, 12, and 24 h were detected by qRT-PCR. The results showed that SiAKT1, SiKAT3, SiGORK, and SiSKOR were worth further research due to their significant responses after most treatments. The yeast complementation assay verified the inward K+ transport activities of detectable Shaker K+ channels. Finally, we found interactions between SiKAT2 and SiSNARE proteins. Compared to research in Arabidopsis, our results showed a difference in SYP121 related Shaker K+ channel regulation mechanism in foxtail millet. Our results indicate that Shaker K+ channels play important roles in foxtail millet and provide theoretical support for further exploring the K+ absorption mechanism of foxtail millet under abiotic stress.
Collapse
Affiliation(s)
- Ben Zhang
- State Key Laboratory of Sustainable Dryland Agriculture, Shanxi Agricultural University, Taiyuan, China
- School of Life Sciences, Shanxi University, Taiyuan, China
| | - Yue Guo
- School of Life Sciences, Shanxi University, Taiyuan, China
| | - Hui Wang
- School of Life Sciences, Shanxi University, Taiyuan, China
| | - Xiaoxia Wang
- School of Life Sciences, Shanxi University, Taiyuan, China
| | - Mengtao Lv
- School of Life Sciences, Shanxi University, Taiyuan, China
| | - Pu Yang
- School of Life Sciences, Shanxi University, Taiyuan, China
| | - Lizhen Zhang
- School of Life Sciences, Shanxi University, Taiyuan, China
| |
Collapse
|
16
|
The molecular mechanism of plasma membrane H +-ATPases in plant responses to abiotic stress. J Genet Genomics 2022; 49:715-725. [PMID: 35654346 DOI: 10.1016/j.jgg.2022.05.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/21/2022] [Accepted: 05/22/2022] [Indexed: 11/22/2022]
Abstract
Plasma membrane H+-ATPases (PM H+-ATPases) are critical proton pumps that export protons from the cytoplasm to the apoplast. The resulting proton gradient and difference in electrical potential energize various secondary active transport events. PM H+-ATPases play essential roles in plant growth, development, and stress responses. In this review, we focus on recent studies of the mechanism of PM H+-ATPases in response to abiotic stresses in plants, such as salt and high pH, temperature, drought, light, macronutrient deficiency, acidic soil and aluminum stress, as well as heavy metal toxicity. Moreover, we discuss remaining outstanding questions about how PM H+-ATPases contribute to abiotic stress responses.
Collapse
|
17
|
Wang LM, Zhao LN, Shah IH, Ramirez DC, Boeglin M, Véry AA, Sentenac H, Zhang YD. Na+ Sensitivity of the KAT2-Like Channel Is a Common Feature of Cucurbits and Depends on the S5-P-S6 Segment. PLANT & CELL PHYSIOLOGY 2022; 63:279-289. [PMID: 34865157 DOI: 10.1093/pcp/pcab170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 11/29/2021] [Accepted: 12/01/2021] [Indexed: 06/13/2023]
Abstract
Inhibition of Shaker K+ channel activity by external Na+ was previously reported in the melon (Cucumis melo L.) inwardly rectifying K+ channel MIRK and was hypothesized to contribute to salt tolerance. In this study, two inward Shaker K+ channels, CsKAT2 from cucumber (Cucumis sativus) and ClKAT2 from watermelon (Citrullus lanatus), were identified and characterized in Xenopus oocytes. Both channels were inwardly rectifying K+ channels with higher permeability to potassium than other monovalent cations and more active when external pH was acidic. Similarly to MIRK, their activity displayed an inhibition by external Na+, thus suggesting a common feature in Cucurbitaceae (Cucumis spp., Citrullus spp.). CsKAT2 and ClKAT2 are highly expressed in guard cells. After 24 h of plant treatment with 100 mM NaCl, the three KAT2-like genes were significantly downregulated in leaves and guard cells. Reciprocal chimeras were obtained between MIRK and Na+-insensitive AtKAT2 cDNAs. The chimera where the MIRK S5-P-S6 segment was replaced by that from AtKAT2 no longer showed Na+ sensitivity, while the inverse chimera gained Na+ sensitivity. These results provide evidence that the molecular basis of the channel blockage by Na+ is located in the S5-P-S6 region. Comparison of the electrostatic property in the S5-P-S6 region in AtKAT2 and MIRK revealed four key amino acid residues potentially governing Na+ sensitivity.
Collapse
Affiliation(s)
| | - Li-Na Zhao
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Iftikhar Hussain Shah
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Dora Cano Ramirez
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Martin Boeglin
- Biochimie et Physiologie Moléculaires des Plantes, University Montpellier, CNRS, INRAE, Institut Agro, Place Viala, Montpellier 34060 Cedex 2, France
| | - Anne-Aliénor Véry
- Biochimie et Physiologie Moléculaires des Plantes, University Montpellier, CNRS, INRAE, Institut Agro, Place Viala, Montpellier 34060 Cedex 2, France
| | - Hervé Sentenac
- Biochimie et Physiologie Moléculaires des Plantes, University Montpellier, CNRS, INRAE, Institut Agro, Place Viala, Montpellier 34060 Cedex 2, France
| | - Yi-Dong Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
- Biochimie et Physiologie Moléculaires des Plantes, University Montpellier, CNRS, INRAE, Institut Agro, Place Viala, Montpellier 34060 Cedex 2, France
| |
Collapse
|
18
|
Mao Y, Yin Y, Cui X, Wang H, Su X, Qin X, Liu Y, Hu Y, Shen X. Homologous Cloning of Potassium Channel Genes From the Superior Apple Rootstock Line 12-2, Which is Tolerant to Apple Replant Disease. Front Genet 2022; 13:803160. [PMID: 35154275 PMCID: PMC8826240 DOI: 10.3389/fgene.2022.803160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 01/10/2022] [Indexed: 11/13/2022] Open
Abstract
Potassium channels are important ion channels that are responsible for the absorption of potassium in the plant nutrient uptake system. In this study, we used homologous molecular cloning to obtain 8 K+ channel genes from the superior apple rootstock line 12-2 (self-named): MsAKT1-1, MsKAT3-2, MsKAT1-3, MsK2P3-4, MsK2P3-5, MsK2P5-6, MsK2P3-7, and MsK2P3-8. Their lengths varied from 942 bp (MsK2P5-6) to 2625 bp (MsAKT1-1), and the number of encoded amino acids varied from 314 (MsK2P5-6) to 874 (MsAKT1-1). Subcellular localization predictions showed that MsAKT1-1, MsKAT3-2, and MsKAT1-3 were localized on the plasma membrane, and MsK2P3-4, MsK2P3-5, MsK2P5-6, MsK2P3-7, and MsK2P3-8 were localized on the vacuole and plasma membrane. The 8 K+ channel proteins contained α helices, extended strands, β turns, and random coils. MsKAT1-3 had four transmembrane structures, MsKAT3-2 had six, and the other six K+ channel genes had five. Protein structure domain analysis showed that MsAKT1-1 contained nine protein domains, followed by MsKAT3-2 with four, MsKAT1-3 with three, and the other five two-pore domain K+ channel proteins with two. Semi-quantitative RT-PCR detection of the K+ channel genes showed that their expression levels were high in roots. qRT-PCR analysis showed that the relative expression levels of the 8 genes changed after exposure to ARD stress. The above results provide a theoretical basis for further research on the functions of potassium channel genes in 12-2 and a scientific basis for the breeding of ARD-resistant rootstock.
Collapse
Affiliation(s)
- Yunfei Mao
- National Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Yijun Yin
- National Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Xueli Cui
- National Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Haiyan Wang
- National Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - XiaFei Su
- National Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Xin Qin
- National Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Yangbo Liu
- National Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Yanli Hu
- National Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Xiang Shen
- National Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| |
Collapse
|
19
|
Huang YN, Yang SY, Li JL, Wang SF, Wang JJ, Hao DL, Su YH. The rectification control and physiological relevance of potassium channel OsAKT2. PLANT PHYSIOLOGY 2021; 187:2296-2310. [PMID: 34601582 PMCID: PMC8644434 DOI: 10.1093/plphys/kiab462] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/07/2021] [Indexed: 05/14/2023]
Abstract
AKT2 potassium (K+) channels are members of the plant Shaker family which mediate dual-directional K+ transport with weak voltage-dependency. Here we show that OsAKT2 of rice (Oryza sativa) functions mainly as an inward rectifier with strong voltage-dependency and acutely suppressed outward activity. This is attributed to the presence of a unique K191 residue in the S4 domain. The typical bi-directional leak-like property was restored by a single K191R mutation, indicating that this functional distinction is an intrinsic characteristic of OsAKT2. Furthermore, the opposite R195K mutation of AtAKT2 changed the channel to an inward-rectifier similar to OsAKT2. OsAKT2 was modulated by OsCBL1/OsCIPK23, evoking the outward activity and diminishing the inward current. The physiological relevance in relation to the rectification diversity of OsAKT2 was addressed by functional assembly in the Arabidopsis (Arabidopsis thaliana) akt2 mutant. Overexpression (OE) of OsAKT2 complemented the K+ deficiency in the phloem sap and leaves of the mutant plants but did not significantly contribute to the transport of sugars. However, the expression of OsAKT2-K191R overcame both the shortage of phloem K+ and sucrose of the akt2 mutant, which was comparable to the effects of the OE of AtAKT2, while the expression of the inward mutation AtAKT2-R195K resembled the effects of OsAKT2. Additionally, OE of OsAKT2 ameliorated the salt tolerance of Arabidopsis.
Collapse
Affiliation(s)
- Ya-Nan Huang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shun-Ying Yang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Jun-Lin Li
- Shandong Institute of Sericulture, Yantai 264002, China
| | - Shao-Fei Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Jia-Jin Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dong-Li Hao
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yan-Hua Su
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- Author for communication:
| |
Collapse
|
20
|
Kim JH, Lim SD, Jang CS. Oryza sativa, C4HC3-type really interesting new gene (RING), OsRFPv6, is a positive regulator in response to salt stress by regulating Na + absorption. PHYSIOLOGIA PLANTARUM 2021; 173:883-895. [PMID: 34142383 DOI: 10.1111/ppl.13481] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/31/2021] [Accepted: 06/14/2021] [Indexed: 05/20/2023]
Abstract
Salinity negatively affects plant growth, productivity, and metabolism. Therefore, plants have evolved diverse strategies to survive in saline environments. To identify such strategies involving the ubiquitin/26S proteasome system, we characterized molecular functions of a rice C4HC3 really interesting new gene (RING)-type E3-ubiquitin ligase gene. Oryza sativa RING finger protein v6 (OsRFPv6) was highly expressed under conditions of abiotic stress, induced by 100 mM NaCl and 20% PEG. The GFP-OsRFPv6 protein was localized in the plasma membrane and cytosol in rice protoplasts. In vitro ubiquitin assay revealed that OsRFPv6 possessed E3-ubiquitin ligase activity, but its variant OsRFPv6C100A did not. OsRFPv6-overexpressing plants were insensitive to salinity, but their growth was delayed under normal conditions. Under saline conditions, transgenic plants exhibited higher proline, soluble sugar, and chlorophyll content and lower H2 O2 accumulation than wild-type plants. Moreover, transgenic plants exhibited lower Na+ uptake, lower Na+ content, and higher K+ content in the xylem sap assay. Under saline conditions, the expression levels of nine Na+ /K+ transporter genes in roots and leaves were significantly different between transgenic and wild-type plants. Specifically, under both normal and saline conditions, the expression of OsHKT2;1, a Na+ transporter, in the roots of transgenic plants was lower than that in the roots of wild-type plants. These results suggest that OsRFPv6 E3-ubiquitin ligase serves as a positive regulator of salinity response via Na+ uptake.
Collapse
Affiliation(s)
- Jong Ho Kim
- Plant Genomics Laboratory, Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, Republic of Korea
| | - Sung Don Lim
- Molecular Plant Physiology Laboratory, Department of Plant Life and Resource Science, Sangji University, Wonju, Republic of Korea
| | - Cheol Seong Jang
- Plant Genomics Laboratory, Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, Republic of Korea
| |
Collapse
|
21
|
Calcium Sensor SlCBL4 Associates with SlCIPK24 Protein Kinase and Mediates Salt Tolerance in Solanum lycopersicum. PLANTS 2021; 10:plants10102173. [PMID: 34685982 PMCID: PMC8541381 DOI: 10.3390/plants10102173] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/09/2021] [Accepted: 10/11/2021] [Indexed: 11/16/2022]
Abstract
Soil salinity is one of the major environmental stresses that restrict the growth and development of tomato (Solanum lycopersicum L.) worldwide. In Arabidopsis, the calcium signaling pathway mediated by calcineurin B-like protein 4 (CBL4) and CBL-interacting protein kinase 24 (CIPK24) plays a critical role in salt stress response. In this study, we identified and isolated two tomato genes similar to the Arabidopsis genes, designated as SlCBL4 and SlCIPK24, respectively. Bimolecular fluorescence complementation (BiFC) and pull-down assays indicated that SlCBL4 can physically interact with SlCIPK24 at the plasma membrane of plant cells in a Ca2+-dependent manner. Overexpression of SlCBL4 or superactive SlCIPK24 mutant (SlCIPK24M) conferred salt tolerance to transgenic tomato (cv. Moneymaker) plants. In particular, the SlCIPK24M-overexpression lines displayed dramatically enhanced tolerance to high salinity. It is notable that the transgenic plants retained higher contents of Na+ and K+ in the roots compared to the wild-type tomato under salt stress. Taken together, our findings clearly suggest that SlCBL4 and SlCIPK24 are functional orthologs of the Arabidopsis counterpart genes, which can be used or engineered to produce salt-tolerant tomato plants.
Collapse
|
22
|
Gilliard G, Huby E, Cordelier S, Ongena M, Dhondt-Cordelier S, Deleu M. Protoplast: A Valuable Toolbox to Investigate Plant Stress Perception and Response. FRONTIERS IN PLANT SCIENCE 2021; 12:749581. [PMID: 34675954 PMCID: PMC8523952 DOI: 10.3389/fpls.2021.749581] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/14/2021] [Indexed: 05/08/2023]
Abstract
Plants are constantly facing abiotic and biotic stresses. To continue to thrive in their environment, they have developed many sophisticated mechanisms to perceive these stresses and provide an appropriate response. There are many ways to study these stress signals in plant, and among them, protoplasts appear to provide a unique experimental system. As plant cells devoid of cell wall, protoplasts allow observations at the individual cell level. They also offer a prime access to the plasma membrane and an original view on the inside of the cell. In this regard, protoplasts are particularly useful to address essential biological questions regarding stress response, such as protein signaling, ion fluxes, ROS production, and plasma membrane dynamics. Here, the tools associated with protoplasts to comprehend plant stress signaling are overviewed and their potential to decipher plant defense mechanisms is discussed.
Collapse
Affiliation(s)
- Guillaume Gilliard
- Laboratoire de Biophysique Moléculaire aux Interfaces, SFR Condorcet FR CNRS 3417, Gembloux Agro-Bio Tech, Université de Liège, Gembloux, Belgium
| | - Eloïse Huby
- Laboratoire de Biophysique Moléculaire aux Interfaces, SFR Condorcet FR CNRS 3417, Gembloux Agro-Bio Tech, Université de Liège, Gembloux, Belgium
- RIBP EA 4707, USC INRAE 1488, SFR Condorcet FR CNRS 3417, Université de Reims Champagne Ardenne, Reims, France
| | - Sylvain Cordelier
- RIBP EA 4707, USC INRAE 1488, SFR Condorcet FR CNRS 3417, Université de Reims Champagne Ardenne, Reims, France
| | - Marc Ongena
- Microbial Processes and Interactions Laboratory, Terra Teaching and Research Center, SFR Condorcet FR CNRS 3417, Gembloux Agro-Bio Tech, Université de Liège, Gembloux, Belgium
| | - Sandrine Dhondt-Cordelier
- RIBP EA 4707, USC INRAE 1488, SFR Condorcet FR CNRS 3417, Université de Reims Champagne Ardenne, Reims, France
| | - Magali Deleu
- Laboratoire de Biophysique Moléculaire aux Interfaces, SFR Condorcet FR CNRS 3417, Gembloux Agro-Bio Tech, Université de Liège, Gembloux, Belgium
| |
Collapse
|
23
|
Kumari S, Chhillar H, Chopra P, Khanna RR, Khan MIR. Potassium: A track to develop salinity tolerant plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 167:1011-1023. [PMID: 34598021 DOI: 10.1016/j.plaphy.2021.09.031] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 09/10/2021] [Accepted: 09/24/2021] [Indexed: 05/24/2023]
Abstract
Salinity is one of the major constraints to plant growth and development across the globe that leads to the huge crop productivity loss. Salinity stress causes impairment in plant's metabolic and cellular processes including disruption in ionic homeostasis due to excess of sodium (Na+) ion influx and potassium (K+) efflux. This condition subsequently results in a significant reduction of the cytosolic K+ levels, eventually inhibiting plant growth attributes. K+ plays a crucial role in alleviating salinity stress by recasting key processes of plants. In addition, K+ acquisition and retention also serve as the perquisite trait to establish salt tolerant mechanism. In addition, an intricate network of genes and their regulatory elements are involved in coordinating salinity stress responses. Furthermore, plant growth regulators (PGRs) and other signalling molecules influence K+-mediated salinity tolerance in plants. Recently, nanoparticles (NPs) have also been found several implications in plants with respect to their roles in mediating K+ homoeostasis during salinity stress in plants. The present review describes salinity-induced adversities in plants and role of K+ in mitigating salinity-induced damages. The review also highlights the efficacy of PGRs and other signalling molecules in regulating K+ mediated salinity tolerance along with nano-technological perspective for improving K+ mediated salinity tolerance in plants.
Collapse
Affiliation(s)
- Sarika Kumari
- Department of Botany, Jamia Hamdard, New Delhi-110062, India
| | | | - Priyanka Chopra
- Department of Botany, Jamia Hamdard, New Delhi-110062, India
| | | | - M Iqbal R Khan
- Department of Botany, Jamia Hamdard, New Delhi-110062, India.
| |
Collapse
|
24
|
Chen HC, Chien TC, Chen TY, Chiang MH, Lai MH, Chang MC. Overexpression of a Novel ERF-X-Type Transcription Factor, OsERF106MZ, Reduces Shoot Growth and Tolerance to Salinity Stress in Rice. RICE (NEW YORK, N.Y.) 2021; 14:82. [PMID: 34542722 PMCID: PMC8452809 DOI: 10.1186/s12284-021-00525-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 09/12/2021] [Indexed: 05/24/2023]
Abstract
Transcription factors (TFs) such as ethylene-responsive factors (ERFs) are important for regulating plant growth, development, and responses to abiotic stress. Notably, more than half of the rice ERF-X group members, including ethylene-responsive factor 106 (OsERF106), are abiotic stress-responsive genes. However, their regulatory roles in abiotic stress responses remain poorly understood. OsERF106, a salinity-induced gene of unknown function, is annotated differently in RAP-DB and MSU RGAP. In this study, we isolated a novel (i.e., previously unannotated) OsERF106 gene, designated OsERF106MZ (GenBank accession No. MZ561461), and investigated its role in regulating growth and the response to salinity stress in rice. OsERF106MZ is expressed in germinating seeds, primary roots, and developing flowers. Overexpression of OsERF106MZ led to retardation of growth, relatively high levels of both malondialdehyde (MDA) and reactive oxygen species (ROS), reduced catalase (CAT) activity, and overaccumulation of both sodium (Na+) and potassium (K+) ions in transgenic rice shoots. Additionally, the expression of OsHKT1.3 was downregulated in the shoots of transgenic seedlings grown under both normal and NaCl-treated conditions, while the expression of OsAKT1 was upregulated in the same tissues grown under NaCl-treated conditions. Further microarray and qPCR analyses indicated that the expression of several abiotic stress-responsive genes such as OsABI5 and OsSRO1c was also altered in the shoots of transgenic rice grown under either normal or NaCl-treated conditions. The novel transcription factor OsERF106MZ negatively regulates shoot growth and salinity tolerance in rice through the disruption of ion homeostasis and modulation of stress-responsive gene expression.
Collapse
Affiliation(s)
- Hung-Chi Chen
- Department of Agronomy, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei, Taiwan, ROC
| | - Tzu-Cheng Chien
- Department of Agronomy, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei, Taiwan, ROC
| | - Tsung-Yang Chen
- Department of Agronomy, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei, Taiwan, ROC
| | - Ming-Hau Chiang
- Department of Agronomy, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei, Taiwan, ROC
| | - Ming-Hsin Lai
- Crop Science Division, Taiwan Agricultural Research Institute, Taichung, Taiwan
| | - Men-Chi Chang
- Department of Agronomy, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei, Taiwan, ROC.
| |
Collapse
|
25
|
Solis CA, Yong MT, Venkataraman G, Milham P, Zhou M, Shabala L, Holford P, Shabala S, Chen ZH. Sodium sequestration confers salinity tolerance in an ancestral wild rice. PHYSIOLOGIA PLANTARUM 2021; 172:1594-1608. [PMID: 33619741 DOI: 10.1111/ppl.13352] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 01/07/2021] [Accepted: 01/26/2021] [Indexed: 05/27/2023]
Abstract
Wild rice Oryza rufipogon, a progenitor of cultivated rice Oryza sativa L., possesses superior salinity tolerance and is a potential donor for breeding salinity tolerance traits in rice. However, a mechanistic basis of salinity tolerance in this donor species has not been established. Here, we examined salinity tolerance from the early vegetative stage to maturity in O. rufipogon in comparison with a salt-susceptible (Koshihikari) and a salt-tolerant (Reiziq) variety of O. sativa. We assessed their phylogeny and agronomical traits, photosynthetic performance, ion contents, as well as gene expression in response to salinity stress. Salt-tolerant O. rufipogon exhibited efficient leaf photosynthesis and less damage to leaf tissues during the course of salinity treatment. In addition, O. rufipogon showed a significantly higher tissue Na+ accumulation that is achieved by vacuolar sequestration compared to the salt tolerant O. sativa indica subspecies. These findings are further supported by the upregulation of genes involved with ion transport and sequestration (e.g. high affinity K+ transporter 1;4 [HKT1;4], Na+ /H+ exchanger 1 [NHX1] and vacuolar H+ -ATPase c [VHA-c]) in salt-tolerant O. rufipogon as well as by the close phylogenetic relationship of key salt-responsive genes in O. rufipogon to these in salt-tolerant wild rice species such as O. coarctata. Thus, the high accumulation of Na+ in the leaves of O. rufipogon acts as a cheap osmoticum to minimize the high energy cost of osmolyte biosynthesis and excessive reactive oxygen species production. These mechanisms demonstrated that O. rufipogon has important traits that can be used for improving salinity tolerance in cultivated rice.
Collapse
Affiliation(s)
- Celymar Angela Solis
- School of Science, Western Sydney University, Penrith, New South Wales, Australia
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tasmania, Australia
| | - Miing-Tiem Yong
- School of Science, Western Sydney University, Penrith, New South Wales, Australia
| | - Gayatri Venkataraman
- Plant Molecular Biology Laboratory, M. S. Swaminathan Research Foundation, III Cross Street, Taramani Institutional Area, Chennai, India
| | - Paul Milham
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
| | - Meixue Zhou
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tasmania, Australia
| | - Lana Shabala
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tasmania, Australia
| | - Paul Holford
- School of Science, Western Sydney University, Penrith, New South Wales, Australia
| | - Sergey Shabala
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tasmania, Australia
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan, China
| | - Zhong-Hua Chen
- School of Science, Western Sydney University, Penrith, New South Wales, Australia
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
| |
Collapse
|
26
|
Han W, Ji Y, Wu W, Cheng JK, Feng HQ, Wang Y. ZMK1 Is Involved in K + Uptake and Regulated by Protein Kinase ZmCIPK23 in Zea mays. FRONTIERS IN PLANT SCIENCE 2021; 12:517742. [PMID: 33746991 PMCID: PMC7966722 DOI: 10.3389/fpls.2021.517742] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 02/10/2021] [Indexed: 05/27/2023]
Abstract
Potassium (K+) is one of essential mineral elements for plant growth and development. K+ channels, especially AKT1-like channels, play crucial roles in K+ uptake in plant roots. Maize is one of important crops; however, the K+ uptake mechanism in maize is little known. Here, we report the physiological functions of K+ channel ZMK1 in K+ uptake and homeostasis in maize. ZMK1 is a homolog of Arabidopsis AKT1 channel in maize, and mainly expressed in maize root. Yeast complementation experiments and electrophysiological characterization in Xenopus oocytes indicated that ZMK1 could mediate K+ uptake. ZMK1 rescued the low-K+-sensitive phenotype of akt1 mutant and enhanced K+ uptake in Arabidopsis. Overexpression of ZMK1 also significantly increased K+ uptake activity in maize, but led to an oversensitive phenotype. Similar to AKT1 regulation, the protein kinase ZmCIPK23 interacted with ZMK1 and phosphorylated the cytosolic region of ZMK1, activating ZMK1-mediated K+ uptake. ZmCIPK23 could also complement the low-K+-sensitive phenotype of Arabidopsis cipk23/lks1 mutant. These findings demonstrate that ZMK1 together with ZmCIPK23 plays important roles in K+ uptake and homeostasis in maize.
Collapse
Affiliation(s)
- Wu Han
- State Key Laboratory of Plant Physiology and Biochemistry (SKLPPB), College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yun Ji
- State Key Laboratory of Plant Physiology and Biochemistry (SKLPPB), College of Biological Sciences, China Agricultural University, Beijing, China
| | - Wei Wu
- State Key Laboratory of Plant Physiology and Biochemistry (SKLPPB), College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jin-Kui Cheng
- State Key Laboratory of Plant Physiology and Biochemistry (SKLPPB), College of Biological Sciences, China Agricultural University, Beijing, China
| | - Han-Qian Feng
- State Key Laboratory of Plant Physiology and Biochemistry (SKLPPB), College of Biological Sciences, China Agricultural University, Beijing, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yi Wang
- State Key Laboratory of Plant Physiology and Biochemistry (SKLPPB), College of Biological Sciences, China Agricultural University, Beijing, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, China
| |
Collapse
|
27
|
Wang X, Zhao J, Fang Q, Chang X, Sun M, Li W, Li Y. GmAKT1 is involved in K + uptake and Na +/K + homeostasis in Arabidopsis and soybean plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 304:110736. [PMID: 33568288 DOI: 10.1016/j.plantsci.2020.110736] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 10/21/2020] [Accepted: 10/23/2020] [Indexed: 05/27/2023]
Abstract
Plant roots absorb K+ from soil via K+ channels and transporters, which are important for stress responses. In this research, GmAKT1, an AKT1-type K+ channel, was isolated and characterized. The expression of GmAKT1 was induced by K+-starvation and salinity stresses, and it was preferentially expressed in the soybean roots. And GmAKT1 was located in the plasma membrane. As an inward K+ channel, GmAKT1 participated in K+ uptake, as well as rescued the low-K+-sensitive phenotype of the yeast mutant and Arabidopsis akt1 mutant. Overexpression of GmAKT1 significantly improved the growth of plants and increased K+ concentration, leading to lower Na+/K+ ratios in transgenic Arabidopsis and chimeric soybean plants with transgenic hairy roots. In addition, GmAKT1 overexpression resulted in significant upregulation of these ion uptake-related genes, including GmSKOR, GmsSOS1, GmHKT1, and GmNHX1. Our findings suggested that GmAKT1 plays an important part in K+ uptake under low-K+ condition, and could maintain Na+/K+ homeostasis under salt stress in Arabidopsis and soybean plants.
Collapse
Affiliation(s)
- Xuesong Wang
- College of Agronomy, Northeast Agricultural University, Harbin, China; Key Laboratory of Soybean Biology in Chinese Education Ministry (Northeastern Key Laboratory of Soybean Biology and Genetics and Breeding in Chinese Ministry of Agriculture), Northeast Agricultural University, Harbin, China
| | - Jialiang Zhao
- College of Agronomy, Northeast Agricultural University, Harbin, China; Key Laboratory of Soybean Biology in Chinese Education Ministry (Northeastern Key Laboratory of Soybean Biology and Genetics and Breeding in Chinese Ministry of Agriculture), Northeast Agricultural University, Harbin, China
| | - Qingwei Fang
- College of Agronomy, Northeast Agricultural University, Harbin, China; Key Laboratory of Soybean Biology in Chinese Education Ministry (Northeastern Key Laboratory of Soybean Biology and Genetics and Breeding in Chinese Ministry of Agriculture), Northeast Agricultural University, Harbin, China
| | - Xingchao Chang
- College of Agronomy, Northeast Agricultural University, Harbin, China; Key Laboratory of Soybean Biology in Chinese Education Ministry (Northeastern Key Laboratory of Soybean Biology and Genetics and Breeding in Chinese Ministry of Agriculture), Northeast Agricultural University, Harbin, China
| | - Mingyang Sun
- College of Agronomy, Northeast Agricultural University, Harbin, China; Key Laboratory of Soybean Biology in Chinese Education Ministry (Northeastern Key Laboratory of Soybean Biology and Genetics and Breeding in Chinese Ministry of Agriculture), Northeast Agricultural University, Harbin, China
| | - Wenbin Li
- College of Agronomy, Northeast Agricultural University, Harbin, China; Key Laboratory of Soybean Biology in Chinese Education Ministry (Northeastern Key Laboratory of Soybean Biology and Genetics and Breeding in Chinese Ministry of Agriculture), Northeast Agricultural University, Harbin, China.
| | - Yongguang Li
- College of Agronomy, Northeast Agricultural University, Harbin, China; Key Laboratory of Soybean Biology in Chinese Education Ministry (Northeastern Key Laboratory of Soybean Biology and Genetics and Breeding in Chinese Ministry of Agriculture), Northeast Agricultural University, Harbin, China.
| |
Collapse
|
28
|
Sardans J, Peñuelas J. Potassium Control of Plant Functions: Ecological and Agricultural Implications. PLANTS (BASEL, SWITZERLAND) 2021; 10:419. [PMID: 33672415 PMCID: PMC7927068 DOI: 10.3390/plants10020419] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/18/2021] [Accepted: 02/21/2021] [Indexed: 02/06/2023]
Abstract
Potassium, mostly as a cation (K+), together with calcium (Ca2+) are the most abundant inorganic chemicals in plant cellular media, but they are rarely discussed. K+ is not a component of molecular or macromolecular plant structures, thus it is more difficult to link it to concrete metabolic pathways than nitrogen or phosphorus. Over the last two decades, many studies have reported on the role of K+ in several physiological functions, including controlling cellular growth and wood formation, xylem-phloem water content and movement, nutrient and metabolite transport, and stress responses. In this paper, we present an overview of contemporary findings associating K+ with various plant functions, emphasizing plant-mediated responses to environmental abiotic and biotic shifts and stresses by controlling transmembrane potentials and water, nutrient, and metabolite transport. These essential roles of K+ account for its high concentrations in the most active plant organs, such as leaves, and are consistent with the increasing number of ecological and agricultural studies that report K+ as a key element in the function and structure of terrestrial ecosystems, crop production, and global food security. We synthesized these roles from an integrated perspective, considering the metabolic and physiological functions of individual plants and their complex roles in terrestrial ecosystem functions and food security within the current context of ongoing global change. Thus, we provide a bridge between studies of K+ at the plant and ecological levels to ultimately claim that K+ should be considered at least at a level similar to N and P in terrestrial ecological studies.
Collapse
Affiliation(s)
- Jordi Sardans
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, 08913 Bellaterra, Catalonia, Spain;
- CREAF, 08913 Cerdanyola del Vallès, Catalonia, Spain
| | - Josep Peñuelas
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, 08913 Bellaterra, Catalonia, Spain;
- CREAF, 08913 Cerdanyola del Vallès, Catalonia, Spain
| |
Collapse
|
29
|
Jin R, Zhang A, Sun J, Chen X, Liu M, Zhao P, Jiang W, Tang Z. Identification of Shaker K + channel family members in sweetpotato and functional exploration of IbAKT1. Gene 2020; 768:145311. [PMID: 33220344 DOI: 10.1016/j.gene.2020.145311] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 10/10/2020] [Accepted: 11/13/2020] [Indexed: 01/27/2023]
Abstract
The Shaker K+ channel family plays a vital role in potassium absorption and stress resistance in plants. However little information on the genes family is available about sweetpotato. In the present study, eleven sweetpotato Shaker K+ channel genes were identified and classified into five groups based on phylogenetic relationships, conserved motifs, and gene structure analyses. Based on synteny analysis, four duplicated gene pairs were identified, derived from both ancient and recent duplication, whereas only one resulted from tandem duplication events. Different expression pattern of Shaker K+ channel genes in roots of Xu32 and NZ1 resulted in different K+ deficiency tolerances, suggesting there is different mechanism of K+ uptake in sweetpotato cultivars with different K+-tolerance levels. Quantitative real-time PCR analysis revealed that the shaker K+ channel genes responded to drought and high salt stresses. Higher K+ influx under normal condition and lower K+ efflux under K+ deficiency stress were observed in IbAKT1 overexpressing transgenic roots than in adventitious roots, which indicated that IbAKT1 may play an important role in the regulation of K+ deficiency tolerance in sweetpotato. This is the first genome-wide analysis of Shaker K+ channel genes and the first functional analysis of IbAKT1 in sweetpotato. Our results provide valuable information on the gene structure, evolution, expression and functions of the Shaker K+ channel gene family in sweetpotato.
Collapse
Affiliation(s)
- Rong Jin
- Xuzhou Sweetpotato Research Center, Xuzhou Institute of Agricultural Sciences, Jiangsu, China; Key Laboratory of Sweetpotato Biology and Genetic Breeding, Ministry of Agriculture, Xuzhou, China
| | - Aijun Zhang
- Xuzhou Sweetpotato Research Center, Xuzhou Institute of Agricultural Sciences, Jiangsu, China; Key Laboratory of Sweetpotato Biology and Genetic Breeding, Ministry of Agriculture, Xuzhou, China
| | - Jian Sun
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China
| | - Xiaoguang Chen
- Xuzhou Sweetpotato Research Center, Xuzhou Institute of Agricultural Sciences, Jiangsu, China; Key Laboratory of Sweetpotato Biology and Genetic Breeding, Ministry of Agriculture, Xuzhou, China
| | - Ming Liu
- Xuzhou Sweetpotato Research Center, Xuzhou Institute of Agricultural Sciences, Jiangsu, China; Key Laboratory of Sweetpotato Biology and Genetic Breeding, Ministry of Agriculture, Xuzhou, China
| | - Peng Zhao
- Xuzhou Sweetpotato Research Center, Xuzhou Institute of Agricultural Sciences, Jiangsu, China; Key Laboratory of Sweetpotato Biology and Genetic Breeding, Ministry of Agriculture, Xuzhou, China
| | - Wei Jiang
- Xuzhou Sweetpotato Research Center, Xuzhou Institute of Agricultural Sciences, Jiangsu, China; Key Laboratory of Sweetpotato Biology and Genetic Breeding, Ministry of Agriculture, Xuzhou, China
| | - Zhonghou Tang
- Xuzhou Sweetpotato Research Center, Xuzhou Institute of Agricultural Sciences, Jiangsu, China; Key Laboratory of Sweetpotato Biology and Genetic Breeding, Ministry of Agriculture, Xuzhou, China.
| |
Collapse
|
30
|
Gazara RK, Khan S, Iqrar S, Ashrafi K, Abdin MZ. Comparative transcriptome profiling of rice colonized with beneficial endophyte, Piriformospora indica, under high salinity environment. Mol Biol Rep 2020; 47:7655-7673. [PMID: 32979167 DOI: 10.1007/s11033-020-05839-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 09/10/2020] [Indexed: 01/20/2023]
Abstract
The salinity stress tolerance in plants has been studied enormously, reflecting its agronomic relevance. Despite the extensive research, limited success has been achieved in relation to the plant tolerance mechanism. The beneficial interaction between Piriformospora indica and rice could essentially improve the performance of the plant during salt stress. In this study, the transcriptomic data between P. indica treated and untreated rice roots were compared under control and salt stress conditions. Overall, 661 salt-responsive differentially expressed genes (DEGs) were detected with 161 up- and 500 down-regulated genes in all comparison groups. Gene ontology analyses indicated the DEGs were mainly enriched in "auxin-activated signaling pathway", "water channel activity", "integral component of plasma membrane", "stress responses", and "metabolic processes". Kyoto Encyclopedia of Genes and Genomes pathway analysis revealed that the DEGs were primarily related to "Zeatin biosynthesis", "Fatty acid elongation", "Carotenoid biosynthesis", and "Biosynthesis of secondary metabolites". Particularly, genes related to cell wall modifying enzymes (e.g. invertase/pectin methylesterase inhibitor protein and arabinogalactans), phytohormones (e.g. Auxin-responsive Aux/IAA gene family, ent-kaurene synthase, and 12-oxophytodienoate reductase) and receptor-like kinases (e.g. AGC kinase and receptor protein kinase) were induced in P. indica colonized rice under salt stress condition. The differential expression of these genes implies that the coordination between hormonal crosstalk, signaling, and cell wall dynamics contributes to the higher growth and tolerance in P. indica-inoculated rice. Our results offer a valuable resource for future functional studies on salt-responsive genes that should improve the resilience and adaptation of rice against salt stress.
Collapse
Affiliation(s)
- Rajesh K Gazara
- Centro de Bioiências e Biotecnologia, Universidade Estadual do Norte Fluminense "Darcy Ribeiro" University, Campos dos goytacazes, Rio de Janeiro, Brazil
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, India
- Department of Electrical Engineering, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - Shazia Khan
- Department of Biotechnology, Jamia Hamdard, New Delhi, 110062, India
| | - Sadia Iqrar
- Department of Biotechnology, Jamia Hamdard, New Delhi, 110062, India
| | - Kudsiya Ashrafi
- Department of Biotechnology, Jamia Hamdard, New Delhi, 110062, India
| | - Malik Z Abdin
- Department of Biotechnology, Jamia Hamdard, New Delhi, 110062, India.
| |
Collapse
|
31
|
Effect of Soil Salinity and Foliar Application of Jasmonic Acid on Mineral Balance of Carrot Plants Tolerant and Sensitive to Salt Stress. AGRONOMY-BASEL 2020. [DOI: 10.3390/agronomy10050659] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The aim of the study is to determine the effects of soil salinity stress and foliar application of jasmonic acid (JA) on the mineral balance in plants of salt-sensitive doubled haploid carrot line (DH1) and salt-tolerant local DLBA variety (DLBA). Concentrations of 28 elements were determined in roots and leaves and in the soil. The DcNHX4 gene (cation:proton exchange antiporter) expression was assessed. The salinity stress reduced the mass of roots and leaves more in DH1 than in DLBA. DLBA plants accumulated larger amounts of Na and Cl in the roots and had an increased transport of these elements to the leaves. The salt-tolerant and salt-sensitive carrot varieties differed in their ability to uptake and accumulate some elements, such as K, Mg, Zn, S, Cd, P and B, and this response was organ-specific. A selective uptake of K in the presence of high Na concentration was evident in the tolerant variety, and a high Na content in its leaves correlated with the expression of DcNHX4 gene, which was expressed in DLBA leaves only. JA application did not affect the growth of DLBA or DH1 plants. In the sensitive DH1 variety grown under salinity stress, JA induced changes in the mineral balance by limiting the uptake of the sum of all elements, especially Na and Cl, and by limiting Zn and Cd accumulation.
Collapse
|
32
|
Zeeshan M, Lu M, Naz S, Sehar S, Cao F, Wu F. Resemblance and Difference of Seedling Metabolic and Transporter Gene Expression in High Tolerance Wheat and Barley Cultivars in Response to Salinity Stress. PLANTS 2020; 9:plants9040519. [PMID: 32316535 PMCID: PMC7238149 DOI: 10.3390/plants9040519] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/07/2020] [Accepted: 04/08/2020] [Indexed: 12/28/2022]
Abstract
To elucidate inter-specific similarity and difference of tolerance mechanism against salinity stress between wheat and barley, high tolerant wheat cv. Suntop and sensitive cv. Sunmate and tolerant barley cv. CM72 were hydroponically grown in a greenhouse with 100 mM NaCl. Glutathione, secondary metabolites, and genes associated with Na+ transport, defense, and detoxification were examined to discriminate the species/cultivar difference in response to salinity stress. Suntop and CM72 displayed damage to a lesser extent than in Sunmate. Compared to Sunmate, both Suntop and CM72 recorded lower electrolyte leakage and reactive oxygen species (ROS) production, higher leaf relative water content, and higher activity of PAL (phenylalanine ammonia-lyase), CAD (cinnamyl alcohol dehydrogenase), PPO (polyphenol oxidase), SKDH (shikimate dehydrogenase), and more abundance of their mRNA under salinity stress. The expression of HKT1, HKT2, salt overly sensitive (SOS)1, AKT1, and NHX1 was upregulated in CM72 and Suntop, while downregulated in Sunmate. The transcription factor WRKY 10 was significantly induced in Suntop but suppressed in CM72 and Sunmate. Higher oxidized glutathione (GSSG) content was accumulated in cv. CM72 and Sunmate, but increased glutathione (GSH) content and the ratio of GSH/GSSG were observed in leaves and roots of Suntop under salinity stress. In conclusion, glutathione homeostasis and upregulation of the TaWRKY10 transcription factor played a more important role in wheat salt-tolerant cv. Suntop, which was different from barley cv. CM72 tolerance to salinity stress. This new finding could help in developing salinity tolerance in wheat and barley cultivars.
Collapse
Affiliation(s)
- Muhammad Zeeshan
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China; (M.Z.); (S.N.); (S.S.)
| | - Meiqin Lu
- Australian Grain Technologies, Narrabri, NSW 2390, Australia;
| | - Shama Naz
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China; (M.Z.); (S.N.); (S.S.)
| | - Shafaque Sehar
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China; (M.Z.); (S.N.); (S.S.)
| | - Fangbin Cao
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China; (M.Z.); (S.N.); (S.S.)
- Correspondence: (F.C.); (F.W.); Tel./Fax: +86-571-88982827 (F.W.)
| | - Feibo Wu
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China; (M.Z.); (S.N.); (S.S.)
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
- Correspondence: (F.C.); (F.W.); Tel./Fax: +86-571-88982827 (F.W.)
| |
Collapse
|
33
|
Chakraborty K, Mondal S, Ray S, Samal P, Pradhan B, Chattopadhyay K, Kar MK, Swain P, Sarkar RK. Tissue Tolerance Coupled With Ionic Discrimination Can Potentially Minimize the Energy Cost of Salinity Tolerance in Rice. FRONTIERS IN PLANT SCIENCE 2020; 11:265. [PMID: 32269578 PMCID: PMC7109317 DOI: 10.3389/fpls.2020.00265] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 02/20/2020] [Indexed: 05/15/2023]
Abstract
Salinity is one of the major constraints in rice production. To date, development of salt-tolerant rice cultivar is primarily focused on salt-exclusion strategies, which incur greater energy cost. The present study aimed to evaluate a balancing strategy of ionic discrimination vis-à-vis tissue tolerance, which could potentially minimize the energy cost of salt tolerance in rice. Four rice genotypes, viz., FL478, IR29, Kamini, and AC847, were grown hydroponically and subjected to salt stress equivalent to 12 dS m-1 at early vegetative stage. Different physiological observations (leaf chlorophyll content, chlorophyll fluorescence traits, and tissue Na+ and K+ content) and visual scoring suggested a superior Na+-partitioning strategy operating in FL478. A very low tissue Na+/K+ ratio in the leaves of FL478 after 7 days of stress hinted the existence of selective ion transport mechanism in this genotype. On the contrary, Kamini, an equally salt-tolerant genotype, was found to possess a higher leaf Na+/K+ ratio than does FL478 under similar stress condition. Salt-induced expression of different Na+ and K+ transporters indicated significant upregulation of SOS, HKT, NHX, and HAK groups of transporters in both leaves and roots of FL478, followed by Kamini. The expression of plasma membrane and vacuolar H+ pumps (OsAHA1, OsAHA7, and OsV-ATPase) were also upregulated in these two genotypes. On the other hand, IR29 and AC847 showed greater salt susceptibility owing to excess upward transport of Na+ and eventually died within a few days of stress imposition. But in the "leaf clip" assay, it was found that both IR29 and Kamini had high tissue-tolerance and chlorophyll-retention abilities. On the contrary, FL478, although having higher ionic-discrimination ability, showed the least degree of tissue tolerance as evident from the LC50 score (amount of Na+ required to reduce the initial chlorophyll content to half) of 336 mmol g-1 as against 459 and 424 mmol g-1 for IR29 and Kamini, respectively. Overall, the present study indicated that two components (ionic selectivity and tissue tolerance) of salt tolerance mechanism are distinct in rice. Unique genotypes like Kamini could effectively balance both of these strategies to achieve considerable salt tolerance, perhaps with lesser energy cost.
Collapse
|
34
|
Solis CA, Yong MT, Vinarao R, Jena K, Holford P, Shabala L, Zhou M, Shabala S, Chen ZH. Back to the Wild: On a Quest for Donors Toward Salinity Tolerant Rice. FRONTIERS IN PLANT SCIENCE 2020; 11:323. [PMID: 32265970 PMCID: PMC7098918 DOI: 10.3389/fpls.2020.00323] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 03/05/2020] [Indexed: 05/20/2023]
Abstract
Salinity stress affects global food producing areas by limiting both crop growth and yield. Attempts to develop salinity-tolerant rice varieties have had limited success due to the complexity of the salinity tolerance trait, high variation in the stress response and a lack of available donors for candidate genes for cultivated rice. As a result, finding suitable donors of genes and traits for salinity tolerance has become a major bottleneck in breeding for salinity tolerant crops. Twenty-two wild Oryza relatives have been recognized as important genetic resources for quantitatively inherited traits such as resistance and/or tolerance to abiotic and biotic stresses. In this review, we discuss the challenges and opportunities of such an approach by critically analyzing evolutionary, ecological, genetic, and physiological aspects of Oryza species. We argue that the strategy of rice breeding for better Na+ exclusion employed for the last few decades has reached a plateau and cannot deliver any further improvement in salinity tolerance in this species. This calls for a paradigm shift in rice breeding and more efforts toward targeting mechanisms of the tissue tolerance and a better utilization of the potential of wild rice where such traits are already present. We summarize the differences in salinity stress adaptation amongst cultivated and wild Oryza relatives and identify several key traits that should be targeted in future breeding programs. This includes: (1) efficient sequestration of Na+ in mesophyll cell vacuoles, with a strong emphasis on control of tonoplast leak channels; (2) more efficient control of xylem ion loading; (3) efficient cytosolic K+ retention in both root and leaf mesophyll cells; and (4) incorporating Na+ sequestration in trichrome. We conclude that while amongst all wild relatives, O. rufipogon is arguably a best source of germplasm at the moment, genes and traits from the wild relatives, O. coarctata, O. latifolia, and O. alta, should be targeted in future genetic programs to develop salt tolerant cultivated rice.
Collapse
Affiliation(s)
- Celymar A. Solis
- School of Science, Western Sydney University, Penrith, NSW, Australia
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS, Australia
| | - Miing T. Yong
- School of Science, Western Sydney University, Penrith, NSW, Australia
| | - Ricky Vinarao
- International Rice Research Institute, Metro Manila, Philippines
| | - Kshirod Jena
- International Rice Research Institute, Metro Manila, Philippines
| | - Paul Holford
- School of Science, Western Sydney University, Penrith, NSW, Australia
| | - Lana Shabala
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS, Australia
| | - Meixue Zhou
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS, Australia
| | - Sergey Shabala
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS, Australia
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan, China
| | - Zhong-Hua Chen
- School of Science, Western Sydney University, Penrith, NSW, Australia
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| |
Collapse
|
35
|
Wani SH, Kumar V, Khare T, Guddimalli R, Parveda M, Solymosi K, Suprasanna P, Kavi Kishor PB. Engineering salinity tolerance in plants: progress and prospects. PLANTA 2020; 251:76. [PMID: 32152761 DOI: 10.1007/s00425-020-03366-6] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 02/24/2020] [Indexed: 05/20/2023]
Abstract
There is a need to integrate conceptual framework based on the current understanding of salt stress responses with different approaches for manipulating and improving salt tolerance in crop plants. Soil salinity exerts significant constraints on global crop production, posing a serious challenge for plant breeders and biotechnologists. The classical transgenic approach for enhancing salinity tolerance in plants revolves by boosting endogenous defence mechanisms, often via a single-gene approach, and usually involves the enhanced synthesis of compatible osmolytes, antioxidants, polyamines, maintenance of hormone homeostasis, modification of transporters and/or regulatory proteins, including transcription factors and alternative splicing events. Occasionally, genetic manipulation of regulatory proteins or phytohormone levels confers salinity tolerance, but all these may cause undesired reduction in plant growth and/or yields. In this review, we present and evaluate novel and cutting-edge approaches for engineering salt tolerance in crop plants. First, we cover recent findings regarding the importance of regulatory proteins and transporters, and how they can be used to enhance salt tolerance in crop plants. We also evaluate the importance of halobiomes as a reservoir of genes that can be used for engineering salt tolerance in glycophytic crops. Additionally, the role of microRNAs as critical post-transcriptional regulators in plant adaptive responses to salt stress is reviewed and their use for engineering salt-tolerant crop plants is critically assessed. The potentials of alternative splicing mechanisms and targeted gene-editing technologies in understanding plant salt stress responses and developing salt-tolerant crop plants are also discussed.
Collapse
Affiliation(s)
- Shabir Hussain Wani
- Mountain Research Centre for Field Crops, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Khudwani, Anantnag, Jammu and Kashmir, 192 101, India.
| | - Vinay Kumar
- Department of Biotechnology, Modern College, Savitribai Phule Pune University, Ganeshkhind, Pune, 411 016, India
- Department of Environmental Science, Savitribai Phule Pune University, Ganeshkhind, Pune, 411 016, India
| | - Tushar Khare
- Department of Biotechnology, Modern College, Savitribai Phule Pune University, Ganeshkhind, Pune, 411 016, India
| | | | | | - Katalin Solymosi
- Department of Plant Anatomy, Institute of Biology, ELTE-Eötvös Loránd University, Budapest, 1053, Hungary
| | - Penna Suprasanna
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400 085, India
| | - P B Kavi Kishor
- Department of Biotechnology, Vignan's Foundation for Science Technology and Research, Vadlamudi, Guntur, 522 213, India
| |
Collapse
|
36
|
Chen G, Chen Q, Qi K, Xie Z, Yin H, Wang P, Wang R, Huang Z, Zhang S, Wang L, Wu J. Identification of Shaker K + channel family members in Rosaceae and a functional exploration of PbrKAT1. PLANTA 2019; 250:1911-1925. [PMID: 31523779 DOI: 10.1007/s00425-019-03275-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 09/06/2019] [Indexed: 05/20/2023]
Abstract
PbrKAT1, which is inhibited by external Na+ in Xenopus laevis oocytes, is characterized as encoding a typical inward rectifying channel that is mainly expressed in guard cells. Potassium (K+) is the most abundant cation in plant cells necessary for plant growth and development. The uptake and transport of K+ are mainly completed through transporters and channels, and the Shaker family genes are the most studied K+ channels in plants. However, there is far less information about this family in Rosaceae species. We performed a genome-wide analysis and identified Shaker K+ channel gene family members in Rosaceae. We cloned and characterized a Shaker K+ channel KAT1 from pear (Pyrus × bretschneideri). In total, 36 Shaker K+ channel genes were identified from Rosaceae species and were classified into five subgroups based on structural characteristics and a phylogenetic analysis. Whole-genome and dispersed duplications were the primary forces underlying Shaker K+ channel gene family expansion in Rosaceae, and purifying selection played a key role in the evolution of Shaker K+ channel genes. β-Glucuronidase and qRT-PCR assays revealed that PbrKAT1 was mainly expressed in leaves, especially in guard cells. PbrKAT1 displayed a typical inward-rectifying current when expressed in Xenopus laevis oocytes. The activity of PbrKAT1 was inhibited by external sodium ions, possibly playing an important role in the regulation of salt tolerance in pear. These results provide valuable information on evolution, expression and functions of the Shaker K+ channel gene family in plants.
Collapse
Affiliation(s)
- Guodong Chen
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qian Chen
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Kaijie Qi
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhihua Xie
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hao Yin
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Peng Wang
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Runze Wang
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhi Huang
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shaoling Zhang
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Li Wang
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Juyou Wu
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
37
|
Overexpression of a Multiprotein Bridging Factor 1 Gene DgMBF1 Improves the Salinity Tolerance of Chrysanthemum. Int J Mol Sci 2019; 20:ijms20102453. [PMID: 31108974 PMCID: PMC6566780 DOI: 10.3390/ijms20102453] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 05/07/2019] [Accepted: 05/13/2019] [Indexed: 01/22/2023] Open
Abstract
Soil salinity represents a major constraint in the growth of chrysanthemum. Therefore, improving salinity tolerance of chrysanthemum has become an important research direction in tolerance breeding. Multiprotein bridging factor 1 (MBF1) is an evolutionarily highly conserved transcriptional co-activator in archaea and eukaryotes and has been reported to play important roles to respond to abiotic stresses. Here, a MBF1 gene induced by salt stress was isolated and functionally characterized from Dendranthema grandiflorum and name as DgMBF1. Overexpression of DgMBF1 in chrysanthemum increased the tolerance of plants to high salt stress compared to wild type (WT). It also showed fewer accumulations of hydrogen peroxide (H2O2), superoxide anion (O2−), higher activities of antioxidant enzymes, more content of proline and soluble sugar (SS) and more favorable K+/Na+ ratio than those of WT under salt stress. In addition, the expression level of genes related to antioxidant biosynthesis, proline biosynthesis, glyco-metabolism and K+/Na+ homeostasis was statistically significant higher in the DgMBF1-overexpressed lines than that in WT. These results demonstrated that DgMBF1 is a positive regulator in response to salt stress and could serve as a new candidate gene for salt-tolerant plant breeding.
Collapse
|
38
|
Wang Y, Wang Y, Li B, Xiong C, Eneji AE, Zhang M, Li F, Tian X, Li Z. The Cotton High-Affinity K+ Transporter, GhHAK5a, Is Essential for Shoot Regulation of K+ Uptake in Root under Potassium Deficiency. PLANT & CELL PHYSIOLOGY 2019; 60:888-899. [PMID: 30649443 DOI: 10.1093/pcp/pcz003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 01/03/2019] [Indexed: 05/23/2023]
Abstract
Potassium (K) deficiency is a key limiting factor in cotton (Gossypium hirsutum) production. By grafting two contrasting cotton cultivars, CCRI41 (more susceptible to K+ deficiency) and SCRC22 (more tolerant of K+ deficiency), we established that cotton shoot plays a vital role in the regulation of root K+ uptake. To identify the genetic basis of this finding, we performed RNA sequencing (RNA-seq) of roots of CCRI41 self-grafts (CCRI41/CCRI41, scion/rootstock) and SCRC22/CCRI41 reciprocal-grafts exposed to K+ deficiency. We found that GhHAK5a, an orthologous of Arabidopsis thaliana high-affinity K+ transporter, AtHAK5, was significantly induced in the CCRI41 rootstock by the SCRC22 scion. This gene was mainly expressed in roots and was more highly induced by K+ deficiency in roots of SCRC22 than those of CCRI41. Agrobacterium-mediated virus-induced gene silencing and yeast complementary assay showed that GhHAK5a is a high-affinity K+ uptake transporter. Importantly, silencing of GhHAK5a in the CCRI41 rootstock almost completely inhibited the K+ uptake induced by SCRC22 scion in CCRI41 rootstock. We identified a key high-affinity K+ transporter, GhHAK5a in cotton, which is the essential target for shoot regulation of root K+ uptake under K+ deficiency.
Collapse
Affiliation(s)
- Yiru Wang
- Department of Crop Physiology and Cultivation, State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Ye Wang
- Department of Crop Physiology and Cultivation, State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
- Department of Agronomy, Plant Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Bo Li
- Department of Crop Physiology and Cultivation, State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
- China Phosphate and Compound Fertilizer Industry Association
| | - Changming Xiong
- Department of Crop Physiology and Cultivation, State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - A Egrinya Eneji
- Department of Soil Science, Faculty of Agriculture, Forestry and Wildlife Resources Management, University of Calabar, Calabar, Nigeria
| | - Mingcai Zhang
- Department of Crop Physiology and Cultivation, State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Fangjun Li
- Department of Crop Physiology and Cultivation, State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Xiaoli Tian
- Department of Crop Physiology and Cultivation, State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Zhaohu Li
- Department of Crop Physiology and Cultivation, State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| |
Collapse
|
39
|
The Complex Fine-Tuning of K⁺ Fluxes in Plants in Relation to Osmotic and Ionic Abiotic Stresses. Int J Mol Sci 2019; 20:ijms20030715. [PMID: 30736441 PMCID: PMC6387338 DOI: 10.3390/ijms20030715] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 01/17/2019] [Accepted: 01/29/2019] [Indexed: 12/19/2022] Open
Abstract
As the main cation in plant cells, potassium plays an essential role in adaptive responses, especially through its involvement in osmotic pressure and membrane potential adjustments. K+ homeostasis must, therefore, be finely controlled. As a result of different abiotic stresses, especially those resulting from global warming, K⁺ fluxes and plant distribution of this ion are disturbed. The hormone abscisic acid (ABA) is a key player in responses to these climate stresses. It triggers signaling cascades that ultimately lead to modulation of the activities of K⁺ channels and transporters. After a brief overview of transcriptional changes induced by abiotic stresses, this review deals with the post-translational molecular mechanisms in different plant organs, in Arabidopsis and species of agronomical interest, triggering changes in K⁺ uptake from the soil, K⁺ transport and accumulation throughout the plant, and stomatal regulation. These modifications involve phosphorylation/dephosphorylation mechanisms, modifications of targeting, and interactions with regulatory partner proteins. Interestingly, many signaling pathways are common to K⁺ and Cl-/NO3- counter-ion transport systems. These cross-talks are also addressed.
Collapse
|
40
|
Wu LB, Holtkamp F, Wairich A, Frei M. Potassium Ion Channel Gene OsAKT1 Affects Iron Translocation in Rice Plants Exposed to Iron Toxicity. FRONTIERS IN PLANT SCIENCE 2019; 10:579. [PMID: 31134118 PMCID: PMC6517512 DOI: 10.3389/fpls.2019.00579] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 04/18/2019] [Indexed: 05/17/2023]
Abstract
Iron toxicity is one of the most widely spread mineral disorders in anaerobic soils, but the tolerance mechanisms in plants are poorly understood. Here we characterize the involvement of a rice potassium ion channel gene, OsAKT1, in Fe toxic conditions. Two knock-down lines of OsAKT1 together with azygos lines were investigated. Mutant lines did not differ from azygos lines regarding plant growth, gas exchange rate or chlorophyll fluorescence in control conditions. However, loss-of-function of OsAKT1 increased the sensitivity to excess Fe regarding leaf bronzing symptoms, reactive oxygen species generation, leaf spectral reflectance indices, and chlorophyll fluorescence. Fe toxicity leads to largely reduced uptake of other nutrients into shoots, which illustrates the complexity of Fe stress related to multiple mineral disorders. Less potassium uptake in the mutants compared to azygos lines co-occurred with higher amounts of Fe accumulated in the shoot tissues but not in the roots. These results were consistent with a higher level of Fe loaded into the xylem sap of mutants compared to azygos lines in the early phase of Fe toxicity. In conclusion, OsAKT1 is crucial for the tolerance of rice against Fe toxicity as K homeostasis affects Fe translocation from root to shoot.
Collapse
Affiliation(s)
- Lin-Bo Wu
- Department of Plant Nutrition, Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
| | - Felix Holtkamp
- Department of Plant Nutrition, Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
| | - Andriele Wairich
- Department of Plant Nutrition, Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
- Center for Biotechnology, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Michael Frei
- Department of Plant Nutrition, Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
- *Correspondence: Michael Frei,
| |
Collapse
|
41
|
Okada T, Yamane S, Yamaguchi M, Kato K, Shinmyo A, Tsunemitsu Y, Iwasaki K, Ueno D, Demura T. Characterization of rice KT/HAK/KUP potassium transporters and K + uptake by HAK1 from Oryza sativa. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2018; 35:101-111. [PMID: 31819712 PMCID: PMC6879396 DOI: 10.5511/plantbiotechnology.18.0308a] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 03/08/2018] [Indexed: 05/22/2023]
Abstract
Plant high-affinity K+ (HAK) transporters are divided into four major clusters. Cluster I transporters, in particular, are thought to have high-affinity for K+. Of the 27 HAK genes in rice, eight HAK transporters belong to cluster I. In this study, we investigated the temporal expression patterns during K+ deficiency and K+ transport activity of these eight HAK transporters. The expression of seven HAK genes except OsHAK20 was detected. Expression of OsHAK1, OsHAK5 and OsHAK21 was induced in response to K+ deficiency; however, that of other genes was not. Six of the eight HAK transporters-OsHAK1, OsHAK5, OsHAK19, OsHAK20, OsHAK21, and OsHAK27-complemented the K+-transporter-deficient yeast or bacterial strain. Further, the yeast cells expressing OsHAK1 were more sensitive to Na+ than those expressing OsHAK5. Mutant analysis showed that the high-affinity K+ uptake activity was almost undetectable in oshak1 mutants in a low-K+ medium (0.02 mM). In addition, the high-affinity K+ uptake activity of wild-type plants was inhibited by mild salt stress (20 mM NaCl); however, Na+ permeability of OsHAK1 was not detected in Escherichia coli cells. The high-affinity K+ uptake activity by leaf blades was detected in wild-type plants, while it was not detected in oshak1 mutants. Our results suggest that OsHAK1 and OsHAK5 are the two important components of cluster I corresponding to low-K+ conditions, and that the transport activity of OsHAK1, unlike that of OsHAK5, is sensitive to Na+. Further, OsHAK1 is suggested to involve in foliar K+ uptake.
Collapse
Affiliation(s)
- Tomoyuki Okada
- Faculty of Agriculture, Kochi University, 200 Otsu Monobe, Nankoku, Kochi 783-8502, Japan
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
- Kochi Agricultural Research Center, 1100 Hataeda, Nankoku, Kochi 783-0023, Japan
- E-mail: Tel & Fax: +81-88-864-5179
| | - Sousuke Yamane
- Faculty of Agriculture, Kochi University, 200 Otsu Monobe, Nankoku, Kochi 783-8502, Japan
| | - Masatoshi Yamaguchi
- Graduate School of Biological Engineering, Saitama University, 255 Shimo-Ohkubo, Sakura-ku, Saitama 338-8570, Japan
| | - Ko Kato
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Atsuhiko Shinmyo
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Yuta Tsunemitsu
- Faculty of Agriculture, Kochi University, 200 Otsu Monobe, Nankoku, Kochi 783-8502, Japan
| | - Kozo Iwasaki
- Faculty of Agriculture, Kochi University, 200 Otsu Monobe, Nankoku, Kochi 783-8502, Japan
| | - Daisei Ueno
- Faculty of Agriculture, Kochi University, 200 Otsu Monobe, Nankoku, Kochi 783-8502, Japan
| | - Taku Demura
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| |
Collapse
|
42
|
Fabio LCM, Lucas TMR, Sandra HUT, Leandro BL, Domingos FF. Rice (Oryza sativa) breeding strategies for grain biofortification. ACTA ACUST UNITED AC 2018. [DOI: 10.5897/ajb2017.16329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
43
|
Shi X, Long Y, He F, Zhang C, Wang R, Zhang T, Wu W, Hao Z, Wang Y, Wang GL, Ning Y. The fungal pathogen Magnaporthe oryzae suppresses innate immunity by modulating a host potassium channel. PLoS Pathog 2018; 14:e1006878. [PMID: 29385213 PMCID: PMC5809103 DOI: 10.1371/journal.ppat.1006878] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 02/12/2018] [Accepted: 01/12/2018] [Indexed: 11/19/2022] Open
Abstract
Potassium (K+) is required by plants for growth and development, and also contributes to immunity against pathogens. However, it has not been established whether pathogens modulate host K+ signaling pathways to enhance virulence and subvert host immunity. Here, we show that the effector protein AvrPiz-t from the rice blast pathogen Magnaporthe oryzae targets a K+ channel to subvert plant immunity. AvrPiz-t interacts with the rice plasma-membrane-localized K+ channel protein OsAKT1 and specifically suppresses the OsAKT1-mediated K+ currents. Genetic and phenotypic analyses show that loss of OsAKT1 leads to decreased K+ content and reduced resistance against M. oryzae. Strikingly, AvrPiz-t interferes with the association of OsAKT1 with its upstream regulator, the cytoplasmic kinase OsCIPK23, which also plays a positive role in K+ absorption and resistance to M. oryzae. Furthermore, we show a direct correlation between blast disease resistance and external K+ status in rice plants. Together, our data present a novel mechanism by which a pathogen suppresses plant host immunity by modulating a host K+ channel. Plant nutritional status can greatly influence plant immunity in response to pathogen invasion. Rice blast, a devastating rice disease caused by the hemibiotrophic fungus Magnaporthe oryzae, causes a significant reduction in yield and affects food security. In this study, we demonstrate that the M. oryzae secreted protein AvrPiz-t interacts with rice OsAKT1, a potassium (K+) channel protein, and suppresses OsAKT1-mediated inward K+ currents, possibly by competing with the OsAKT1 upstream regulator, OsCIPK23. We also show that both OsAKT1 and OsCIPK23 are required for K+ uptake and resistance against M. oryzae infection in rice. This study provides new insights into the molecular basis of pathogen-mediated perturbation of a plant nutrition pathway.
Collapse
Affiliation(s)
- Xuetao Shi
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yu Long
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Feng He
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chongyang Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ruyi Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ting Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wei Wu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Zeyun Hao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yi Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
- * E-mail: (YW); (GLW); (YN)
| | - Guo-Liang Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Department of Plant Pathology, Ohio State University, Columbus, Ohio, United States of America
- * E-mail: (YW); (GLW); (YN)
| | - Yuese Ning
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- * E-mail: (YW); (GLW); (YN)
| |
Collapse
|
44
|
Ahmed I, Yadav D, Shukla P, Vineeth TV, Sharma PC, Kirti PB. Constitutive expression of Brassica juncea annexin, AnnBj2 confers salt tolerance and glucose and ABA insensitivity in mustard transgenic plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 265:12-28. [PMID: 29223333 DOI: 10.1016/j.plantsci.2017.09.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 08/09/2017] [Accepted: 09/16/2017] [Indexed: 05/20/2023]
Abstract
Annexins belong to a plasma membrane binding (in a calcium dependent manner), multi-gene family of proteins, which play ameliorating roles in biotic and abiotic stresses. The expression of annexin AnnBj2 of Indian mustard is tissue specific with higher expression in roots and under treatments with sodium chloride and abscisic acid (ABA) at seedling stage. The effect of constitutive expression of AnnBj2 in mustard was analyzed in detail. AnnBj2 OE (over expression) plants exhibited insensitivity to ABA, glucose and sodium chloride. The insensitivity/tolerance of the transgenic plants was associated with enhanced total chlorophylls, relative water content, proline, calcium and potassium with reduced thiobarbituric acid reactive substances and sodium ion accumulation. The altered ABA insensitivity of AnnBj2 OE lines is linked to downregulation of ABI4 and ABI5 transcription factors and upregulation of ABA catabolic gene CYP707A2. Furthermore, we found that overexpression of AnnBj2 upregulated the expression of ABA-dependent RAB18 and ABA-independent DREB2B stress marker genes suggesting that the tolerance phenotype exhibited by AnnBj2 OE lines is probably controlled by both ABA-dependent and -independent mechanisms.
Collapse
Affiliation(s)
- Israr Ahmed
- Department of Plant Sciences, University of Hyderabad, Hyderabad, India.
| | - Deepanker Yadav
- Department of Plant Sciences, University of Hyderabad, Hyderabad, India
| | - Pawan Shukla
- Department of Plant Sciences, University of Hyderabad, Hyderabad, India
| | - T V Vineeth
- Central Soil Salinity Research Institute, Karnal, Haryana, India
| | - P C Sharma
- Central Soil Salinity Research Institute, Karnal, Haryana, India
| | - P B Kirti
- Department of Plant Sciences, University of Hyderabad, Hyderabad, India.
| |
Collapse
|
45
|
Chen L, Liao H. Engineering crop nutrient efficiency for sustainable agriculture. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2017; 59:710-735. [PMID: 28600834 DOI: 10.1111/jipb.12559] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 06/06/2017] [Indexed: 05/21/2023]
Abstract
Increasing crop yields can provide food, animal feed, bioenergy feedstocks and biomaterials to meet increasing global demand; however, the methods used to increase yield can negatively affect sustainability. For example, application of excess fertilizer can generate and maintain high yields but also increases input costs and contributes to environmental damage through eutrophication, soil acidification and air pollution. Improving crop nutrient efficiency can improve agricultural sustainability by increasing yield while decreasing input costs and harmful environmental effects. Here, we review the mechanisms of nutrient efficiency (primarily for nitrogen, phosphorus, potassium and iron) and breeding strategies for improving this trait, along with the role of regulation of gene expression in enhancing crop nutrient efficiency to increase yields. We focus on the importance of root system architecture to improve nutrient acquisition efficiency, as well as the contributions of mineral translocation, remobilization and metabolic efficiency to nutrient utilization efficiency.
Collapse
Affiliation(s)
- Liyu Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China
- Root Biology Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hong Liao
- Root Biology Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
46
|
Islam F, Farooq MA, Gill RA, Wang J, Yang C, Ali B, Wang GX, Zhou W. 2,4-D attenuates salinity-induced toxicity by mediating anatomical changes, antioxidant capacity and cation transporters in the roots of rice cultivars. Sci Rep 2017; 7:10443. [PMID: 28874677 PMCID: PMC5585390 DOI: 10.1038/s41598-017-09708-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 07/28/2017] [Indexed: 12/14/2022] Open
Abstract
Growth regulator herbicides are widely used in paddy fields to control weeds, however their role in conferring environmental stress tolerance in the crop plants are still elusive. In this study, the effects of recommended dose of 2,4-dichlorophenoxyacetic acid (2,4-D) on growth, oxidative damage, antioxidant defense, regulation of cation transporter genes and anatomical changes in the roots of rice cultivars XS 134 (salt resistant) and ZJ 88 (salt sensitive) were investigated under different levels of saline stress. Individual treatments of saline stress and 2,4-D application induced oxidative damage as evidenced by decreased root growth, enhanced ROS production, more membrane damage and Na+ accumulation in sensitive cultivar compared to the tolerant cultivar. Conversely, combined treatments of 2,4-D and saline stress significantly alleviated the growth inhibition and oxidative stress in roots of rice cultivars by modulating lignin and callose deposition, redox states of AsA, GSH, and related enzyme activities involved in the antioxidant defense system. The expression analysis of nine cation transporter genes showed altered and differential gene expression in salt-stressed roots of sensitive and resistant cultivars. Together, these results suggest that 2,4-D differentially regulates the Na+ and K+ levels, ROS production, antioxidant defense, anatomical changes and cation transporters/genes in roots of rice cultivars.
Collapse
Affiliation(s)
- Faisal Islam
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China
| | - Muhammad A Farooq
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China.,Institute of Pure and Applied Biology, Bahauddin Zakariya University, Multan, Pakistan
| | - Rafaqat A Gill
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China
| | - Jian Wang
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China
| | - Chong Yang
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China
| | - Basharat Ali
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China.,Institute of Crop Science and Resource Conservation, University of Bonn, 53115, Bonn, Germany
| | - Guang-Xi Wang
- Department of Environmental Bioscience, Meijo University, Nagoya City, Aichi, 468-8502, Japan
| | - Weijun Zhou
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
47
|
Zhang X, Jiang H, Wang H, Cui J, Wang J, Hu J, Guo L, Qian Q, Xue D. Transcriptome Analysis of Rice Seedling Roots in Response to Potassium Deficiency. Sci Rep 2017; 7:5523. [PMID: 28717149 PMCID: PMC5514036 DOI: 10.1038/s41598-017-05887-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 06/02/2017] [Indexed: 12/20/2022] Open
Abstract
Rice is one of the most important food crops in the world, and its growth, development, yield, and grain quality are susceptible to a deficiency of the macronutrient potassium (K+). The molecular mechanism for K+ deficiency tolerance remains poorly understood. In this study, K+ deficient conditions were employed to investigate the resulting changes in the transcriptome of rice seedling roots. Using ribonucleic acid sequencing (RNA-Seq) and analysis, a total of 805 differentially expressed genes were obtained, of which 536 genes were upregulated and 269 were downregulated. Gene functional classification showed that the expression of genes involved in nutrient transport, protein kinases, transcription processes, and plant hormones were particularly altered in the roots. Although these changes were significant, the expression of most genes remained constant even in K+-deficient conditions. Interestingly, when our RNA-Seq results were compared to public microarray data, we found that most of the genes that were differentially expressed in low K+ conditions also exhibited changes in expression in other environmental stress conditions.
Collapse
Affiliation(s)
- Xiaoqin Zhang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Hua Jiang
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Zhejiang Academy of Agricultural Science, Hangzhou, China
| | - Hua Wang
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Zhejiang Academy of Agricultural Science, Hangzhou, China.,Institute of Crop Germplasm and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Jun Cui
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Jiahui Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Jiang Hu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Longbiao Guo
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Qian Qian
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China.
| | - Dawei Xue
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China.
| |
Collapse
|
48
|
Ma Q, Hu J, Zhou XR, Yuan HJ, Kumar T, Luan S, Wang SM. ZxAKT1 is essential for K + uptake and K + /Na + homeostasis in the succulent xerophyte Zygophyllum xanthoxylum. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 90:48-60. [PMID: 28008679 DOI: 10.1111/tpj.13465] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 12/14/2016] [Accepted: 12/16/2016] [Indexed: 05/08/2023]
Abstract
The inward-rectifying K+ channel AKT1 constitutes an important pathway for K+ acquisition in plant roots. In glycophytes, excessive accumulation of Na+ is accompanied by K+ deficiency under salt stress. However, in the succulent xerophyte Zygophyllum xanthoxylum, which exhibits excellent adaptability to adverse environments, K+ concentration remains at a relatively constant level despite increased levels of Na+ under salinity and drought conditions. In this study, the contribution of ZxAKT1 to maintaining K+ and Na+ homeostasis in Z. xanthoxylum was investigated. Expression of ZxAKT1 rescued the K+ -uptake-defective phenotype of yeast strain CY162, suppressed the salt-sensitive phenotype of yeast strain G19, and complemented the low-K+ -sensitive phenotype of Arabidopsis akt1 mutant, indicating that ZxAKT1 functions as an inward-rectifying K+ channel. ZxAKT1 was predominantly expressed in roots, and was induced under high concentrations of either KCl or NaCl. By using RNA interference technique, we found that ZxAKT1-silenced plants exhibited stunted growth compared to wild-type Z. xanthoxylum. Further experiments showed that ZxAKT1-silenced plants exhibited a significant decline in net uptake of K+ and Na+ , resulting in decreased concentrations of K+ and Na+ , as compared to wild-type Z. xanthoxylum grown under 50 mm NaCl. Compared with wild-type, the expression levels of genes encoding several transporters/channels related to K+ /Na+ homeostasis, including ZxSKOR, ZxNHX, ZxSOS1 and ZxHKT1;1, were reduced in various tissues of a ZxAKT1-silenced line. These findings suggest that ZxAKT1 not only plays a crucial role in K+ uptake but also functions in modulating Na+ uptake and transport systems in Z. xanthoxylum, thereby affecting its normal growth.
Collapse
Affiliation(s)
- Qing Ma
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Jing Hu
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Xiang-Rui Zhou
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Hui-Jun Yuan
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Tanweer Kumar
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Sheng Luan
- Department of Plant and Microbial Biology, University of California at Berkeley, Berkeley, CA, 73072, USA
- NJU-NJFU Joint Institute for Plant Molecular Biology, College of Life Sciences, Nanjing University, Nanjing, 210093, China
| | - Suo-Min Wang
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| |
Collapse
|
49
|
Almeida DM, Oliveira MM, Saibo NJM. Regulation of Na+ and K+ homeostasis in plants: towards improved salt stress tolerance in crop plants. Genet Mol Biol 2017; 40:326-345. [PMID: 28350038 PMCID: PMC5452131 DOI: 10.1590/1678-4685-gmb-2016-0106] [Citation(s) in RCA: 254] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 08/18/2016] [Indexed: 01/17/2023] Open
Abstract
Soil salinity is a major abiotic stress that results in considerable crop yield losses worldwide. However, some plant genotypes show a high tolerance to soil salinity, as they manage to maintain a high K+/Na+ ratio in the cytosol, in contrast to salt stress susceptible genotypes. Although, different plant genotypes show different salt tolerance mechanisms, they all rely on the regulation and function of K+ and Na+ transporters and H+ pumps, which generate the driving force for K+ and Na+ transport. In this review we will introduce salt stress responses in plants and summarize the current knowledge about the most important ion transporters that facilitate intra- and intercellular K+ and Na+ homeostasis in these organisms. We will describe and discuss the regulation and function of the H+-ATPases, H+-PPases, SOS1, HKTs, and NHXs, including the specific tissues where they work and their response to salt stress.
Collapse
Affiliation(s)
- Diego M Almeida
- Genomics of Plant Stress Unit, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa and Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
| | - M Margarida Oliveira
- Genomics of Plant Stress Unit, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa and Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
| | - Nelson J M Saibo
- Genomics of Plant Stress Unit, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa and Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
| |
Collapse
|
50
|
Garriga M, Raddatz N, Véry AA, Sentenac H, Rubio-Meléndez ME, González W, Dreyer I. Cloning and functional characterization of HKT1 and AKT1 genes of Fragaria spp.-Relationship to plant response to salt stress. JOURNAL OF PLANT PHYSIOLOGY 2017; 210:9-17. [PMID: 28039842 DOI: 10.1016/j.jplph.2016.12.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 12/08/2016] [Accepted: 12/11/2016] [Indexed: 05/03/2023]
Abstract
Commercial strawberry, Fragaria x ananassa Duch., is a species sensitive to salinity. Under saline conditions, Na+ uptake by the plant is increased, while K+ uptake is significantly reduced. Maintaining an adequate K+/Na+ cytosolic ratio determines the ability of the plant to survive in saline environments. The goal of the present work was to clone and functionally characterize the genes AKT1 and HKT1 involved in K+ and Na+ transport in strawberry and to determine the relationship of these genes with the responses of three Fragaria spp. genotypes having different ecological adaptations to salt stress. FaHKT1 and FcHKT1 proteins from F. x ananassa and F. chiloensis have 98.1% of identity, while FaAKT1 and FcAKT1 identity is 99.7%. FaHKT1 and FaAKT1 from F. x ananassa, were functionally characterized in Xenopus oocytes. FaHKT1, belongs to the group I of HKT transporters and is selective for Na+. Expression of FaAKT1 in oocytes showed that the protein is a typical inward-rectifying and highly K+-selective channel. The relative expression of Fragaria HKT1 and AKT1 genes was studied in roots of F. x ananassa cv. Camarosa and of F. chiloensis (accessions Bau and Cucao) grown under salt stress. The expression of AKT1 was transiently increased in 'Camarosa', decreased in 'Cucao' and was not affected in 'Bau' upon salt stress. HKT1 expression was significantly increased in roots of 'Cucao' and was not affected in the other two genotypes. The increased relative expression of HKT1 and decreased expression of AKT1 in 'Cucao' roots correlates with the higher tolerance to salinity of this genotype in comparison with 'Camarosa' and 'Bau'.
Collapse
Affiliation(s)
- Miguel Garriga
- Facultad de Ciencias Agrarias, Universidad de Talca, Casilla 747, Talca, Chile.
| | - Natalia Raddatz
- Plant Biophysics, Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), E-28223 Pozuelo de Alarcón, Madrid, Spain
| | - Anne-Aliénor Véry
- Biochimie et Physiologie Moléculaire des Plantes, UMR 5004, ENSA.M INRA CNRS UMII, 34060 Montpellier, Cedex 2, France
| | - Hervé Sentenac
- Biochimie et Physiologie Moléculaire des Plantes, UMR 5004, ENSA.M INRA CNRS UMII, 34060 Montpellier, Cedex 2, France
| | - María E Rubio-Meléndez
- Facultad de Ciencias Agrarias, Universidad de Talca, Casilla 747, Talca, Chile; Instituto de Ciencias Biológicas, Universidad de Talca, Casilla 747, Talca, Chile
| | - Wendy González
- Centro de Bioinformática y Simulación Molecular, Universidad de Talca, Casilla 721, Talca, Chile
| | - Ingo Dreyer
- Plant Biophysics, Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), E-28223 Pozuelo de Alarcón, Madrid, Spain; Centro de Bioinformática y Simulación Molecular, Universidad de Talca, Casilla 721, Talca, Chile.
| |
Collapse
|