1
|
Cao X, Zhang M, Xiao X, Yin F, Yao Y, Sui M, Hu Y, Xiang Y, Wang L. Regulation of reactive oxygen molecules in pakchoi by histone acetylation modifications under Cd stress. PLoS One 2024; 19:e0314043. [PMID: 39565822 PMCID: PMC11578466 DOI: 10.1371/journal.pone.0314043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 11/04/2024] [Indexed: 11/22/2024] Open
Abstract
Reactive oxygen species (ROS) are essential modulators of epigenetic modifications under abiotic stress. However, the mutual regulation mechanism of the two under cadmium (Cd) stress is unclear. In this work, we investigated this issue using Cd-stressed pakchoi seedlings treated with six epi-modification inhibitors (5-AC, RG108, TSA, CUDC101, AT13148, and H89) as experimental materials. The experimental data showed that Cd stress caused ROS accumulation and chromatin decondensation. Addition of low concentrations of epi-modification inhibitors increased histone acetylation modification levels, and effectively attenuated cell cycle arrest and DNA damage caused by Cd-induced ROS accumulation, where histone acetylation modification levels were co-regulated by histone acetyltransferase and deacetyltransferase gene transcription. Moreover, the addition of the antioxidant Thi enhanced this mitigating effect. Also, TSA addition at high concentrations could also increase Cd-induced ROS accumulation. Based on this, we propose that the ROS molecular pathway may be related to epigenetic regulation, and chromatin modification may affect ROS accumulation by regulating gene expression, providing a new perspective for studying the regulatory mechanism of epigenetic modification under abiotic stress.
Collapse
Affiliation(s)
- Xiaoqun Cao
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, P. R. China
| | - Ming Zhang
- Department of Animal Science, Jiangxi Biotech Vocational College, Nanchang, Jiangxi, P. R. China
| | - Xufeng Xiao
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, P. R. China
| | - Fengrui Yin
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, P. R. China
| | - Yuekeng Yao
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, P. R. China
| | - Meilan Sui
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, P. R. China
| | - Yifan Hu
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, P. R. China
| | - Yan Xiang
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, P. R. China
| | - Liangdeng Wang
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, P. R. China
| |
Collapse
|
2
|
Shriti S, Bhar A, Roy A. Unveiling the role of epigenetic mechanisms and redox signaling in alleviating multiple abiotic stress in plants. FRONTIERS IN PLANT SCIENCE 2024; 15:1456414. [PMID: 39363922 PMCID: PMC11446805 DOI: 10.3389/fpls.2024.1456414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 08/30/2024] [Indexed: 10/05/2024]
Abstract
Anthropogenic activities and subsequent global climate change instigate drastic crop productivity and yield changes. These changes comprise a rise in the number and severity of plant stress factors, which can arise simultaneously or sequentially. When abiotic stress factors are combined, their impact on plants is more substantial than that of a singleton stress factor. One such impact is the alteration of redox cellular homeostasis, which, in turn, can regulate downstream stress-responsive gene expression and resistance response. The epigenetic regulation of gene expression in response to varied stress factors is an interesting phenomenon, which, conversely, can be stable and heritable. The epigenetic control in plants in response to abiotic stress combinations and their interactions with cellular redox alteration is an emerging field to commemorate crop yield management under climate change. The article highlights the integration of the redox signaling pathways and epigenetic regulations as pivotal components in the complex network of plant responses against multi-combinatorial stresses across time and space. This review aims to lay the foundation for developing novel approaches to mitigate the impact of environmental stresses on crop productivity, bridging the gap between theoretical understanding and practical solutions in the face of a changing climate and anthropogenic disturbances.
Collapse
Affiliation(s)
- Surbhi Shriti
- Division of Plant Biology, Bose Institute, Kolkata, West Bengal, India
| | - Anirban Bhar
- Post Graduate Department of Botany, Ramakrishna Mission Vivekananda Centenary College (Autonomous), Rahara, Kolkata, India
| | - Amit Roy
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Prague, Czechia
| |
Collapse
|
3
|
Ramakrishnan M, Papolu PK, Satish L, Vinod KK, Wei Q, Sharma A, Emamverdian A, Zou LH, Zhou M. Redox status of the plant cell determines epigenetic modifications under abiotic stress conditions and during developmental processes. J Adv Res 2022; 42:99-116. [PMID: 35690579 PMCID: PMC9788946 DOI: 10.1016/j.jare.2022.04.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/30/2022] [Accepted: 04/12/2022] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND The oxidation-reduction (redox) status of the cell influences or regulates transcription factors and enzymes involved in epigenetic changes, such as DNA methylation, histone protein modifications, and chromatin structure and remodeling. These changes are crucial regulators of chromatin architecture, leading to differential gene expression in eukaryotes. But the cell's redox homeostasis is difficult to sustain since the production of reactive oxygen species (ROS) and reactive nitrogen species (RNS) is not equal in plants at different developmental stages and under abiotic stress conditions. Exceeding optimum ROS and RNS levels leads to oxidative stress and thus alters the redox status of the cell. Consequently, this alteration modulates intracellular epigenetic modifications that either mitigate or mediate the plant growth and stress response. AIM OF REVIEW Recent studies suggest that the altered redox status of the cell reform the cellular functions and epigenetic changes. Recent high-throughput techniques have also greatly advanced redox-mediated gene expression discovery, but the integrated view of the redox status, and its associations with epigenetic changes and subsequent gene expression in plants are still scarce. In this review, we accordingly focus on how the redox status of the cell affects epigenetic modifications in plants under abiotic stress conditions and during developmental processes. This is a first comprehensive review on the redox status of the cell covering the redox components and signaling, redox status alters the post-translational modification of proteins, intracellular epigenetic modifications, redox interplay during DNA methylation, redox regulation of histone acetylation and methylation, redox regulation of miRNA biogenesis, redox regulation of chromatin structure and remodeling and conclusion, future perspectives and biotechnological opportunities for the future development of the plants. KEY SCIENTIFIC CONCEPTS OF REVIEW The interaction of redox mediators such as ROS, RNS and antioxidants regulates redox homeostasis and redox-mediated epigenetic changes. We discuss how redox mediators modulate epigenetic changes and show the opportunities for smart use of the redox status of the cell in plant development and abiotic stress adaptation. However, how a redox mediator triggers epigenetic modification without activating other redox mediators remains yet unknown.
Collapse
Affiliation(s)
- Muthusamy Ramakrishnan
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou 311300, Zhejiang, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; Bamboo Research Institute, Nanjing Forestry University, Nanjing 210037, Jiangsu, China.
| | - Pradeep K Papolu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou 311300, Zhejiang, China
| | - Lakkakula Satish
- Department of Biotechnology Engineering, & The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beer Sheva - 84105, Israel; Applied Phycology and Biotechnology Division, Marine Algal Research Station, CSIR - Central Salt and Marine Chemicals Research Institute, Mandapam 623519, Tamil Nadu, India
| | | | - Qiang Wei
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; Bamboo Research Institute, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Anket Sharma
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou 311300, Zhejiang, China; Department of Plant Science and Landscape Architecture, University of Maryland, College Park, USA
| | - Abolghassem Emamverdian
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; Bamboo Research Institute, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Long-Hai Zou
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou 311300, Zhejiang, China
| | - Mingbing Zhou
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou 311300, Zhejiang, China; Zhejiang Provincial Collaborative Innovation Centre for Bamboo Resources and High-efficiency Utilization, Zhejiang A&F University, Lin'an, Hangzhou 311300, Zhejiang, China.
| |
Collapse
|
4
|
Genitoni J, Vassaux D, Delaunay A, Citerne S, Portillo Lemus L, Etienne MP, Renault D, Stoeckel S, Barloy D, Maury S. Hypomethylation of the aquatic invasive plant, Ludwigia grandiflora subsp. hexapetala mimics the adaptive transition into the terrestrial morphotype. PHYSIOLOGIA PLANTARUM 2020; 170:280-298. [PMID: 32623739 DOI: 10.1111/ppl.13162] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 06/17/2020] [Accepted: 06/29/2020] [Indexed: 06/11/2023]
Abstract
Ongoing global changes affect ecosystems and open up new opportunities for biological invasion. The ability of invasive species to rapidly adapt to new environments represents a relevant model for studying short-term adaptation mechanisms. The aquatic invasive plant, Ludwigia grandiflora subsp. hexapetala, is classified as harmful in European rivers. In French wet meadows, this species has shown a rapid transition from aquatic to terrestrial environments with emergence of two distinct morphotypes in 5 years. To understand the heritable mechanisms involved in adjustment to such a new environment, we investigate both genetic and epigenetic as possible sources of flexibility involved in this fast terrestrial transition. We found a low overall genetic differentiation between the two morphotypes arguing against the possibility that terrestrial morphotype emerged from a new adaptive genetic capacity. Artificial hypomethylation was induced on both morphotypes to assess the epigenetic hypothesis. We analyzed global DNA methylation, morphological changes, phytohormones and metabolite profiles of both morphotype responses in both aquatic and terrestrial conditions in shoot and root tissues. Hypomethylation significantly affected morphological variables, phytohormone levels and the amount of some metabolites. The effects of hypomethylation depended on morphotypes, conditions and plant tissues, which highlighted differences among the morphotypes and their plasticity. Using a correlative integrative approach, we showed that hypomethylation of the aquatic morphotype mimicked the characteristics of the terrestrial morphotype. Our data suggest that DNA methylation rather than a new adaptive genetic capacity is playing a key role in L. grandiflora subsp. hexapetala plasticity during its rapid aquatic to terrestrial transition.
Collapse
Affiliation(s)
- Julien Genitoni
- ESE, Ecology and Ecosystem Health, Institut Agro, INRAE, Rennes, 35042, France
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), EA1207 USC1328 INRA, Université d'Orléans, Orléans, 45067, France
| | - Danièle Vassaux
- ESE, Ecology and Ecosystem Health, Institut Agro, INRAE, Rennes, 35042, France
| | - Alain Delaunay
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), EA1207 USC1328 INRA, Université d'Orléans, Orléans, 45067, France
| | - Sylvie Citerne
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, 78000, France
| | - Luis Portillo Lemus
- ESE, Ecology and Ecosystem Health, Institut Agro, INRAE, Rennes, 35042, France
| | - Marie-Pierre Etienne
- Institut Agro, CNRS, Université Rennes, IRMAR (Institut de Recherche Mathématique de Rennes) - UMR 6625, Rennes, F-35000, France
| | - David Renault
- UMR CNRS 6553 EcoBio, University of Rennes 1, Rennes, France
- Institut Universitaire de France, 1 rue Descartes, Paris, France
| | - Solenn Stoeckel
- IGEPP, INRAE, Institut Agro, Université Rennes, Le Rheu, 35653, France
| | - Dominique Barloy
- ESE, Ecology and Ecosystem Health, Institut Agro, INRAE, Rennes, 35042, France
| | - Stéphane Maury
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), EA1207 USC1328 INRA, Université d'Orléans, Orléans, 45067, France
| |
Collapse
|
5
|
Abstract
AbstractPlant tissue culture techniques have become an integral part of progress in plant science research due to the opportunity offered for close study of detailed plant development with applications in food production through crop improvement, secondary metabolites production and conservation of species. Because the techniques involve growing plants under controlled conditions different from their natural outdoor environment, the plants need adjustments in physiology, anatomy and metabolism for successfulin vitropropagation. Therefore, the protocol has to be optimized for a given species or genotype due to the variability in physiological and growth requirement. Developing the protocol is hampered by several physiological and developmental aberrations in the anatomy and physiology of the plantlets, attributed toin vitroculture conditions of high humidity, low light levels and hetero- or mixotrophic conditions. Some of the culture-induced anomalies become genetic, and the phenotype is inherited by clonal progenies while others are temporary and can be corrected at a later stage of protocol development through changes in anatomy, physiology and metabolism. The success of protocols relies on the transfer of plantlets to field conditions which has been achieved with many species through stages of acclimatization, while with others it remains a challenging task. This review discusses various adjustments in nutrition, physiology and anatomy of micro-propagated plants and field grown ones, as well as anomalies induced by thein vitroculture conditions.
Collapse
|
6
|
Centomani I, Sgobba A, D'Addabbo P, Dipierro N, Paradiso A, De Gara L, Dipierro S, Viggiano L, de Pinto MC. Involvement of DNA methylation in the control of cell growth during heat stress in tobacco BY-2 cells. PROTOPLASMA 2015; 252:1451-9. [PMID: 25712591 DOI: 10.1007/s00709-015-0772-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 01/26/2015] [Indexed: 05/24/2023]
Abstract
The alteration of growth patterns, through the adjustment of cell division and expansion, is a characteristic response of plants to environmental stress. In order to study this response in more depth, the effect of heat stress on growth was investigated in tobacco BY-2 cells. The results indicate that heat stress inhibited cell division, by slowing cell cycle progression. Cells were stopped in the pre-mitotic phases, as shown by the increased expression of CycD3-1 and by the decrease in the NtCycA13, NtCyc29 and CDKB1-1 transcripts. The decrease in cell length and the reduced expression of Nt-EXPA5 indicated that cell expansion was also inhibited. Since DNA methylation plays a key role in controlling gene expression, the possibility that the altered expression of genes involved in the control of cell growth, observed during heat stress, could be due to changes in the methylation state of their promoters was investigated. The results show that the altered expression of CycD3-1 and Nt-EXPA5 was consistent with changes in the methylation state of the upstream region of these genes. These results suggest that DNA methylation, controlling the expression of genes involved in plant development, contributes to growth alteration occurring in response to environmental changes.
Collapse
Affiliation(s)
- Isabella Centomani
- Dipartimento di Biologia, Università degli Studi di Bari "Aldo Moro", via E. Orabona 4, 70125, Bari, Italy
| | - Alessandra Sgobba
- Dipartimento di Biologia, Università degli Studi di Bari "Aldo Moro", via E. Orabona 4, 70125, Bari, Italy
| | - Pietro D'Addabbo
- Dipartimento di Biologia, Università degli Studi di Bari "Aldo Moro", via E. Orabona 4, 70125, Bari, Italy
| | - Nunzio Dipierro
- Dipartimento di Biologia, Università degli Studi di Bari "Aldo Moro", via E. Orabona 4, 70125, Bari, Italy
| | - Annalisa Paradiso
- Dipartimento di Biologia, Università degli Studi di Bari "Aldo Moro", via E. Orabona 4, 70125, Bari, Italy
| | - Laura De Gara
- Centro Integrato di Ricerca, Università Campus Bio-Medico di Roma, via A. del Portillo 21, 00128, Rome, Italy
| | - Silvio Dipierro
- Dipartimento di Biologia, Università degli Studi di Bari "Aldo Moro", via E. Orabona 4, 70125, Bari, Italy
| | - Luigi Viggiano
- Dipartimento di Biologia, Università degli Studi di Bari "Aldo Moro", via E. Orabona 4, 70125, Bari, Italy
| | - Maria Concetta de Pinto
- Dipartimento di Biologia, Università degli Studi di Bari "Aldo Moro", via E. Orabona 4, 70125, Bari, Italy.
- Istituto di Bioscienze e Biorisorse, CNR, Via G. Amendola 165/A, 70126, Bari, Italy.
| |
Collapse
|
7
|
Kitimu SR, Taylor J, March TJ, Tairo F, Wilkinson MJ, Rodríguez López CM. Meristem micropropagation of cassava (Manihot esculenta) evokes genome-wide changes in DNA methylation. FRONTIERS IN PLANT SCIENCE 2015; 6:590. [PMID: 26322052 PMCID: PMC4534864 DOI: 10.3389/fpls.2015.00590] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 07/16/2015] [Indexed: 05/25/2023]
Abstract
There is great interest in the phenotypic, genetic and epigenetic changes associated with plant in vitro culture known as somaclonal variation. In vitro propagation systems that are based on the use of microcuttings or meristem cultures are considered analogous to clonal cuttings and so widely viewed to be largely free from such somaclonal effects. In this study, we surveyed for epigenetic changes during propagation by meristem culture and by field cuttings in five cassava (Manihot esculenta) cultivars. Principal Co-ordinate Analysis of profiles generated by methylation-sensitive amplified polymorphism revealed clear divergence between samples taken from field-grown cuttings and those recovered from meristem culture. There was also good separation between the tissues of field samples but this effect was less distinct among the meristem culture materials. Application of methylation-sensitive Genotype by sequencing identified 105 candidate epimarks that distinguish between field cutting and meristem culture samples. Cross referencing the sequences of these epimarks to the draft cassava genome revealed 102 sites associated with genes whose homologs have been implicated in a range of fundamental biological processes including cell differentiation, development, sugar metabolism, DNA methylation, stress response, photosynthesis, and transposon activation. We explore the relevance of these findings for the selection of micropropagation systems for use on this and other crops.
Collapse
Affiliation(s)
- Shedrack R. Kitimu
- Plant Research Centre, School of Agriculture Food and Wine, Faculty of Sciences, University of AdelaideAdelaide, SA, Australia
| | - Julian Taylor
- Biometry Hub, School of Agriculture Food and Wine, Faculty of Sciences, University of AdelaideAdelaide, SA, Australia
| | - Timothy J. March
- School of Agriculture Food and Wine, Faculty of Sciences, University of AdelaideAdelaide, SA, Australia
| | - Fred Tairo
- Mikocheni Agricultural Research InstituteDar es Salaam, Tanzania
| | - Mike J. Wilkinson
- Plant Research Centre, School of Agriculture Food and Wine, Faculty of Sciences, University of AdelaideAdelaide, SA, Australia
| | - Carlos M. Rodríguez López
- Plant Research Centre, School of Agriculture Food and Wine, Faculty of Sciences, University of AdelaideAdelaide, SA, Australia
| |
Collapse
|
8
|
Teyssier C, Maury S, Beaufour M, Grondin C, Delaunay A, Le Metté C, Ader K, Cadene M, Label P, Lelu-Walter MA. In search of markers for somatic embryo maturation in hybrid larch (Larix × eurolepis): global DNA methylation and proteomic analyses. PHYSIOLOGIA PLANTARUM 2014; 150:271-91. [PMID: 23789891 DOI: 10.1111/ppl.12081] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 04/08/2013] [Accepted: 05/28/2013] [Indexed: 05/22/2023]
Abstract
A global DNA methylation and proteomics approach was used to investigate somatic embryo maturation in hybrid larch. Each developmental step during somatic embryogenesis was associated with a distinct and significantly different global DNA methylation level: from 45.8% mC for undifferentiated somatic embryos (1-week proliferation) to 61.5% mC for immature somatic embryos (1-week maturation), while maturation was associated with a decrease in DNA methylation to 53.4% for mature cotyledonary somatic embryos (8-weeks maturation). The presence of 5-azacytidine (hypo-methylating agent) or hydroxyurea (hyper-methylating agent) in the maturation medium altered the global DNA methylation status of the embryogenic cultures, and significantly reduced both their relative growth rate and embryogenic potential, suggesting an important role for DNA methylation in embryogenesis. Maturation was also assessed by examining changes in the total protein profile. Storage proteins, identified as legumin- and vicilin-like, appeared at the precotyledonary stage. In the proteomic study, total soluble proteins were extracted from embryos after 1 and 8 weeks of maturation, and separated by two-dimensional gel electrophoresis. There were 147 spots which showed significant differences between the stages of maturation; they were found to be involved mainly in primary metabolism and the stabilization of the resulting metabolites. This indicated that the somatic embryo was still metabolically active at 8 weeks of maturation. This is the first report of analyses of global DNA methylation (including the effects of hyper- and hypo-treatments) and proteome during somatic embryogenesis in hybrid larch, and thus provides novel insights into maturation of conifer somatic embryos.
Collapse
Affiliation(s)
- Caroline Teyssier
- INRA, UR 0588, Research Unit for Breeding, Genetics and Physiology of Forest Trees, Orléans, F-45075, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Lafon-Placette C, Faivre-Rampant P, Delaunay A, Street N, Brignolas F, Maury S. Methylome of DNase I sensitive chromatin in Populus trichocarpa shoot apical meristematic cells: a simplified approach revealing characteristics of gene-body DNA methylation in open chromatin state. THE NEW PHYTOLOGIST 2013; 197:416-430. [PMID: 23253333 DOI: 10.1111/nph.12026] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 10/02/2012] [Indexed: 05/17/2023]
Abstract
DNA methylation is involved in the control of plant development and adaptation to the environment through modifications of chromatin compaction and gene expression. In poplar (Populus trichocarpa), a perennial plant, variations in DNA methylation have been reported between genotypes and tissues or in response to drought. Nevertheless, the relationships between gene-body DNA methylation, gene expression and chromatin compaction still need clarification. Here, DNA methylation was mapped in the noncondensed chromatin fraction from P. trichocarpa shoot apical meristematic cells, the center of plant morphogenesis, where DNA methylation variations could influence the developmental trajectory. DNase I was used to isolate the noncondensed chromatin fraction. Methylated sequences were immunoprecipitated, sequenced using Illumina/Solexa technology and mapped on the v2.0 poplar genome. Bisulfite sequencing of candidate sequences was used to confirm mapping data and to assess cytosine contexts and methylation levels. While the methylated DNase I hypersensitive site fraction covered 1.9% of the poplar genome, it contained sequences corresponding to 74% of poplar gene models, mostly exons. The level and cytosine context of gene-body DNA methylation varied with the structural characteristics of the genes. Taken together, our data show that DNA methylation is widespread and variable among genes in open chromatin of meristematic cells, in agreement with a role in their developmental trajectory.
Collapse
Affiliation(s)
- Clément Lafon-Placette
- Université d'Orléans, Faculté des Sciences, Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), UPRES EA 1207, Orléans, 45067, France
- INRA, USC1328 Arbres et Réponses aux Contraintes Hydriques et Environnementales (ARCHE), Orléans, 45067, France
| | - Patricia Faivre-Rampant
- INRA, UMR1165, UMR INRA / Université d'Evry, Unité de Recherche en Génomique Végétale, Centre de Recherche de Versailles-Grignon, Evry, 91057, France
| | - Alain Delaunay
- Université d'Orléans, Faculté des Sciences, Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), UPRES EA 1207, Orléans, 45067, France
- INRA, USC1328 Arbres et Réponses aux Contraintes Hydriques et Environnementales (ARCHE), Orléans, 45067, France
| | - Nathaniel Street
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, 901 87, Sweden
| | - Franck Brignolas
- Université d'Orléans, Faculté des Sciences, Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), UPRES EA 1207, Orléans, 45067, France
- INRA, USC1328 Arbres et Réponses aux Contraintes Hydriques et Environnementales (ARCHE), Orléans, 45067, France
| | - Stéphane Maury
- Université d'Orléans, Faculté des Sciences, Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), UPRES EA 1207, Orléans, 45067, France
- INRA, USC1328 Arbres et Réponses aux Contraintes Hydriques et Environnementales (ARCHE), Orléans, 45067, France
| |
Collapse
|
10
|
Hébrard C, Trap-Gentil MV, Lafon-Placette C, Delaunay A, Joseph C, Lefèbvre M, Barnes S, Maury S. Identification of differentially methylated regions during vernalization revealed a role for RNA methyltransferases in bolting. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:651-63. [PMID: 23307918 DOI: 10.1093/jxb/ers363] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Sugar beet (Beta vulgaris altissima) is a biennial root crop with an absolute requirement for cold exposure to bolt and flower, a process called vernalization. Global DNA methylation variations have been reported during vernalization in several plants. However, few genes targeted by DNA methylation during vernalization have been described. The objectives of this study were to identify differentially methylated regions and to study their involvement in bolting induction and tolerance. Restriction landmark genome scanning was applied to DNA from shoot apical meristems of sugar beet genotypes, providing a direct quantitative epigenetic assessment of several CG methylated genes without prior knowledge of gene sequence. Several differentially methylated regions exhibiting variations of gene-body DNA methylation and expression during cold exposure and/or between genotypes were identified, including an AROGENATE DEHYDRATASE and two RNA METHYLCYTOSINE TRANSFERASE sequences. One RNA METHYLCYTOSINE TRANSFERASE sequence displayed gene-body hypermethylation and activation of expression, while the other was hypomethylated and inhibited by cold exposure. Global RNA methylation and phenolic compound levels changed during cold exposure in a genotype-dependent way. The use of methyl RNA immunoprecipitation of total RNA and reverse transcription-PCR analysis revealed mRNA methylation in a vernalized bolting-resistant genotype for the FLOWERING LOCUS 1 gene, a repressor of flowering. Finally, Arabidopsis mutants for RNA METHYLCYTOSINE TRANSFERASE and AROGENATE DEHYDRATASE were shown to exhibit, under different environmental conditions, early or late bolting phenotypes, respectively. Overall, the data identified functional targets of DNA methylation during vernalization in sugar beet, and it is proposed that RNA methylation and phenolic compounds play a role in the floral transition.
Collapse
Affiliation(s)
- Claire Hébrard
- Université d'Orléans, UFR/Faculté des Sciences, UPRES EA 1207 Laboratoire de Biologie des Ligneux et des Grandes Cultures, INRA USC1328 ARCHE, rue de Chartres, BP6759, 45067 Orléans cedex 2, France
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Maury S, Trap-Gentil MV, Hébrard C, Weyens G, Delaunay A, Barnes S, Lefebvre M, Joseph C. Genic DNA methylation changes during in vitro organogenesis: organ specificity and conservation between parental lines of epialleles. PHYSIOLOGIA PLANTARUM 2012; 146:321-335. [PMID: 22486767 DOI: 10.1111/j.1399-3054.2012.01634.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
During differentiation, in vitro organogenesis calls for the adjustment of the gene expression program toward a new fate. The role of epigenetic mechanisms including DNA methylation is suggested but little is known about the loci affected by DNA methylation changes, particularly in agronomic plants for witch in vitro technologies are useful such as sugar beet. Here, three pairs of organogenic and non-organogenic in vitro cell lines originating from different sugar beet (Beta vulgaris altissima) cultivars were used to assess the dynamics of DNA methylation at the global or genic levels during shoot or root regeneration. The restriction landmark genome scanning for methylation approach was applied to provide a direct quantitative epigenetic assessment of several CG methylated genes without prior knowledge of gene sequence that is particularly adapted for studies on crop plants without a fully sequenced genome. The cloned sequences had putative roles in cell proliferation, differentiation or unknown functions and displayed organ-specific DNA polymorphism for methylation and changes in expression during in vitro organogenesis. Among them, a potential ubiquitin extension protein 6 (UBI6) was shown, in different cultivars, to exhibit repeatable variations of DNA methylation and gene expression during shoot regeneration. In addition, abnormal development and callogenesis were observed in a T-DNA insertion mutant (ubi6) for a homologous sequence in Arabidopsis. Our data showed that DNA methylation is changed in an organ-specific way for genes exhibiting variations of expression and playing potential role during organogenesis. These epialleles could be conserved between parental lines opening perspectives for molecular markers.
Collapse
Affiliation(s)
- Stéphane Maury
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, UPRES EA 1207, USC1328 ARCHE INRA, rue de Chartres, BP 6759, Faculté des Sciences, Université d'Orléans, 45067 Orléans cedex 2, France.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Viejo M, Santamaría ME, Rodríguez JL, Valledor L, Meijón M, Pérez M, Pascual J, Hasbún R, Fernández Fraga M, Berdasco M, Toorop PE, Cañal MJ, Rodríguez Fernández R. Epigenetics, the role of DNA methylation in tree development. Methods Mol Biol 2012; 877:277-301. [PMID: 22610636 DOI: 10.1007/978-1-61779-818-4_22] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
During development of multicellular organisms, cells become differentiated by modulating different programs of gene expression. Cells have their own epigenetic signature which reflects genotype, developmental history, and environmental influences, and it is ultimately reflected in the phenotype of the cells and the organism. However, in normal development or disease situations, such as adaptation to climate change or during in vitro culture, some cells undergo major epigenetic reprogramming involving the removal of epigenetic marks in the nuclei followed by the establishment of a different new set of marks. Compared with animal cells, biotech-mediated achievements are reduced in plants despite the presence of cell polypotency. In forestry, any sustainable developments using biotech tools remain restricted to the lab, without progressing to the field for application. Such barriers in the translation between development and implementation need to be addressed by organizations that have the power to integrate these two fields. However, a lack of understanding of gene regulation is also to blame for this barrier. In recent years, great progress has been made in unraveling the control of gene expression. These advances are discussed in this chapter, including the possibility of applying this knowledge in forestry practice.
Collapse
Affiliation(s)
- Marcos Viejo
- Área de Fisiología Vegetal, Departamento BOS, Facultad de Biología, Universidad de Oviedo, Oviedo, Spain.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Rodríguez JL, Pascual J, Viejo M, Valledor L, Meijón M, Hasbún R, Yrei NY, Santamaría ME, Pérez M, Fernández Fraga M, Berdasco M, Rodríguez Fernández R, Cañal MJ. Basic procedures for epigenetic analysis in plant cell and tissue culture. Methods Mol Biol 2012; 877:325-341. [PMID: 22610639 DOI: 10.1007/978-1-61779-818-4_25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
In vitro culture is one of the most studied techniques, and it is used to study many developmental processes, especially in forestry species, because of growth timing and easy manipulation. Epigenetics has been shown as an important influence on many research analyses such as cancer in mammals and developmental processes in plants such as flowering, but regarding in vitro culture, techniques to study DNA methylation or chromatin modifications were mainly limited to identify somaclonal variation of the micropropagated material. Because in vitro culture is not only a way to generate plant material but also a bunch of differentially induced developmental processes, an approach of techniques and some research carried out to study the different changes regarding DNA methylation and chromatin and translational modifications that take place during these processes is reviewed.
Collapse
Affiliation(s)
- José L Rodríguez
- Área de Fisiología Vegetal, Departamento BOS, Facultad de Biología, Universidad de Oviedo, Oviedo, Spain.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Trap-Gentil MV, Hébrard C, Lafon-Placette C, Delaunay A, Hagège D, Joseph C, Brignolas F, Lefebvre M, Barnes S, Maury S. Time course and amplitude of DNA methylation in the shoot apical meristem are critical points for bolting induction in sugar beet and bolting tolerance between genotypes. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:2585-97. [PMID: 21227931 DOI: 10.1093/jxb/erq433] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
An epigenetic control of vernalization has been demonstrated in annual plants such as Arabidopsis and cereals, but the situation remains unclear in biennial plants such as sugar beet that has an absolute requirement for vernalization. The role of DNA methylation in flowering induction and the identification of corresponding target loci also need to be clarified. In this context, sugar beet (Beta vulgaris altissima) genotypes differing in bolting tolerance were submitted to various bolting conditions such as different temperatures and/or methylating drugs. DNA hypomethylating treatment was not sufficient to induce bolting while DNA hypermethylation treatment inhibits and delays bolting. Vernalizing and devernalizing temperatures were shown to affect bolting as well as DNA methylation levels in the shoot apical meristem. In addition, a negative correlation was established between bolting and DNA methylation. Genotypes considered as resistant or sensitive to bolting could also be distinguished by their DNA methylation levels. Finally, sugar beet homologues of the Arabidopsis vernalization genes FLC and VIN3 exhibited distinct DNA methylation marks during vernalization independently to the variations of global DNA methylation. These vernalization genes also displayed differences in mRNA accumulation and methylation profiles between genotypes resistant or sensitive to bolting. Taken together, the data suggest that the time course and amplitude of DNA methylation variations are critical points for the induction of sugar beet bolting and represent an epigenetic component of the genotypic bolting tolerance, opening up new perspectives for sugar beet breeding.
Collapse
Affiliation(s)
- Marie-Véronique Trap-Gentil
- Université d'Orléans, UFR-Faculté des Sciences, UPRES EA 1207 Laboratoire de Biologie des Ligneux et des Grandes Cultures, rue de Chartres, BP 6759, F-45067 Orléans, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Kamalova GV, Akulov AN, Rumyantseva NI. Comparison of redox state of cells of tatar buckwheat morphogenic calluses and non-morphogenic calluses obtained from them. BIOCHEMISTRY (MOSCOW) 2009; 74:686-94. [PMID: 19645675 DOI: 10.1134/s0006297909060145] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Intracellular content of hydrogen peroxide and of the product of lipid peroxidation malonic dialdehyde as well as activity of antioxidant enzymes catalase, ascorbate peroxidase, and superoxide dismutase were studied in cells of morphogenic and derived from them non-morphogenic calluses of tatar buckwheat Fagopyrum tataricum L. Non-morphogenic calluses were characterized by significantly higher content of hydrogen peroxide and malonic dialdehyde, low catalase activity, and high activity of superoxide dismutase compared to morphogenic cultures. The results may indicate that cells of non-morphogenic calluses are in the state of continuous oxidative stress. Nevertheless, proliferative activity of non-morphogenic cultures and the biomass increase significantly exceeded these parameters in morphogenic calluses. An analogy is drawn between animal cancer cells and non-morphogenic plant calluses.
Collapse
Affiliation(s)
- G V Kamalova
- Kazan Institute of Biochemistry and Biophysics, Kazan Research Center, Russian Academy of Sciences, Kazan, 420111, Russia.
| | | | | |
Collapse
|
16
|
Wu QQ, Wei YN, Zhang SZ, Shu Q. Relationship between differentially expressed genes and epigenetic modification during the early stage of esophageal carcinoma induced by nitrosamine. Shijie Huaren Xiaohua Zazhi 2008; 16:1487-1492. [DOI: 10.11569/wcjd.v16.i14.1487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To detect the differentially expressed genes in the process of esophageal carcinoma induced by nitrosamine, and analyze the property of gene expression at different stages, especially the relationship between differentially expressed genes and DNA methylation.
METHODS: One hundred and ten mice were randomly divided into group A (n = 40) and B (n = 70). The mice in group A were fed with distilled water, while those in group B were fed with carcinoma-inducing mixture containing 20 g/L sodium nitrite and 200 g/L N, N-dimethyl benzyl amine. At the 4, 8, and 20 wk of induction stages, the total RNA from esophageal tissues was isolated and reversely transcripted, and then hybridization with gene-chip was performed. The differentially expressed genes of the two groups were analyzed.
RESULTS: During the process of induction, the number of up-regulated oncogenes increased in a step-by-step fashion in group B as compared with that in group A, and the phase-specificity of oncogenes was observed. But most antioncogenes did not change remarkably. Most genes of DNA methylation did not change at 4 wk, but were up-regulated at 8 and 20 wk. The DNA demethylation gene Mdb2b was up-regulated from the 8 wk, but Gadd45a was up-regulated from the 4 wk and maintained a high level at 8 and 20 wk. Genes of histone acetylation, which were changed obviously, were not found.
CONCLUSION: During the process of nitrosamine-induced esophageal carcinoma, up-regulation of numerous genes may associate with the demethylation of genomic DNA at the early stage. Gadd45a may be involved in the demethylation during the early weeks.
Collapse
|