1
|
Fan Y, Jin X, Wang M, Liu H, Tian W, Xue Y, Wang K, Li H, Wu Y. Flower morphology, flower color, flowering and floral fragrance in Paeonia L. FRONTIERS IN PLANT SCIENCE 2024; 15:1467596. [PMID: 39640998 PMCID: PMC11617204 DOI: 10.3389/fpls.2024.1467596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 10/30/2024] [Indexed: 12/07/2024]
Abstract
Paeonia have diverse flower colors, rich flower types, varying bloom periods, and delightful fragrances, rendering them highly valuable for both ornamental and economic purposes in horticulture. Investigating the developmental mechanisms of morphology, flower color, flowering and floral fragrance in Paeonia holds significant value for enhancing their ornamental traits and conducting germplasm improvement. This review provides an overview of research progress on Paeonia flower morphology (including flower bud differentiation, classification, omics applications in shape studies, and functional genes regulating flower morphology), flower colors (omics applications in color research and functional genes regulating flower colors), bloom periods (flower bud dormancy, flowering time), and fragrances (preparation, analysis, components, and molecular biology research of flower fragrances) within the Paeonia. Additionally, it offers a comprehensive analysis of current research challenges and future directions.
Collapse
Affiliation(s)
- Yongming Fan
- College of Architecture, North China University of Water Resources and Electric Power, Zhengzhou, China
| | - Xing Jin
- Construction Decoration Co., LTD of China Construction No.7 Engineering Bureau, Zhengzhou, China
| | - Mengshan Wang
- College of Architecture, North China University of Water Resources and Electric Power, Zhengzhou, China
| | - Huadong Liu
- Construction Decoration Co., LTD of China Construction No.7 Engineering Bureau, Zhengzhou, China
| | - Weili Tian
- College of Architecture, North China University of Water Resources and Electric Power, Zhengzhou, China
| | - Yandong Xue
- Construction Decoration Co., LTD of China Construction No.7 Engineering Bureau, Zhengzhou, China
| | - Kai Wang
- College of Architecture, North China University of Water Resources and Electric Power, Zhengzhou, China
| | - Hu Li
- College of Architecture, North China University of Water Resources and Electric Power, Zhengzhou, China
| | - Yan Wu
- College of Architecture, North China University of Water Resources and Electric Power, Zhengzhou, China
| |
Collapse
|
2
|
Zhang Y, Niu D, Yuan Y, Liu F, Wang Z, Gao L, Liu C, Zhou G, Gai S. PsSOC1 is involved in the gibberellin pathway to trigger cell proliferation and budburst during endodormancy release in tree peony. THE NEW PHYTOLOGIST 2024; 243:1017-1033. [PMID: 38877710 DOI: 10.1111/nph.19893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/21/2024] [Indexed: 06/16/2024]
Abstract
Tree peony (Paeonia suffruticosa) undergoes bud endodormancy, and gibberellin (GA) pathway plays a crucial role in dormancy regulation. Recently, a key DELLA protein PsRGL1 has been identified as a negative regulator of bud dormancy release. However, the mechanism of GA signal to break bud dormancy remains unknown. In this study, yeast two-hybrid screened PsSOC1 interacting with PsRGL1 through its MADS domain, and interaction was identified using pull-down and luciferase complementation imaging assays Transformation in tree peony and hybrid poplar confirmed that PsSOC1 facilitated bud dormancy release. Transcriptome analysis of PsSOC1-overexpressed buds indicated PsCYCD3.3 and PsEBB3 were its potential downstream targets combining with promoter survey, and they also accelerated bud dormancy release verified by genetic analysis. Yeast one-hybrid, electrophoretic mobility shifts assays, chromatin immunoprecipitation quantitative PCR, and dual luciferase assays confirmed that PsSOC1 could directly bind to the CArG motif of PsCYCD3.3 and PsEBB3 promoters via its MADS domain. PsRGL1-PsSOC1 interaction inhibited the DNA-binding activity of PsSOC1. Additionally, PsCYCD3.3 promoted bud dormancy release by rebooting cell proliferation. These findings elucidated a novel GA pathway, GA-PsRGL1-PsSOC1-PsCYCDs, which expanded our understanding of the GA pathway in bud dormancy release.
Collapse
Affiliation(s)
- Yuxi Zhang
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
- University Key Laboratory of Plant Biotechnology in Shandong Province, Qingdao, 266109, China
| | - Demei Niu
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
- University Key Laboratory of Plant Biotechnology in Shandong Province, Qingdao, 266109, China
| | - Yanchao Yuan
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
- University Key Laboratory of Plant Biotechnology in Shandong Province, Qingdao, 266109, China
| | - Fang Liu
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
- University Key Laboratory of Plant Biotechnology in Shandong Province, Qingdao, 266109, China
| | - Zhiwei Wang
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
- University Key Laboratory of Plant Biotechnology in Shandong Province, Qingdao, 266109, China
| | - Linqiang Gao
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
- University Key Laboratory of Plant Biotechnology in Shandong Province, Qingdao, 266109, China
| | - Chunying Liu
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
- University Key Laboratory of Plant Biotechnology in Shandong Province, Qingdao, 266109, China
| | - Gongke Zhou
- College of Landscape and Forestry, Qingdao Agricultural University, Qingdao, 266109, China
| | - Shupeng Gai
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
- University Key Laboratory of Plant Biotechnology in Shandong Province, Qingdao, 266109, China
| |
Collapse
|
3
|
Zhang T, Wang X, Yuan Y, Zhu S, Liu C, Zhang Y, Gai S. PsmiR159b- PsMYB65 module functions in the resumption of bud growth after endodormancy by affecting the cell cycle in tree peony. HORTICULTURE RESEARCH 2024; 11:uhae052. [PMID: 38638681 PMCID: PMC11025381 DOI: 10.1093/hr/uhae052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 02/16/2024] [Indexed: 04/20/2024]
Abstract
Bud endodormancy in perennial plants is a sophisticated system that adapts to seasonal climatic changes. Growth-promoting signals such as low temperature and gibberellins (GAs) are crucial for facilitating budbreak following endodormancy release (EDR). However, the regulatory mechanisms underlying GA-mediated budbreak in tree peony (Paeonia suffruticosa) remain unclear. In tree peony, the expression of PsmiR159b among three differentially expressed miR159 members was inhibited with the prolonged chilling, and overexpression of PsMIR159b delayed budbreak, whereas silencing PsmiR159b promoted budbreak after dormancy. PsMYB65, a downstream transcription factor in the GA pathway, was induced by prolonged chilling and exogenous GA3 treatments. PsMYB65 was identified as a target of PsmiR159b, and promoted budbreak in tree peony. RNA-seq of PsMYB65-slienced buds revealed significant enrichment in the GO terms regulation of 'cell cycle' and 'DNA replication' among differentially expressed genes. Yeast one-hybrid and electrophoretic mobility shift assays demonstrated that PsMYB65 directly bound to the promoter of the type-D cyclin gene PsCYCD3;1. Dual-luciferase reporter assay indicated that PsMYB65 positively regulate PsCYCD3;1 expression, suggesting that miR159b-PsMYB65 module contributes to budbreak by influencing the cell cycle. Our findings revealed that the PsmiR159b-PsMYB65 module functioned in budbreak after dormancy by regulating cell proliferation, providing valuable insights into the endodormancy release regulation mechanism.
Collapse
Affiliation(s)
- Tao Zhang
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
- University Key Laboratory of Plant Biotechnology in Shandong Province, Qingdao, 266109, China
- Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Xinyu Wang
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
- University Key Laboratory of Plant Biotechnology in Shandong Province, Qingdao, 266109, China
| | - Yanchao Yuan
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
- University Key Laboratory of Plant Biotechnology in Shandong Province, Qingdao, 266109, China
| | - Shoujie Zhu
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
- University Key Laboratory of Plant Biotechnology in Shandong Province, Qingdao, 266109, China
| | - Chunying Liu
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
- University Key Laboratory of Plant Biotechnology in Shandong Province, Qingdao, 266109, China
| | - Yuxi Zhang
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
- University Key Laboratory of Plant Biotechnology in Shandong Province, Qingdao, 266109, China
| | - Shupeng Gai
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
- University Key Laboratory of Plant Biotechnology in Shandong Province, Qingdao, 266109, China
| |
Collapse
|
4
|
Yuan Y, Zeng L, Kong D, Mao Y, Xu Y, Wang M, Zhao Y, Jiang CZ, Zhang Y, Sun D. Abscisic acid-induced transcription factor PsMYB306 negatively regulates tree peony bud dormancy release. PLANT PHYSIOLOGY 2024; 194:2449-2471. [PMID: 38206196 PMCID: PMC10980420 DOI: 10.1093/plphys/kiae014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 11/08/2023] [Accepted: 12/02/2023] [Indexed: 01/12/2024]
Abstract
Bud dormancy is a crucial strategy for perennial plants to withstand adverse winter conditions. However, the regulatory mechanism of bud dormancy in tree peony (Paeonia suffruticosa) remains largely unknown. Here, we observed dramatically reduced and increased accumulation of abscisic acid (ABA) and bioactive gibberellins (GAs) GA1 and GA3, respectively, during bud endodormancy release of tree peony under prolonged chilling treatment. An Illumina RNA sequencing study was performed to identify potential genes involved in the bud endodormancy regulation in tree peony. Correlation matrix, principal component, and interaction network analyses identified a downregulated MYB transcription factor gene, PsMYB306, the expression of which positively correlated with 9-CIS-EPOXYCAROTENOID DIOXYGENASE 3 (PsNCED3) expression. Protein modeling analysis revealed 4 residues within the R2R3 domain of PsMYB306 to possess DNA binding capability. Transcription of PsMYB306 was increased by ABA treatment. Overexpression of PsMYB306 in petunia (Petunia hybrida) inhibited seed germination and plant growth, concomitant with elevated ABA and decreased GA contents. Silencing of PsMYB306 accelerated cold-triggered tree peony bud burst and influenced the production of ABA and GAs and the expression of their biosynthetic genes. ABA application reduced bud dormancy release and transcription of ENT-KAURENOIC ACID OXIDASE 1 (PsKAO1), GA20-OXIDASE 1 (PsGA20ox1), and GA3-OXIDASE 1 (PsGA3ox1) associated with GA biosynthesis in PsMYB306-silenced buds. In vivo and in vitro binding assays confirmed that PsMYB306 specifically transactivated the promoter of PsNCED3. Silencing of PsNCED3 also promoted bud break and growth. Altogether, our findings suggest that PsMYB306 negatively modulates cold-induced bud endodormancy release by regulating ABA production.
Collapse
Affiliation(s)
- Yanping Yuan
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lingling Zeng
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Derong Kong
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yanxiang Mao
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yingru Xu
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Meiling Wang
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yike Zhao
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Cai-Zhong Jiang
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616, USA
- Crops Pathology and Genetics Research Unit, USDA-ARS, Davis, CA 95616, USA
| | - Yanlong Zhang
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Daoyang Sun
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
5
|
Gai W, Liu C, Yang M, Li F, Xin H, Gai S. Calcium signaling facilitates chilling- and GA- induced dormancy release in tree peony. FRONTIERS IN PLANT SCIENCE 2024; 15:1362804. [PMID: 38567129 PMCID: PMC10985203 DOI: 10.3389/fpls.2024.1362804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 02/29/2024] [Indexed: 04/04/2024]
Abstract
Calcium plays a crucial role in plant growth and development, yet little is known about its function in endodormancy regulation. Tree peony (Paeonia suffruticosa), characterized by compound buds and large flowers, is well-known for its ornamental and medicinal value. To break bud dormancy release is a prerequisite of flowering and forcing culture, particularly during the Spring Festival. In this study, the Ca2+ chelator EGTA and Ca2+ channel blocker LaCl3 were applied, resulting in a significant delay in budburst during both chilling- and gibberellin (GA)- induced dormancy release in a dosage-dependent manner. As expected, the retardation of bud break was recovered by the supplementation of 30 mM CaCl2, indicating a facilitating role of calcium in dormancy release. Accordingly, several calcium-sensor-encoding genes including Calmodulin (CaM) and Ca2+-dependent protein kinases (CDPKs) were significantly up-regulated by prolonged chilling and exogenous GAs. Ultrastructure observations revealed a decline in starch grains and the reopening of transport corridors following prolonged chilling. Calcium deposits were abundant in the cell walls and intercellular spaces at the early dormant stage but were enriched in the cytosol and nucleus before dormancy release. Additionally, several genes associated with dormancy release, including EBB1, EBB3, SVP, GA20ox, RGL1, BG6, and BG9, were differentially expressed after calcium blocking and recovery treatments, indicating that calcium might partially modulate dormancy release through GA and ABA pathways. Our findings provide novel insights into the mechanism of dormancy release and offer potential benefits for improving and perfecting forcing culture technology in tree peonies.
Collapse
Affiliation(s)
- Weiling Gai
- College of Agriculture, Qingdao Agricultural University, Qingdao, China
- University Key Laboratory of Plant Biotechnology in Shandong Province, Qingdao, China
| | - Chunying Liu
- University Key Laboratory of Plant Biotechnology in Shandong Province, Qingdao, China
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Mengjie Yang
- University Key Laboratory of Plant Biotechnology in Shandong Province, Qingdao, China
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Feng Li
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, China
| | - Hua Xin
- University Key Laboratory of Plant Biotechnology in Shandong Province, Qingdao, China
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Shupeng Gai
- University Key Laboratory of Plant Biotechnology in Shandong Province, Qingdao, China
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
6
|
Srivastava R, Sirohi P, Chauhan H, Kumar R. The enhanced phosphorus use efficiency in phosphate-deficient and mycorrhiza-inoculated barley seedlings involves activation of different sets of PHT1 transporters in roots. PLANTA 2021; 254:38. [PMID: 34312721 DOI: 10.1007/s00425-021-03687-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/16/2021] [Indexed: 06/13/2023]
Abstract
Transcriptional activation of subfamily II PHT1 members in roots is associated with the enhanced phosphorus use efficiency and growth promotion of barley seedlings inoculated with Glomus species. The arbuscular mycorrhizal (AM) fungi symbiotic associations in cereal crops are known to regulate growth in cultivar-specific manner and induce phosphate (Pi) transporters (PHT1) in roots. In the present study, we observed that both AM colonization of roots by Glomus species and phosphate starvation enhanced phosphorus use efficiency (PUE) in barley seedlings. Our search for the full complement of PHT1 members in the recently sequenced barley genome identified six additional genes, totaling their number to 17. Both AM colonization and Pi starvation triggered activation of common as well as different PHT1s. Pi starvation led to the robust upregulation of HvPHT1;6.2/6.3 at 7d and weak activation of HvPHT1;1 in shoots at 3d time-point. In roots, only HvPHT1;1, HvPHT1;6.2/6.3, HvPHT1;7, HvPHT1;8, HvPHT1;11.2 and HvPHT12 were induced at least one of the time-points. AM colonization specifically upregulated HvPHT1;11, HvPHT1;11.2, HvPHT1;12 and HvPHT1;13.1/13.2, members belonging to subfamily II, in roots. Sucrose availability seems to be obligatory for the robust activation of HvPHT1;1 as unavailability of this metabolite generally weakened its upregulation under Pi starvation. Intriguingly, lack of sucrose supply also led to induction of HvPHT1;5, HvPHT1;8, and HvPHT1;11.2 in either roots or shoot or both. The mRNA levels of HvPHT1;5 and HvPHT1;11.2 were not severely affected under combined deficiency of Pi and sucrose. Taken together, this study not only identify additional PHT1 members in barley, but also ascertain their AM, Pi and sucrose-specific transcript accumulation. The beneficial role of AM fungi in the promotion of PUE and barley seedlings' growth is also demonstrated.
Collapse
Affiliation(s)
- Rajat Srivastava
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, Telangana, 500046, India
| | - Parul Sirohi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247 667, India
| | - Harsh Chauhan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247 667, India.
| | - Rahul Kumar
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, Telangana, 500046, India.
| |
Collapse
|
7
|
Zhang T, Yuan Y, Zhan Y, Cao X, Liu C, Zhang Y, Gai S. Metabolomics analysis reveals Embden Meyerhof Parnas pathway activation and flavonoids accumulation during dormancy transition in tree peony. BMC PLANT BIOLOGY 2020; 20:484. [PMID: 33096979 PMCID: PMC7583197 DOI: 10.1186/s12870-020-02692-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 10/08/2020] [Indexed: 05/14/2023]
Abstract
BACKGROUND Bud dormancy is a sophisticated strategy which plants evolve to survive in tough environments. Endodormancy is a key obstacle for anti-season culture of tree peony, and sufficient chilling exposure is an effective method to promote dormancy release in perennial plants including tree peony. However, the mechanism of dormancy release is still poorly understood, and there are few systematic studies on the metabolomics during chilling induced dormancy transition. RESULTS The tree peony buds were treated with artificial chilling, and the metabolmics analysis was employed at five time points after 0-4 °C treatment for 0, 7, 14, 21 and 28 d, respectively. A total of 535 metabolites were obtained and devided into 11 groups including flavonoids, amino acid and its derivatives, lipids, organic acids and its derivates, nucleotide and its derivates, alkaloids, hydroxycinnamoyl derivatives, carbohydrates and alcohols, phytohormones, coumarins and vitamins. Totally, 118 differential metabolites (VIP ≥ 1, P < 0.05) during chilling treatment process were detected, and their KEGG pathways involved in several metabolic pathways related to dormancy. Sucrose was the most abundant carbohydrate in peony bud. Starch was degradation and Embden Meyerhof Parnas (EMP) activity were increased during the dormancy release process, according to the variations of sugar contents, related enzyme activities and key genes expression. Flavonoids synthesis and accumulation were also promoted by prolonged chilling. Moreover, the variations of phytohormones (salicylic acid, jasmonic acid, abscisic acid, and indole-3-acetic acid) indicated they played different roles in dormancy transition. CONCLUSION Our study suggested that starch degradation, EMP activation, and flavonoids accumulation were crucial and associated with bud dormancy transition in tree peony.
Collapse
Affiliation(s)
- Tao Zhang
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109 China
- University Key Laboratory of Plant Biotechnology in Shandong Province, Qingdao, 266109 China
| | - Yanchao Yuan
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109 China
- University Key Laboratory of Plant Biotechnology in Shandong Province, Qingdao, 266109 China
| | - Yu Zhan
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109 China
- University Key Laboratory of Plant Biotechnology in Shandong Province, Qingdao, 266109 China
| | - Xinzhe Cao
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109 China
- University Key Laboratory of Plant Biotechnology in Shandong Province, Qingdao, 266109 China
| | - Chunying Liu
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109 China
- University Key Laboratory of Plant Biotechnology in Shandong Province, Qingdao, 266109 China
| | - Yuxi Zhang
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109 China
- University Key Laboratory of Plant Biotechnology in Shandong Province, Qingdao, 266109 China
| | - Shupeng Gai
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109 China
- University Key Laboratory of Plant Biotechnology in Shandong Province, Qingdao, 266109 China
| |
Collapse
|
8
|
Miotto YE, Tessele C, Czermainski ABC, Porto DD, Falavigna VDS, Sartor T, Cattani AM, Delatorre CA, de Alencar SA, da Silva-Junior OB, Togawa RC, Costa MMDC, Pappas GJ, Grynberg P, de Oliveira PRD, Kvitschal MV, Denardi F, Buffon V, Revers LF. Spring Is Coming: Genetic Analyses of the Bud Break Date Locus Reveal Candidate Genes From the Cold Perception Pathway to Dormancy Release in Apple ( Malus × domestica Borkh.). FRONTIERS IN PLANT SCIENCE 2019; 10:33. [PMID: 30930909 PMCID: PMC6423911 DOI: 10.3389/fpls.2019.00033] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 01/10/2019] [Indexed: 05/26/2023]
Abstract
Chilling requirement (CR) for bud dormancy completion determines the time of bud break in apple (Malus × domestica Borkh.). The molecular control of bud dormancy is highly heritable, suggesting a strong genetic control of the trait. An available Infinium II SNP platform for genotyping containing 8,788 single nucleotide polymorphic markers was employed, and linkage maps were constructed in a F1 cross from the low CR M13/91 and the moderate CR cv. Fred Hough. These maps were used to identify quantitative trait loci (QTL) for bud break date as a trait related to dormancy release. A major QTL for bud break was detected at the beginning of linkage group 9 (LG9). This QTL remained stable during seven seasons in two different growing sites. To increase mapping efficiency in detecting contributing genes underlying this QTL, 182 additional SNP markers located at the locus for bud break were used. Combining linkage mapping and structural characterization of the region, the high proportion of the phenotypic variance in the trait explained by the QTL is related to the coincident positioning of Arabidopsis orthologs for ICE1, FLC, and PRE1 protein-coding genes. The proximity of these genes from the most explanatory markers of this QTL for bud break suggests potential genetic additive effects, reinforcing the hypothesis of inter-dependent mechanisms controlling dormancy induction and release in apple trees.
Collapse
Affiliation(s)
- Yohanna Evelyn Miotto
- Department of Crop Science, Agronomy School, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Carolina Tessele
- Department of Crop Science, Agronomy School, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | | | | | - Vítor da Silveira Falavigna
- Embrapa Uva e Vinho, Bento Gonçalves, Brazil
- Graduate Program in Cell and Molecular Biology, Centro de Biotecnologia, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Tiago Sartor
- Embrapa Uva e Vinho, Bento Gonçalves, Brazil
- Graduate Program in Cell and Molecular Biology, Centro de Biotecnologia, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Amanda Malvessi Cattani
- Embrapa Uva e Vinho, Bento Gonçalves, Brazil
- Graduate Program in Cell and Molecular Biology, Centro de Biotecnologia, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Carla Andrea Delatorre
- Department of Crop Science, Agronomy School, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Sérgio Amorim de Alencar
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
| | | | | | | | | | | | | | - Marcus Vinícius Kvitschal
- Empresa de Pesquisa Agropecuária e Extensão Rural de Santa Catarina – Epagri – Estação Experimental de Caçador, Caçador, Brazil
| | - Frederico Denardi
- Empresa de Pesquisa Agropecuária e Extensão Rural de Santa Catarina – Epagri – Estação Experimental de Caçador, Caçador, Brazil
| | | | - Luís Fernando Revers
- Embrapa Uva e Vinho, Bento Gonçalves, Brazil
- Graduate Program in Cell and Molecular Biology, Centro de Biotecnologia, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
9
|
Beauvieux R, Wenden B, Dirlewanger E. Bud Dormancy in Perennial Fruit Tree Species: A Pivotal Role for Oxidative Cues. FRONTIERS IN PLANT SCIENCE 2018; 9:657. [PMID: 29868101 PMCID: PMC5969045 DOI: 10.3389/fpls.2018.00657] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 04/30/2018] [Indexed: 05/07/2023]
Abstract
For perennial plants, bud dormancy is a crucial step as its progression over winter determines the quality of bud break, flowering, and fruiting. In the past decades, many studies, based on metabolic, physiological, subcellular, genetic, and genomic analyses, have unraveled mechanisms underlying bud dormancy progression. Overall, all the pathways identified are interconnected in a very complex manner. Here, we review early and recent findings on the dormancy processes in buds of temperate fruit trees species including hormonal signaling, the role of plasma membrane, carbohydrate metabolism, mitochondrial respiration and oxidative stress, with an effort to link them together and emphasize the central role of reactive oxygen species accumulation in the control of dormancy progression.
Collapse
|
10
|
Chang E, Deng N, Zhang J, Liu J, Chen L, Zhao X, Abbas M, Jiang Z, Shi S. Proteome-Level Analysis of Metabolism- and Stress-Related Proteins during Seed Dormancy and Germination in Gnetum parvifolium. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:3019-3029. [PMID: 29490456 DOI: 10.1021/acs.jafc.7b05001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Gnetum parvifolium is a rich source of materials for traditional medicines, food, and oil, but little is known about the mechanism underlying its seed dormancy and germination. In this study, we analyzed the proteome-level changes in its seeds during germination using isobaric tags for relative and absolute quantitation. In total, 1,040 differentially expressed proteins were identified, and cluster analysis revealed the distinct time points during which signal transduction and oxidation-reduction activity changed. Gene Ontology analysis showed that "carbohydrate metabolic process" and "response to oxidative stress" were the main enriched terms. Proteins associated with starch degradation and antioxidant enzymes were important for dormancy-release, while proteins associated with energy metabolism and protein synthesis were up-regulated during germination. Moreover, protein-interaction networks were mainly associated with heat-shock proteins. Furthermore, in accord with changes in the energy metabolism- and antioxidant-related proteins, indole-3-acetic acid, Peroxidase, and soluble sugar content increased, and the starch content decreased in almost all six stages of dormancy and germination analyzed (S1-S6). The activity of superoxide dismutase, abscisic acid, and malondialdehyde content increased in the dormancy stages (S1-S3) and then decreased in the germination stages (S4-S6). Our results provide new insights into G. parvifolium seed dormancy and germination at the proteome and physiological levels, with implications for improving seed propagation.
Collapse
Affiliation(s)
- Ermei Chang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry , Chinese Academy of Forestry , No. 1 Dongxiaofu, Xiangshan Road , Haidian, Beijing 100091 , China
| | - Nan Deng
- Institute of Ecology , Hunan Academy of Forestry , Changsha , Hunan 410004 , China
| | - Jin Zhang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry , Chinese Academy of Forestry , No. 1 Dongxiaofu, Xiangshan Road , Haidian, Beijing 100091 , China
| | - Jianfeng Liu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry , Chinese Academy of Forestry , No. 1 Dongxiaofu, Xiangshan Road , Haidian, Beijing 100091 , China
| | - Lanzhen Chen
- Institute of Apicultural Research , Chinese Academy of Agricultural Sciences , Beijing 100093 , China
- Risk Assessment Laboratory for Bee Products , Quality and Safety of Ministry of Agriculture , Beijing 100093 , China
| | - Xiulian Zhao
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry , Chinese Academy of Forestry , No. 1 Dongxiaofu, Xiangshan Road , Haidian, Beijing 100091 , China
| | - M Abbas
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry , Chinese Academy of Forestry , No. 1 Dongxiaofu, Xiangshan Road , Haidian, Beijing 100091 , China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology , Beijing Forestry University , Beijing 100083 , China
| | - Zeping Jiang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry , Chinese Academy of Forestry , No. 1 Dongxiaofu, Xiangshan Road , Haidian, Beijing 100091 , China
| | - Shengqing Shi
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry , Chinese Academy of Forestry , No. 1 Dongxiaofu, Xiangshan Road , Haidian, Beijing 100091 , China
| |
Collapse
|
11
|
Wang W, Su X, Tian Z, Liu Y, Zhou Y, He M. Transcriptome profiling provides insights into dormancy release during cold storage of Lilium pumilum. BMC Genomics 2018; 19:196. [PMID: 29703130 PMCID: PMC6389108 DOI: 10.1186/s12864-018-4536-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 02/06/2018] [Indexed: 12/31/2022] Open
Abstract
Background Bulbs of the ornamental flower Lilium pumilum enter a period of dormancy after flowering in spring, and require exposure to cold for a period of time in order to release dormancy. Previous studies focused mainly on anatomical, physiological and biochemical changes during dormancy release. There are no dormancy studies of the northern cold-hardy wild species of Lilium at the molecular level. This study observed bulb cell and starch granule ultrastructures during cold storage; and analysed the transcriptome using sequencing. The combination of morphological and transcriptomic methods provides valuable insights into dormancy release during cold storage of Lilium pumilum. Results Ultrastructural changes reflected dormancy release during cold storage of the bulbs. We compared gene expression levels among samples at 0 (S1 stage), 30 (S2 stage), 60 (S3 stage) and 90 (S4 stage) d of cold storage, with 0 d as the control. The data showed that some regulatory pathways such as carbohydrate metabolism and plant hormone signal transduction were activated to break dormancy. Some differentially expressed genes (DEGs) related to antioxidant activity, epigenetic modification and transcription factors were induced to respond to low temperature conditions. These genes constituted a complex regulatory mechanism of dormancy release. Conclusions Cytological data related to dormancy regulation was obtained through histomorphological observation; transcriptome sequencing provided comprehensive sequences and digital gene expression tag profiling (DGE) data, and bulb cell ultrastructural changes were closely related to DEGs. The novel Lilium pumilum genetic information from this study provides a reference for the regulation of dormancy by genetic engineering using molecular biology tools. Electronic supplementary material The online version of this article (10.1186/s12864-018-4536-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wang Wang
- Northeast Forestry University, Harbin, China
| | - Xiaoxia Su
- Northeast Forestry University, Harbin, China
| | | | - Yu Liu
- Northeast Forestry University, Harbin, China
| | - Yunwei Zhou
- Northeast Forestry University, Harbin, China.
| | - Miao He
- Northeast Forestry University, Harbin, China.
| |
Collapse
|
12
|
Zhang Y, Sun T, Liu S, Dong L, Liu C, Song W, Liu J, Gai S. MYC cis-Elements in PsMPT Promoter Is Involved in Chilling Response of Paeonia suffruticosa. PLoS One 2016; 11:e0155780. [PMID: 27228117 PMCID: PMC4882030 DOI: 10.1371/journal.pone.0155780] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 05/04/2016] [Indexed: 11/25/2022] Open
Abstract
The MPT transports Pi to synthesize ATP. PsMPT, a chilling-induced gene, was previously reported to promote energy metabolism during bud dormancy release in tree peony. In this study, the regulatory elements of PsMPT promoter involved in chilling response were further analyzed. The PsMPT transcript was detected in different tree peony tissues and was highly expressed in the flower organs, including petal, stigma and stamen. An 1174 bp of the PsMPT promoter was isolated by TAIL-PCR, and the PsMPT promoter::GUS transgenic Arabidopsis was generated and analyzed. GUS staining and qPCR showed that the promoter was active in mainly the flower stigma and stamen. Moreover, it was found that the promoter activity was enhanced by chilling, NaCl, GA, ACC and NAA, but inhibited by ABA, mannitol and PEG. In transgenic plants harboring 421 bp of the PsMPT promoter, the GUS gene expression and the activity were significantly increased by chilling treatment. When the fragment from -421 to -408 containing a MYC cis-element was deleted, the chilling response could not be observed. Further mutation analysis confirmed that the MYC element was one of the key motifs responding to chilling in the PsMPT promoter. The present study provides useful information for further investigation of the regulatory mechanism of PsMPT during the endo-dormancy release.
Collapse
Affiliation(s)
- Yuxi Zhang
- College of Life Sciences, Qingdao Agricultural University, Key Lab of Plant Biotechnology in Universities of Shandong Province, Changcheng Road 700, Qingdao, China
| | - Tingzhao Sun
- College of Life Sciences, Qingdao Agricultural University, Key Lab of Plant Biotechnology in Universities of Shandong Province, Changcheng Road 700, Qingdao, China
| | - Shaoqing Liu
- College of Life Sciences, Qingdao Agricultural University, Key Lab of Plant Biotechnology in Universities of Shandong Province, Changcheng Road 700, Qingdao, China
| | - Lei Dong
- College of Life Sciences, Qingdao Agricultural University, Key Lab of Plant Biotechnology in Universities of Shandong Province, Changcheng Road 700, Qingdao, China
| | - Chunying Liu
- College of Life Sciences, Qingdao Agricultural University, Key Lab of Plant Biotechnology in Universities of Shandong Province, Changcheng Road 700, Qingdao, China
| | - Wenwen Song
- College of Life Sciences, Qingdao Agricultural University, Key Lab of Plant Biotechnology in Universities of Shandong Province, Changcheng Road 700, Qingdao, China
| | - Jingjing Liu
- College of Life Sciences, Qingdao Agricultural University, Key Lab of Plant Biotechnology in Universities of Shandong Province, Changcheng Road 700, Qingdao, China
| | - Shupeng Gai
- College of Life Sciences, Qingdao Agricultural University, Key Lab of Plant Biotechnology in Universities of Shandong Province, Changcheng Road 700, Qingdao, China
- * E-mail:
| |
Collapse
|
13
|
Jia F, Wan X, Zhu W, Sun D, Zheng C, Liu P, Huang J. Overexpression of Mitochondrial Phosphate Transporter 3 Severely Hampers Plant Development through Regulating Mitochondrial Function in Arabidopsis. PLoS One 2015; 10:e0129717. [PMID: 26076137 PMCID: PMC4468087 DOI: 10.1371/journal.pone.0129717] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Accepted: 05/12/2015] [Indexed: 12/22/2022] Open
Abstract
Mitochondria are abundant and important organelles present in nearly all eukaryotic cells, which maintain metabolic communication with the cytosol through mitochondrial carriers. The mitochondrial membrane localized phosphate transporter (MPT) plays vital roles in diverse development and signaling processes, especially the ATP biosynthesis. Among the three MPT genes in Arabidopsis genome, AtMPT3 was proven to be a major member, and its overexpression gave rise to multiple developmental defects including curly leaves with deep color, dwarfed stature, and reduced fertility. Transcript profiles revealed that genes involved in plant metabolism, cellular redox homeostasis, alternative respiration pathway, and leaf and flower development were obviously altered in AtMPT3 overexpression (OEMPT3) plants. Moreover, OEMPT3 plants also accumulated higher ATP content, faster respiration rate and more reactive oxygen species (ROS) than wild type plants. Overall, our studies showed that AtMPT3 was indispensable for Arabidopsis normal growth and development, and provided new sights to investigate its possible regulation mechanisms.
Collapse
Affiliation(s)
- Fengjuan Jia
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, P.R. China
| | - Xiaomin Wan
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, P.R. China
| | - Wei Zhu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, P.R. China
| | - Dan Sun
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, P.R. China
| | - Chengchao Zheng
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, P.R. China
| | - Pei Liu
- College of Food Science and Engineering, Shandong Agricultural University, Taian, Shandong, P.R. China
- * E-mail: (PL); (JH)
| | - Jinguang Huang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, P.R. China
- * E-mail: (PL); (JH)
| |
Collapse
|
14
|
Zhang J, Wu Y, Li D, Wang G, Li X, Xia Y. Transcriptomic analysis of the underground renewal buds during dormancy transition and release in 'Hangbaishao' peony (Paeonia lactiflora). PLoS One 2015; 10:e0119118. [PMID: 25790307 PMCID: PMC4366336 DOI: 10.1371/journal.pone.0119118] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 01/27/2015] [Indexed: 11/18/2022] Open
Abstract
Paeonia lactiflora is one of the most famous species of herbaceous peonies with gorgeous flowers. Bud dormancy is a crucial developmental process that allows P. lactiflora to survive unfavorable environmental conditions. However, little information is available on the molecular mechanism of the bud dormancy in P. lactiflora. We performed de novo transcriptome sequencing using the Illumina RNA sequencing platform for the underground renewal buds of P. lactiflora 'Hangbaishao' to study the molecular mechanism underlying its bud dormancy transition (the period from endodormancy to ecodormancy) and release (the period from ecodormancy to bud elongation and sprouting). Approximately 300 million high-quality clean reads were generated and assembled into 207,827 (mean length = 828 bp) and 51,481 (mean length = 1250 bp) unigenes using two assembly methods named "Trinity" and "Trinity+PRICE", respectively. Based on the data obtained by the latter method, 32,316 unigenes were annotated by BLAST against various databases. Approximately 1,251 putative transcription factors were obtained, of which the largest number of unique transcripts belonged to the basic helix-loop-helix protein (bHLH) transcription factor family, and five of the top ten highly expressed transcripts were annotated as dehydrin (DHN). A total of 17,705 simple sequence repeat (SSR) motifs distributed in 13,797 sequences were obtained. The budbreak morphology, levels of indole-3-acetic acid (IAA) and abscisic acid (ABA), and activities of guaiacol peroxidase (POD) and catalase (CAT) were observed. The expression of 20 interested unigenes, which annotated as DHN, heat shock protein (HSP), histone, late elongated hypocotyl (LHY), and phytochrome (PHY), and so on, were also analyzed. These studies were based on morphological, physiological, biochemical, and molecular levels and provide comprehensive insight into the mechanism of dormancy transition and release in P. lactiflora. Transcriptome dataset can be highly valuable for future investigation on gene expression networks in P. lactiflora as well as research on dormancy in other non-model perennial horticultural crops of commercial significance.
Collapse
Affiliation(s)
- Jiaping Zhang
- Institute of Landscape Architecture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, People’s Republic of China
| | - Yun Wu
- Institute of Landscape Architecture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, People’s Republic of China
| | - Danqing Li
- Institute of Landscape Architecture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, People’s Republic of China
| | - Guanqun Wang
- Institute of Landscape Architecture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, People’s Republic of China
| | - Xin Li
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, People’s Republic of China
| | - Yiping Xia
- Institute of Landscape Architecture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, People’s Republic of China
| |
Collapse
|
15
|
Zhang YX, Yu D, Tian XL, Liu CY, Gai SP, Zheng GS. Differential expression proteins associated with bud dormancy release during chilling treatment of tree peony (Paeonia suffruticosa). PLANT BIOLOGY (STUTTGART, GERMANY) 2015; 17:114-22. [PMID: 25091021 DOI: 10.1111/plb.12213] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2013] [Accepted: 04/14/2014] [Indexed: 05/06/2023]
Abstract
Endo-dormant flower buds of tree peony must have sufficient chilling duration to reinitiate growth, which is a major obstacle to the forcing culture of tree peony in winter. We used a combination of two-dimensional gel electrophoresis (2-DE) and matrix-assisted laser desorption/ionisation time of flight/time of flight mass spectrometry (MALDI-TOF/TOF MS) to identify the differentially expressed proteins of tree peony after three different chilling treatments: endo-dormancy, endo-dormancy release and eco-dormancy stages. More than 200 highly reproducible protein spots were detected, and 31 differentially expressed spots (P < 0.05) were selected for further analysis. Finally, 20 protein spots were confidently identified from databases, which were annotated and classified into seven functional categories: response to abiotic or biotic stimulus (four), metabolic processes (four), other binding (three), transcription or transcription regulation (two), biological processes (one), cell biogenesis (one) and unclassified (five). The results of qPCR of five genes were mainly consistent with that of the protein accumulation analysis as determined by 2-DE. This indicated that most of these genes were mainly regulated at transcriptional level. The activity of nitrate reductase and pyruvate dehydrogenase E1 was consistent with the 2-DE results. The proteomic profiles indicated activation of citrate cycle, amino acid metabolism, lipid metabolism, energy production, calcium signalling and cell growth processes by chilling fulfilment to facilitate dormancy release in tree peony. Analysis of functions of identified proteins will increase our knowledge of endo-dormancy release in tree peony.
Collapse
Affiliation(s)
- Y X Zhang
- College of Life Sciences, Key Lab of Plant Biotechnology in Universities of Shandong Province, Qingdao Agricultural University, Qingdao, China
| | | | | | | | | | | |
Collapse
|
16
|
Zhou H, Cheng FY, Wang R, Zhong Y, He C. Transcriptome comparison reveals key candidate genes responsible for the unusual reblooming trait in tree peonies. PLoS One 2013; 8:e79996. [PMID: 24244590 PMCID: PMC3828231 DOI: 10.1371/journal.pone.0079996] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 09/29/2013] [Indexed: 11/19/2022] Open
Abstract
Tree peonies are important ornamental plants worldwide, but growing them can be frustrating due to their short and concentrated flowering period. Certain cultivars exhibit a reblooming trait that provides a valuable alternative for extending the flowering period. However, the genetic control of reblooming in tree peonies is not well understood. In this study, we compared the molecular properties and morphology of reblooming and non-reblooming tree peonies during the floral initiation and developmental processes. Using transcriptome sequencing technology, we generated 59,275 and 63,962 unigenes with a mean size of 698 bp and 699 bp from the two types of tree peonies, respectively, and identified eight differentially expressed genes that are involved in the floral pathways of Arabidopsis thaliana. These differentially regulated genes were verified through a detailed analysis of their expression pattern during the floral process by real time RT-PCR. From this combined analysis, we identified four genes, PsFT, PsVIN3, PsCO and PsGA20OX, which likely play important roles in the regulation of the reblooming process in tree peonies. These data constitute a valuable resource for the discovery of genes involved in flowering time and insights into the molecular mechanism of flowering to further accelerate the breeding of tree peonies and other perennial woody plants.
Collapse
Affiliation(s)
- Hua Zhou
- Landscape Architecture College of Beijing Forestry University, National Flower Engineering Research Center, Beijing, China
- Institute of Biology and Resources, Jiangxi Academy of Sciences, Nanchang, China
| | - Fang-Yun Cheng
- Landscape Architecture College of Beijing Forestry University, National Flower Engineering Research Center, Beijing, China
- * E-mail: (FYC); (CYH)
| | - Rong Wang
- Landscape Architecture College of Beijing Forestry University, National Flower Engineering Research Center, Beijing, China
| | - Yuan Zhong
- Landscape Architecture College of Beijing Forestry University, National Flower Engineering Research Center, Beijing, China
| | - Chaoying He
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- * E-mail: (FYC); (CYH)
| |
Collapse
|
17
|
Yuan Y, Yu J, Jiang C, Li M, Lin S, Wang X, Huang L. Functional diversity of genes for the biosynthesis of paeoniflorin and its derivatives in Paeonia. Int J Mol Sci 2013; 14:18502-19. [PMID: 24022687 PMCID: PMC3794792 DOI: 10.3390/ijms140918502] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 08/09/2013] [Accepted: 08/19/2013] [Indexed: 02/04/2023] Open
Abstract
The Paeonia root, with or without bark, are considered vital traditional Chinese medicine materials; the examples are those of Bai Shao, Chi Shao, and Dan Pi. In this study, we examine 24 genes and their expressions involved in the biosynthesis of paeoniflorin and its derivatives, which are active compounds of the Paeonia root, in Paeonia lactiflora and P. suffruticosa, as well as other related plants, Punica granatum, Rhus radicans, and Coriaria nepalensis. Our phylogenetic analyses suggest that these genes have functional diversity, and analysis of the transcriptional level shows paeoniflorin and gallic acid biosynthesis-related genes exhibit different transcription profiles in flowers, carpels, bark-free roots, and bark of P. lactiflora. The correlation analysis of gene expression and active compound contents support the idea that hydroxymethylglutaryl-CoA synthase and phosphomevalonate kinase in the mevalonate pathway and 3-dehydroquinate dehydratase/shikimate dehydrogenase in shikimate biosynthesis are potentially closely related to the accumulation of paeoniflorin and benzoylpaeoniflorin. Coupling gene diversity with chemical analysis, we show that paeoniflorin and its derived aromatic amino acids are predominant in bark.
Collapse
Affiliation(s)
- Yuan Yuan
- National Resource Center for Chinese Materia Medica, Academy of Chinese Medical Sciences, Beijing 100700, China; E-Mails: (Y.Y.); (C.J.); (M.L.); (S.L.)
| | - Jun Yu
- CAS Key Laboratory of Genome Sciences and Information, Beijing 100029, China; E-Mail:
| | - Chao Jiang
- National Resource Center for Chinese Materia Medica, Academy of Chinese Medical Sciences, Beijing 100700, China; E-Mails: (Y.Y.); (C.J.); (M.L.); (S.L.)
| | - Minhui Li
- National Resource Center for Chinese Materia Medica, Academy of Chinese Medical Sciences, Beijing 100700, China; E-Mails: (Y.Y.); (C.J.); (M.L.); (S.L.)
| | - Shufang Lin
- National Resource Center for Chinese Materia Medica, Academy of Chinese Medical Sciences, Beijing 100700, China; E-Mails: (Y.Y.); (C.J.); (M.L.); (S.L.)
| | - Xumin Wang
- CAS Key Laboratory of Genome Sciences and Information, Beijing 100029, China; E-Mail:
- Authors to whom correspondence should be addressed; E-Mails: (X.W.); (L.H.); Tel.: +86-10-8299-5400 (X.W.); +86-10-8404-4340 (L.H.); Fax: +86-10-8299-5401 (X.W.); +86-10-8402-7175 (L.H.)
| | - Luqi Huang
- National Resource Center for Chinese Materia Medica, Academy of Chinese Medical Sciences, Beijing 100700, China; E-Mails: (Y.Y.); (C.J.); (M.L.); (S.L.)
- Authors to whom correspondence should be addressed; E-Mails: (X.W.); (L.H.); Tel.: +86-10-8299-5400 (X.W.); +86-10-8404-4340 (L.H.); Fax: +86-10-8299-5401 (X.W.); +86-10-8402-7175 (L.H.)
| |
Collapse
|
18
|
Gai S, Zhang Y, Liu C, Zhang Y, Zheng G. Transcript profiling of Paoenia ostii during artificial chilling induced dormancy release identifies activation of GA pathway and carbohydrate metabolism. PLoS One 2013; 8:e55297. [PMID: 23405132 PMCID: PMC3566188 DOI: 10.1371/journal.pone.0055297] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 12/20/2012] [Indexed: 11/23/2022] Open
Abstract
Endo-dormant flower buds must pass through a period of chilling to reinitiate growth and subsequent flowering, which is a major obstacle to the forcing culture of tree peony in winter. Customized cDNA microarray (8×15 K element) was used to investigate gene expression profiling in tree peony 'Feng Dan Bai' buds during 24 d chilling treatment at 0-4°C. According to the morphological changes after the whole plants were transferred to green house, endo-dormancy was released after 18 d chilling treatment, and prolonged chilling treatment increased bud break rate. Pearson correlation hierarchical clustering of sample groups was highly consistent with the dormancy transitions revealed by morphological changes. Totally 3,174 significantly differentially-expressed genes (P<0.05) were observed through endo-dormancy release process, of which the number of up-regulated (1,611) and that of down-regulated (1,563) was almost the same. Functional annotation of differentially-expressed genes revealed that cellular process, metabolic process, response to stimulus, regulation of biological process and development process were well-represented. Hierarchical clustering indicated that activation of genes involved in carbohydrate metabolism (Glycolysis, Citrate cycle and Pentose phosphate pathway), energy metabolism and cell growth. Based on the results of GO analysis, totally 51 probes presented in the microarray were associated with GA response and GA signaling pathway, and 22 of them were differently expressed. The expression profiles also revealed that the genes of GA biosynthesis, signaling and response involved in endo-dormancy release. We hypothesized that activation of GA pathway played a central role in the regulation of dormancy release in tree peony.
Collapse
Affiliation(s)
- Shupeng Gai
- College of Life Sciences, Qingdao Agricultural University, Key Lab of Plant Biotechnology in Universities of Shandong Province, Qingdao, China
| | - Yuxi Zhang
- College of Life Sciences, Qingdao Agricultural University, Key Lab of Plant Biotechnology in Universities of Shandong Province, Qingdao, China
| | - Chunying Liu
- College of Life Sciences, Qingdao Agricultural University, Key Lab of Plant Biotechnology in Universities of Shandong Province, Qingdao, China
| | - Yang Zhang
- College of Life Sciences, Qingdao Agricultural University, Key Lab of Plant Biotechnology in Universities of Shandong Province, Qingdao, China
| | - Guosheng Zheng
- College of Life Sciences, Qingdao Agricultural University, Key Lab of Plant Biotechnology in Universities of Shandong Province, Qingdao, China
| |
Collapse
|
19
|
Zhu W, Miao Q, Sun D, Yang G, Wu C, Huang J, Zheng C. The mitochondrial phosphate transporters modulate plant responses to salt stress via affecting ATP and gibberellin metabolism in Arabidopsis thaliana. PLoS One 2012; 7:e43530. [PMID: 22937061 PMCID: PMC3427375 DOI: 10.1371/journal.pone.0043530] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Accepted: 07/23/2012] [Indexed: 11/29/2022] Open
Abstract
The mitochondrial phosphate transporter (MPT) plays crucial roles in ATP production in plant cells. Three MPT genes have been identified in Arabidopsis thaliana. Here we report that the mRNA accumulations of AtMPTs were up-regulated by high salinity stress in A. thaliana seedlings. And the transgenic lines overexpressing AtMPTs displayed increased sensitivity to salt stress compared with the wild-type plants during seed germination and seedling establishment stages. ATP content and energy charge was higher in overexpressing plants than those in wild-type A. thaliana under salt stress. Accordingly, the salt-sensitive phenotype of overexpressing plants was recovered after the exogenous application of atractyloside due to the change of ATP content. Interestingly, Genevestigator survey and qRT-PCR analysis indicated a large number of genes, including those related to gibberellin synthesis could be regulated by the energy availability change under stress conditions in A. thaliana. Moreover, the exogenous application of uniconazole to overexpressing lines showed that gibberellin homeostasis was disturbed in the overexpressors. Our studies reveal a possible link between the ATP content mediated by AtMPTs and gibberellin metabolism in responses to high salinity stress in A. thaliana.
Collapse
Affiliation(s)
- Wei Zhu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, People’s Republic of China
| | - Qing Miao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, People’s Republic of China
| | - Dan Sun
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, People’s Republic of China
| | - Guodong Yang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, People’s Republic of China
| | - Changai Wu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, People’s Republic of China
| | - Jinguang Huang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, People’s Republic of China
| | - Chengchao Zheng
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, People’s Republic of China
| |
Collapse
|
20
|
Transcriptome analysis of tree peony during chilling requirement fulfillment: Assembling, annotation and markers discovering. Gene 2012; 497:256-62. [DOI: 10.1016/j.gene.2011.12.013] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Revised: 12/06/2011] [Accepted: 12/07/2011] [Indexed: 11/18/2022]
|