1
|
Hu W, Hu S, Li S, Zhou Q, Xie Z, Hao X, Wu S, Tian L, Li D. AtSAMS regulates floral organ development by DNA methylation and ethylene signaling pathway. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 334:111767. [PMID: 37302530 DOI: 10.1016/j.plantsci.2023.111767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/04/2023] [Accepted: 06/07/2023] [Indexed: 06/13/2023]
Abstract
S-adenosylmethionine synthase is the key enzyme involved in the biosynthesis of S-adenosylmethionine, which serves as the universal methyl group donor and a common precursor for the biosynthesis of ethylene and polyamines. However, little is known about how SAMS controls plant development. Here, we report that the abnormal floral organ development in the AtSAMS-overexpressing plants is caused by DNA demethylation and ethylene signaling. The whole-genome DNA methylation level decreased, and ethylene content increased in SAMOE. Wild-type plants treated with DNA methylation inhibitor mimicked the phenotypes and the ethylene levels in SAMOE, suggesting that DNA demethylation enhanced ethylene biosynthesis, which led to abnormal floral organ development. DNA demethylation and elevated ethylene resulted in changes in the expression of ABCE genes, which is essential for floral organ development. Furthermore, the transcript levels of ACE genes were highly correlated to their methylation levels, except for the down-regulation of the B gene, which might have resulted from demethylation-independent ethylene signaling. SAMS-mediated methylation and ethylene signaling might create crosstalk in the process of floral organ development. Together, we provide evidence that AtSAMS regulates floral organ development by DNA methylation and ethylene signaling pathway.
Collapse
Affiliation(s)
- Wenli Hu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Shuang Hu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Shaozhuang Li
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Qi Zhou
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Zijing Xie
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Xiaohua Hao
- College of Life and Environmental Science, Hunan University of Arts and Science, Changde 415000, China
| | - Sha Wu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Lianfu Tian
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, College of Life Sciences, Hunan Normal University, Changsha 410081, China.
| | - Dongping Li
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, College of Life Sciences, Hunan Normal University, Changsha 410081, China.
| |
Collapse
|
2
|
Duan X, Zhao C, Jiang Y, Zhang R, Shan H, Kong H. Parallel evolution of apetalous lineages within the buttercup family (Ranunculaceae): outward expansion of AGAMOUS1, rather than disruption of APETALA3-3. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:1169-1181. [PMID: 32891067 DOI: 10.1111/tpj.14985] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 08/19/2020] [Indexed: 06/11/2023]
Abstract
Complete loss of petals, or becoming apetalous, has occurred independently in many flowering plant lineages. However, the mechanisms underlying the parallel evolution of naturally occurring apetalous lineages remain largely unclear. Here, by sampling representatives of all nine apetalous genera/tribes of the family Ranunculaceae and conducting detailed morphological, expression, molecular evolutionary and functional studies, we investigate the mechanisms underlying parallel petal losses. We found that while non-expression/downregulation of the petal identity gene APETALA3-3 (AP3-3) is tightly associated with complete petal losses, disruptions of the AP3-3 orthologs were unlikely to be the real causes for the parallel evolution of apetalous lineages. We also found that, compared with their close petalous relatives, naturally occurring apetalous taxa usually bear slightly larger numbers of stamens, whereas the number of sepals remains largely unchanged, suggestive of petal-to-stamen rather than petal-to-sepal transformations. In addition, in the recently originated apetalous genus Enemion, the petal-to-stamen transformations have likely been caused by the mutations that led to the elevation and outward expansion of the expression of the C-function gene, AGAMOUS1 (AG1). Our results not only provide a general picture of parallel petal losses within the Ranunculaceae but also help understand the mechanisms underlying the independent originations of other apetalous lineages.
Collapse
Affiliation(s)
- Xiaoshan Duan
- State Key Laboratory of Systematic and Evolutionary Botany, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Caiyao Zhao
- State Key Laboratory of Systematic and Evolutionary Botany, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yongchao Jiang
- State Key Laboratory of Systematic and Evolutionary Botany, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Rui Zhang
- State Key Laboratory of Systematic and Evolutionary Botany, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Hongyan Shan
- State Key Laboratory of Systematic and Evolutionary Botany, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Hongzhi Kong
- State Key Laboratory of Systematic and Evolutionary Botany, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
3
|
Gorham SR, Weiner AI, Yamadi M, Krogan NT. HISTONE DEACETYLASE 19 and the flowering time gene FD maintain reproductive meristem identity in an age-dependent manner. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:4757-4771. [PMID: 29945158 PMCID: PMC6778473 DOI: 10.1093/jxb/ery239] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 06/22/2018] [Indexed: 05/24/2023]
Abstract
The shoot apical meristem (SAM) undergoes developmental transitions that include a shift from vegetative to reproductive growth. This transition is triggered by flowering time genes, which up-regulate floral meristem (FM) identity genes that, in turn, control flower development by activating floral organ identity genes. This cascade of transcriptional activation is refined by repression mechanisms that temporally and spatially restrict gene expression to ensure proper development. Here, we demonstrate that HISTONE DEACETYLASE 19 (HDA19) maintains the identity of the reproductive SAM, or inflorescence meristem (IM), late in Arabidopsis thaliana development. At late stages of growth, hda19 IMs display a striking patterning defect characterized by ectopic expression of floral organ identity genes and the replacement of flowers with individual stamenoid organs. We further show that the flowering time gene FD has a specific function in this regulatory process, as fd hastens the emergence of these patterning defects in hda19 growth. Our work therefore identifies a new role for FD in reproductive patterning, as FD regulates IM function together with HDA19 in an age-dependent fashion. To effect these abnormalities, hda19 and fd may accentuate the weakening of transcriptional repression that occurs naturally with reproductive meristem proliferation.
Collapse
Affiliation(s)
- Sasha R Gorham
- American University, Department of Biology, Washington DC, USA
| | - Aaron I Weiner
- American University, Department of Biology, Washington DC, USA
| | - Maryam Yamadi
- American University, Department of Biology, Washington DC, USA
| | | |
Collapse
|
4
|
Abstract
A complete understanding of the genetic control of flower development requires a comparative approach, involving species from across the angiosperm lineage. Using the accessible model plant Arabidopsis thaliana many of the genetic pathways that control development of the reproductive growth phase have been delineated. Research in other species has added to this knowledge base, revealing that, despite the myriad of floral forms found in nature, the genetic blueprint of flower development is largely conserved. However, these same studies have also highlighted differences in the way flowering is controlled in evolutionarily diverse species. Here, we review flower development in the eudicot asterid lineage, a group of plants that diverged from the rosid family, which includes Arabidopsis, 120 million years ago. Work on model species such as Antirrhinum majus, Petunia hybrida, and Gerbera hybrida has prompted a reexamination of textbook models of flower development; revealed novel mechanisms controlling floral gene expression; provided a means to trace evolution of key regulatory genes; and stimulated discussion about genetic redundancy and the fate of duplicated genes.
Collapse
Affiliation(s)
- Barry Causier
- Centre for Plant Sciences, School of Biology, University of Leeds, Leeds, UK
| | | |
Collapse
|
5
|
Manchado-Rojo M, Delgado-Benarroch L, Roca MJ, Weiss J, Egea-Cortines M. Quantitative levels of Deficiens and Globosa during late petal development show a complex transcriptional network topology of B function. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 72:294-307. [PMID: 22708513 DOI: 10.1111/j.1365-313x.2012.05080.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The transcriptional network topology of B function in Antirrhinum, required for petal and stamen development, is thought to rely on initial activation of transcription of DEFICIENS (DEF) and GLOBOSA (GLO), followed by a positive autoregulatory loop maintaining gene expression levels. Here, we show that the mutant compacta (co), whose vegetative growth and petal size are affected, plays a role in B function. Late events in petal morphogenesis such as development of conical cell area and scent emissions were reduced in co and def (nicotianoides) (def (nic) ), and absent in co def (nic) double mutants, suggesting a role for CO in petal identity. Expression of DEF was down-regulated in co but surprisingly GLO was not affected. We investigated the levels of DEF and GLO at late stages of petal development in the co, def (nic) and glo-1 mutants, and established a reliable transformation protocol that yielded RNAi-DEF lines. We show that the threshold levels of DEF or GLO required to obtain petal tissue are approximately 11% of wild-type. The relationship between DEF and GLO transcripts is not equal or constant and changes during development. Furthermore, down-regulation of DEF or GLO does not cause parallel down-regulation of the partner. Our results demonstrate that, at late stages of petal development, the B function transcriptional network topology is not based on positive autoregulation, and has additional components of transcriptional maintenance. Our results suggest changes in network topology that may allow changes in protein complexes that would explain the fact that not all petal traits appear early in development.
Collapse
Affiliation(s)
- María Manchado-Rojo
- Department of Genetics, ETSIA, Instituto de Biotecnología Vegetal, Universidad Politécnica de Cartagena, Paseo Alfonso XIII 48, 30203 Cartagena, Spain
| | | | | | | | | |
Collapse
|
6
|
Heijmans K, Morel P, Vandenbussche M. MADS-box genes and floral development: the dark side. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:5397-404. [PMID: 22915743 DOI: 10.1093/jxb/ers233] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The origin of the flower during evolution has been a crucial step in further facilitating plants to colonize a wide range of different niches on our planet. The >250 000 species of flowering plants existing today display an astonishing diversity in floral architecture. For this reason, the flower is a very attractive subject for evolutionary developmental (evo-devo) genetics studies. Research during the last two decades has provided compelling evidence that the origin and functional diversification of MIKC(c) MADS-box transcription factors has played a critical role during evolution of flowering plants. As master regulators of floral organ identity, MADS-box proteins are at the heart of the classic ABC model for floral development. Despite the enormous progress made in the field of floral development, there still remain aspects that are less well understood. Here we highlight some of the dark corners within our current knowledge on MADS-box genes and flower development, which would be worthwhile investigating in more detail in future research. These include the general question of to what extent MADS-box gene functions are conserved between species, the function of TM8-clade MADS-box genes which so far have remained uncharacterized, the divergence within the A-function, and post-transcriptional regulation of the ABC-genes.
Collapse
Affiliation(s)
- Klaas Heijmans
- Plant Genetics, IWWR, Radboud University Nijmegen 6525AJ Nijmegen The Netherlands
| | | | | |
Collapse
|
7
|
Ito T. Coordination of flower development by homeotic master regulators. CURRENT OPINION IN PLANT BIOLOGY 2011; 14:53-59. [PMID: 20869907 DOI: 10.1016/j.pbi.2010.08.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2010] [Accepted: 08/30/2010] [Indexed: 05/29/2023]
Abstract
Floral homeotic genes encode transcription factors and act as master regulators of flower development. The homeotic protein complex is expressed in a specific whorl of the floral primordium and determines floral organ identity by the combinatorial action. Homeotic proteins continue to be expressed until late in flower development to coordinate growth and organogenesis. Recent genomic studies have shown that homeotic proteins bind thousands of target sites in the genome and regulate the expression of transcription factors, chromatin components and various proteins involved in hormone biosynthesis and signaling and other physiological activities. Further, homeotic proteins program chromatin to direct the developmental coordination of stem cell maintenance and differentiation in shaping floral organs.
Collapse
Affiliation(s)
- Toshiro Ito
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Singapore.
| |
Collapse
|
8
|
Urbanus SL, Dinh QDP, Angenent GC, Immink RGH. Investigation of MADS domain transcription factor dynamics in the floral meristem. PLANT SIGNALING & BEHAVIOR 2010; 5:1260-2. [PMID: 20861681 PMCID: PMC3115362 DOI: 10.4161/psb.5.10.12949] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
To study the importance of intercellular transport for MADS domain transcription factor functioning during floral development, we analyzed the dynamic behavior of fluorescently-tagged MADS domain proteins in transgenic plants by Confocal Laser Scanning Microscopy. These analyses, described in a recent paper in The Plant Journal, provided proof for previous suggestions that the Arabidopsis thaliana C-type protein AGAMOUS has a non-cell-autonomous role in floral meristem integrity. Furthermore, it indicated a possible non-cell-autonomous role for the B-type proteins APETALA3 and PISTILLATA, and the E-type protein SEPALLATA3, through lateral intercellular movement in the floral meristem. In this addendum we compare some of the available fluorescent protein-based technologies for the investigation of transcription factor movements and dynamics.
Collapse
Affiliation(s)
- Susan L Urbanus
- Plant Research International, Droevendaalsesteeg, The Netherlands
| | | | | | | |
Collapse
|
9
|
Urbanus SL, Martinelli AP, Dinh QDP, Aizza LCB, Dornelas MC, Angenent GC, Immink RGH. Intercellular transport of epidermis-expressed MADS domain transcription factors and their effect on plant morphology and floral transition. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 63:60-72. [PMID: 20374529 DOI: 10.1111/j.1365-313x.2010.04221.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
During the lifetime of an angiosperm plant various important processes such as floral transition, specification of floral organ identity and floral determinacy, are controlled by members of the MADS domain transcription factor family. To investigate the possible non-cell-autonomous function of MADS domain proteins, we expressed GFP-tagged clones of AGAMOUS (AG), APETALA3 (AP3), PISTILLATA (PI) and SEPALLATA3 (SEP3) under the control of the MERISTEMLAYER1 promoter in Arabidopsis thaliana plants. Morphological analyses revealed that epidermal overexpression was sufficient for homeotic changes in floral organs, but that it did not result in early flowering or terminal flower phenotypes that are associated with constitutive overexpression of these proteins. Localisations of the tagged proteins in these plants were analysed with confocal laser scanning microscopy in leaf tissue, inflorescence meristems and floral meristems. We demonstrated that only AG is able to move via secondary plasmodesmata from the epidermal cell layer to the subepidermal cell layer in the floral meristem and to a lesser extent in the inflorescence meristem. To study the homeotic effects in more detail, the capacity of trafficking AG to complement the ag mutant phenotype was compared with the capacity of the non-inwards-moving AP3 protein to complement the ap3 mutant phenotype. While epidermal expression of AG gave full complementation, AP3 appeared not to be able to drive all homeotic functions from the epidermis, perhaps reflecting the difference in mobility of these proteins.
Collapse
Affiliation(s)
- Susan L Urbanus
- Plant Research International, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
10
|
Causier B, Schwarz-Sommer Z, Davies B. Floral organ identity: 20 years of ABCs. Semin Cell Dev Biol 2009; 21:73-9. [PMID: 19883777 DOI: 10.1016/j.semcdb.2009.10.005] [Citation(s) in RCA: 219] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Revised: 10/21/2009] [Accepted: 10/22/2009] [Indexed: 11/18/2022]
Abstract
One of the early successes of the application of molecular genetics to study plant development was the discovery of a series of genes that act together, in an apparently simple combinatorial model, to specify the identity of the different organs of a flower. Widely known as the ABC model, this framework for understanding has been investigated and modified over the course of the last two decades. The cast list of genes has been defined and, as other chapters in this volume will show, great progress has been made in understanding how they are regulated, how they act together, what they do and how they have contributed to the evolution of the flower in its varied forms. In this introductory review to the volume we will review the derivation and elaboration of the most current version of the ABC model, highlighting the modifications that have been necessary to ensure it fits the available experimental data. We will highlight the remaining difficulties in fitting the current model to the experimental data and propose a further modification to enable it to regain its applicability.
Collapse
Affiliation(s)
- Barry Causier
- Centre for Plant Sciences, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, UK.
| | | | | |
Collapse
|