1
|
Jiang Y, Jin Y, Shan Y, Zhong Q, Wang H, Shen C, Feng S. Advances in Physalis molecular research: applications in authentication, genetic diversity, phylogenetics, functional genes, and omics. FRONTIERS IN PLANT SCIENCE 2024; 15:1407625. [PMID: 38993935 PMCID: PMC11236614 DOI: 10.3389/fpls.2024.1407625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/07/2024] [Indexed: 07/13/2024]
Abstract
The plants of the genus Physalis L. have been extensively utilized in traditional and indigenous Chinese medicinal practices for treating a variety of ailments, including dermatitis, malaria, asthma, hepatitis, and liver disorders. The present review aims to achieve a comprehensive and up-to-date investigation of the genus Physalis, a new model crop, to understand plant diversity and fruit development. Several chloroplast DNA-, nuclear ribosomal DNA-, and genomic DNA-based markers, such as psbA-trnH, internal-transcribed spacer (ITS), simple sequence repeat (SSR), random amplified microsatellites (RAMS), sequence-characterized amplified region (SCAR), and single nucleotide polymorphism (SNP), were developed for molecular identification, genetic diversity, and phylogenetic studies of Physalis species. A large number of functional genes involved in inflated calyx syndrome development (AP2-L, MPF2, MPF3, and MAGO), organ growth (AG1, AG2, POS1, and CNR1), and active ingredient metabolism (24ISO, DHCRT, P450-CPL, SR, DUF538, TAS14, and 3β-HSB) were identified contributing to the breeding of novel Physalis varieties. Various omic studies revealed and functionally identified a series of reproductive organ development-related factors, environmental stress-responsive genes, and active component biosynthesis-related enzymes. The chromosome-level genomes of Physalis floridana Rydb., Physalis grisea (Waterf.) M. Martínez, and Physalis pruinosa L. have been recently published providing a valuable resource for genome editing in Physalis crops. Our review summarizes the recent progress in genetic diversity, molecular identification, phylogenetics, functional genes, and the application of omics in the genus Physalis and accelerates efficient utilization of this traditional herb.
Collapse
Affiliation(s)
- Yan Jiang
- Hangzhou Normal University, Hangzhou, China
| | - Yanyun Jin
- Hangzhou Normal University, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, China
| | - Yiyi Shan
- Hangzhou Normal University, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, China
| | - Quanzhou Zhong
- Hangzhou Normal University, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, China
| | - Huizhong Wang
- Hangzhou Normal University, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, China
| | - Chenjia Shen
- Hangzhou Normal University, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, China
| | - Shangguo Feng
- Hangzhou Normal University, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
2
|
Dutta H, K. M. S, Aski MS, Mishra GP, Sinha SK, Vijay D, C. T. MP, Das S, Pawar PAM, Mishra DC, Singh AK, Kumar A, Tripathi K, Kumar RR, Gupta S, Kumar S, Dikshit HK. Morpho-biochemical characterization of a RIL population for seed parameters and identification of candidate genes regulating seed size trait in lentil ( Lens culinaris Medik.). FRONTIERS IN PLANT SCIENCE 2023; 14:1091432. [PMID: 36875597 PMCID: PMC9975752 DOI: 10.3389/fpls.2023.1091432] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
The seed size and shape in lentil (Lens culinaris Medik.) are important quality traits as these influences the milled grain yield, cooking time, and market class of the grains. Linkage analysis was done for seed size in a RIL (F5:6) population derived by crossing L830 (20.9 g/1000 seeds) with L4602 (42.13 g/1000 seeds) which consisted of 188 lines (15.0 to 40.5 g/1000 seeds). Parental polymorphism survey using 394 SSRs identified 31 polymorphic primers, which were used for the bulked segregant analysis (BSA). Marker PBALC449 differentiated the parents and small seed size bulk only, whereas large seeded bulk or the individual plants constituting the large-seeded bulk could not be differentiated. Single plant analysis identified only six recombinant and 13 heterozygotes, of 93 small-seeded RILs (<24.0 g/1000 seed). This clearly showed that the small seed size trait is very strongly regulated by the locus near PBLAC449; whereas, large seed size trait seems governed by more than one locus. The PCR amplified products from the PBLAC449 marker (149bp from L4602 and 131bp from L830) were cloned, sequenced and BLAST searched using the lentil reference genome and was found amplified from chromosome 03. Afterward, the nearby region on chromosome 3 was searched, and a few candidate genes like ubiquitin carboxyl-terminal hydrolase, E3 ubiquitin ligase, TIFY-like protein, and hexosyltransferase having a role in seed size determination were identified. Validation study in another RIL mapping population which is differing for seed size, showed a number of SNPs and InDels among these genes when studied using whole genome resequencing (WGRS) approach. Biochemical parameters like cellulose, lignin, and xylose content showed no significant differences between parents and the extreme RILs, at maturity. Various seed morphological traits like area, length, width, compactness, volume, perimeter, etc., when measured using VideometerLab 4.0 showed significant differences for the parents and RILs. The results have ultimately helped in better understanding the region regulating the seed size trait in genomically less explored crops like lentils.
Collapse
Affiliation(s)
- Haragopal Dutta
- Division of Genetics, Indian Agricultural Research Institute, New Delhi, India
| | - Shivaprasad K. M.
- Division of Genetics, Indian Agricultural Research Institute, New Delhi, India
| | - Muraleedhar S. Aski
- Division of Genetics, Indian Agricultural Research Institute, New Delhi, India
| | - Gyan P. Mishra
- Division of Genetics, Indian Agricultural Research Institute, New Delhi, India
| | - Subodh Kumar Sinha
- Indian Council of Agricultural Research (ICAR)-National Institute for Plant Biotechnology, New Delhi, India
| | - Dunna Vijay
- Division of Seed Science and Technology, Indian Agricultural Research Institute, New Delhi, India
| | - Manjunath Prasad C. T.
- Division of Seed Science and Technology, Indian Agricultural Research Institute, New Delhi, India
| | - Shouvik Das
- Laboratory of Plant Cell Wall Biology, Regional Centre for Biotechnology, Faridabad, India
| | | | - Dwijesh C. Mishra
- Agricultural Bioinformatics, Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Amit Kumar Singh
- Division of Genomic Resources, National Bureau of Plant Genetic Resources, New Delhi, India
| | - Atul Kumar
- Division of Seed Science and Technology, Indian Agricultural Research Institute, New Delhi, India
| | - Kuldeep Tripathi
- Germplasm Evaluation Division, National Bureau of Plant Genetic Resources, New Delhi, India
| | - Ranjeet Ranjan Kumar
- Division of Biochemistry, Indian Agricultural Research Institute, New Delhi, India
| | - Sanjeev Gupta
- Krishi Bhawan, Indian Council of Agricultural Research, New Delhi, India
| | - Shiv Kumar
- South Asia and China Program, International Center for Agricultural Research in the Dry Areas, National Agriculture Science Complex (NASC) Complex, New Delhi, India
| | - Harsh Kumar Dikshit
- Division of Genetics, Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
3
|
Protein patterns and their association with photosynthetic pigment content, agronomic behavior, and origin of purslane accessions ( Portulaca oleracea L.). BIOTECHNOLOGIA 2021; 102:245-255. [PMID: 36606152 PMCID: PMC9645567 DOI: 10.5114/bta.2021.108721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 03/26/2021] [Accepted: 04/02/2021] [Indexed: 01/09/2023] Open
Abstract
In this study, the proteomic, morphometric, and photosynthetic pigment data of purslane (Portulaca oleracea) accessions were combined together to show their impact on genetic variation in order to establish a relationship between protein patterns and phenotypic behavior of the plant. Seeds of 18 collected purslane accessions were cultivated based on a completely randomized design with three replicates. Before the flowering stage, the data on morphology, photosynthetic pigment content, and seed proteins were obtained. The results showed a significant difference among purslane accessions in terms of the most studied agronomic characteristics and the content of photosynthetic pigments and proteins. The cluster analysis of the 18 purslane accessions based on agronomic data, and photosynthetic pigment content, and protein pattern data produced three main clusters. Moreover, the seed protein analysis revealed that the two polymorphic protein bands of size 40 kDa (protein "a") and 30 kDa (protein "b") effectively diversified the agronomic, photosynthetic pigment, and phylogenetic relationships among the purslane accessions. Interestingly, protein "a" was produced in plants growing in low altitude areas and played a suppressive role for TDW, while protein "b" was produced in plants growing in high altitude areas and functioned as an activator agent for this trait. Overall, the outcomes of the present study indicated the presence of high genetic variability (77.6%) among the purslane accessions. These findings suggest that these proteins should be sequenced for further proteomic analyses and can be used for hybridization to generate useful recombinants in segregating generations and improve breeding varieties of P. oleracea.
Collapse
|
4
|
Gao H, Li J, Wang L, Zhang J, He C. Transcriptomic variation of the flower-fruit transition in Physalis and Solanum. PLANTA 2020; 252:28. [PMID: 32720160 DOI: 10.1007/s00425-020-03434-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 07/22/2020] [Indexed: 06/11/2023]
Abstract
Gene expression variations in response to fertilization between Physalis and Solanum might play essential roles in species divergence and fruit evolution. Fertilization triggers variation in fruit development and morphology. The Chinese lantern, a morphological novelty derived from the calyx, is formed upon fertilization in Physalis but is not observed in Solanum. The underlying genetic variations are largely unknown. Here, we documented the developmental and morphological differences in the flower and fruit between Physalis floridana and Solanum pimpinellifolium and then evaluated both the transcript sequence variation and gene expression at the transcriptomic level at fertilization between the two species. In Physalis transcriptomic analysis, 468 unigenes were identified as differentially expressed genes (DEGs) that were strongly regulated by fertilization across 3 years. In comparison with tomato, 14,536 strict single-copy orthologous gene pairs were identified between P. floridana and S. pimpinellifolium in the flower-fruit transcriptome. Nine types of gene variations with specific GO-enriched patterns were identified, covering 58.82% orthologous gene pairs that were DEGs in either trend or dosage at the flower-fruit transition between the two species, which could adequately distinguish Solanum and Physalis, implying that differential gene expression at fertilization might play essential roles during the divergence and fruit evolution of Solanum-Physalis. Virus-induced gene silencing analyses revealed the developmental roles of some transcription factor genes in fertility, Chinese lantern development, and fruit weight control in Physalis. This study presents the first floral transcriptomic resource of Physalis, and reveals some candidate genetic variations accounting for the early fruit developmental evolution in Physalis in comparison to Solanum.
Collapse
Affiliation(s)
- Huihui Gao
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Beijing, 100093, China
- University of Chinese Academy of Sciences, Yuquan Road 19, Beijing, 100049, China
- School of Agronomy, Anhui Agricultural University, Hefei, 230036, China
| | - Jing Li
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Beijing, 100093, China
- University of Chinese Academy of Sciences, Yuquan Road 19, Beijing, 100049, China
| | - Li Wang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Beijing, 100093, China
| | - Jisi Zhang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Beijing, 100093, China
- University of Chinese Academy of Sciences, Yuquan Road 19, Beijing, 100049, China
| | - Chaoying He
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Beijing, 100093, China.
- University of Chinese Academy of Sciences, Yuquan Road 19, Beijing, 100049, China.
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
5
|
Wu R, Wang T, McGie T, Voogd C, Allan AC, Hellens RP, Varkonyi-Gasic E. Overexpression of the kiwifruit SVP3 gene affects reproductive development and suppresses anthocyanin biosynthesis in petals, but has no effect on vegetative growth, dormancy, or flowering time. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:4985-95. [PMID: 24948678 PMCID: PMC4144777 DOI: 10.1093/jxb/eru264] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
SVP-like MADS domain transcription factors have been shown to regulate flowering time and both inflorescence and flower development in annual plants, while having effects on growth cessation and terminal bud formation in perennial species. Previously, four SVP genes were described in woody perennial vine kiwifruit (Actinidia spp.), with possible distinct roles in bud dormancy and flowering. Kiwifruit SVP3 transcript was confined to vegetative tissues and acted as a repressor of flowering as it was able to rescue the Arabidopsis svp41 mutant. To characterize kiwifruit SVP3 further, ectopic expression in kiwifruit species was performed. Ectopic expression of SVP3 in A. deliciosa did not affect general plant growth or the duration of endodormancy. Ectopic expression of SVP3 in A. eriantha also resulted in plants with normal vegetative growth, bud break, and flowering time. However, significantly prolonged and abnormal flower, fruit, and seed development were observed, arising from SVP3 interactions with kiwifruit floral homeotic MADS-domain proteins. Petal pigmentation was reduced as a result of SVP3-mediated interference with transcription of the kiwifruit flower tissue-specific R2R3 MYB regulator, MYB110a, and the gene encoding the key anthocyanin biosynthetic step, F3GT1. Constitutive expression of SVP3 had a similar impact on reproductive development in transgenic tobacco. The flowering time was not affected in day-neutral and photoperiod-responsive Nicotiana tabacum cultivars, but anthesis and seed germination were significantly delayed. The accumulation of anthocyanin in petals was reduced and the same underlying mechanism of R2R3 MYB NtAN2 transcript reduction was demonstrated.
Collapse
Affiliation(s)
- Rongmei Wu
- The New Zealand Institute for Plant & Food Research Limited (Plant & Food Research) Mt Albert, Private Bag 92169, Auckland 1142, New Zealand
| | - Tianchi Wang
- The New Zealand Institute for Plant & Food Research Limited (Plant & Food Research) Mt Albert, Private Bag 92169, Auckland 1142, New Zealand
| | - Tony McGie
- The New Zealand Institute for Plant & Food Research Limited (Plant & Food Research) Palmerston North, Private Bag 11600, Palmerston North 4442, New Zealand
| | - Charlotte Voogd
- The New Zealand Institute for Plant & Food Research Limited (Plant & Food Research) Mt Albert, Private Bag 92169, Auckland 1142, New Zealand
| | - Andrew C Allan
- The New Zealand Institute for Plant & Food Research Limited (Plant & Food Research) Mt Albert, Private Bag 92169, Auckland 1142, New Zealand School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Roger P Hellens
- The New Zealand Institute for Plant & Food Research Limited (Plant & Food Research) Mt Albert, Private Bag 92169, Auckland 1142, New Zealand
| | - Erika Varkonyi-Gasic
- The New Zealand Institute for Plant & Food Research Limited (Plant & Food Research) Mt Albert, Private Bag 92169, Auckland 1142, New Zealand
| |
Collapse
|
6
|
Zhang JS, Zhao J, Zhang S, He C. Efficient gene silencing mediated by tobacco rattle virus in an emerging model plant physalis. PLoS One 2014; 9:e85534. [PMID: 24454885 PMCID: PMC3891815 DOI: 10.1371/journal.pone.0085534] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 11/28/2013] [Indexed: 12/30/2022] Open
Abstract
The fruit of Physalis has a berry and a novelty called inflated calyx syndrome (ICS, also named the 'Chinese lantern'). Elucidation of the underlying developmental mechanisms of fruit diversity demands an efficient gene functional inference platform. Here, we tested the application of the tobacco rattle virus (TRV)-mediated gene-silencing system in Physalis floridana. First, we characterized the putative gene of a phytoene desaturase in P. floridana (PfPDS). Infecting the leaves of the Physalis seedlings with the PfPDS-TRV vector resulted in a bleached plant, including the developing leaves, floral organs, ICS, berry, and seed. These results indicated that a local VIGS treatment can efficiently induce a systemic mutated phenotype. qRT-PCR analyses revealed that the bleaching extent correlated to the mRNA reduction of the endogenous PfPDS. Detailed comparisons of multiple infiltration and growth protocols allowed us to determine the optimal methodologies for VIGS manipulation in Physalis. We subsequently utilized this optimized VIGS methodology to downregulate the expression of two MADS-box genes, MPF2 and MPF3, and compared the resulting effects with gene-downregulation mediated by RNA interference (RNAi) methods. The VIGS-mediated gene knockdown plants were found to resemble the mutated phenotypes of floral calyx, fruiting calyx and pollen maturation of the RNAi transgenic plants for both MPF2 and MPF3. Moreover, the two MADS-box genes were appeared to have a novel role in the pedicel development in P. floridana. The major advantage of VIGS-based gene knockdown lies in practical aspects of saving time and easy manipulation as compared to the RNAi. Despite the lack of heritability and mosaic mutation phenotypes observed in some organs, the TRV-mediated gene silencing system provides an alternative efficient way to infer gene function in various developmental processes in Physalis, thus facilitating understanding of the genetic basis of the evolution and development of the morphological diversities within the Solanaceae.
Collapse
Affiliation(s)
- Ji-Si Zhang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jing Zhao
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shaohua Zhang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chaoying He
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- * E-mail:
| |
Collapse
|
7
|
Khan MR, Ali GM. Functional evolution of cis-regulatory modules of STMADS11 superclade MADS-box genes. PLANT MOLECULAR BIOLOGY 2013; 83:489-506. [PMID: 23860795 DOI: 10.1007/s11103-013-0105-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 07/03/2013] [Indexed: 06/02/2023]
Abstract
Evolution of phenotypic morphologies is closely associated with modular organization of cis-regulatory elements underlying expression divergence. The MADS-box gene family is the subject of extensive studies that try to unscramble the structural complexity of flowering plants. This study is envisaged to explore the potential of CRMs in highly constrained non-coding elements of STMADS11superclade MADS-box genes in expression divergence. Phylogenetic reconstruction differentiated the STMADS11 genes into SVP-like, ZMM19-like, MPF1-like and MPF2-like clades. Differential gene expression in vegetative and floral organs was evident within the clades as well as at inter-clade level. The genomic DNA search for clusters of short motifs and sequence conservation of the -2 kb promoter region of particularly, MPF2-like clade permitted to establish three well defined CRMs where transcription factors bind, being CRM1 the activator, CRM2 the repressor, and CRM3 the enhancer element. Similar clusters were also mapped in the large 1st introns in the coding region. Within these CRMs many transcription factor-binding sites, particularly the hotspots for MADS-domain TF binding elements--CArG-boxes, directing sepal specific expression in Arabidopsis--were accrued in the CRM1 of MPF2-like promoters. Site-directed mutagenesis and motif swapping through reporter assays allude towards their implication as functionally active elements. In terms of directional evolution of MPF2-like promoters, CRMs are significantly more conserved than flanking regions, hence, bearing the signatures for purifying selection. Thus, CRMs are the pervasive feature of STMADS11 genes and mutations and/or appearance of new transcription factor binding sites and position of the CRMs are responsible for the divergence in expression patterns in this clade. These results have implications in understanding functional evolution of cis-regulatory modules in plants.
Collapse
Affiliation(s)
- Muhammad Ramzan Khan
- National Institute for Genomics and Advanced Biotechnology (NIGAB), National Agricultural Research Centre, Park Road, Islamabad, Pakistan,
| | | |
Collapse
|
8
|
Khan MR, Khan IU, Ali GM. MPF2-like MADS-box genes affecting expression of SOC1 and MAF1 are recruited to control flowering time. Mol Biotechnol 2013; 54:25-36. [PMID: 22539207 DOI: 10.1007/s12033-012-9540-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A complex and intricate network of genes responding to various developmental and environmental signals control floral transition in plants. MADS-box genes are the key regulators and major contributors with regard to flowering time determination. Previously, MPF2-like genes belonging to the STMADS11 superclade were duplicated into MPF2-like-A and MPF2-like-B in Withania (WSA206 and WSB206) and Tubocapsicum (TAB 201). The present study was conducted to determine the effect of MPF2-like genes on flowering time by analyzing 35S:MPF2-like transgenic Arabidopsis plants as well as to probe their effects on the expression of SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1, a floral promoter) and MADS AFFECTING FLOWERING 1 (MAF1, a floral repressor) genes. The overexpression of WSA206 (35S:MPF2-like-A) moderately promoted flowering, while that of WSB206 and TAB 201 (35S:MPF2-like-B) exhibited no effects on floral transition. Concomitantly, an elevation in SOC1 transcript abundance and a reduction for MAF1 transcript levels were observed in 35S:WSA206 transgenic plants. Nucleotide diversity analysis indicated an extraordinary 8 aa extension at the C-terminus of the WSA206 protein. Ectopic expression of a truncated WSA206-version without these 8 aa (WSA206ΔC246) and of MPF2-like-B-versions elongated by these 8 aa (WSB206∇C257 and TAB 201∇C257) in Arabidopsis revealed an ambiguous role of the 8 aa signature in floral transition. It may influence a protein's ability to modulate flowering time but is neither sufficient nor strictly necessary for early flowering. Nevertheless, the 8 aa extension influences the expression of SOC1 and MAF1 in MPF2-like derivative constructs. Our studies provide insight into the role of MPF2-like genes in phase transition by interacting with SOC1 and MAF1 genes, thereby also pointing to their significance as potential candidates for modifying flowering in crop plants in the future.
Collapse
Affiliation(s)
- Muhammad Ramzan Khan
- National Institute for Genomics and Advanced Biotechnology, National Agricultural Research Center, Park Road, Islamabad, Pakistan.
| | | | | |
Collapse
|
9
|
Andrew RL, Rieseberg LH. DIVERGENCE IS FOCUSED ON FEW GENOMIC REGIONS EARLY IN SPECIATION: INCIPIENT SPECIATION OF SUNFLOWER ECOTYPES. Evolution 2013; 67:2468-82. [DOI: 10.1111/evo.12106] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 02/20/2013] [Indexed: 12/18/2022]
Affiliation(s)
- Rose L. Andrew
- Department of Botany, University of British Columbia, 3529-6270 University Blvd; Vancouver; British Columbia; V6T 1Z4; Canada
| | | |
Collapse
|
10
|
Wang L, Li Z, He C. Transcriptome-wide mining of the differentially expressed transcripts for natural variation of floral organ size in Physalis philadelphica. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:6457-65. [PMID: 23081983 PMCID: PMC3504495 DOI: 10.1093/jxb/ers299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Natural phenotypic variation, a result of genetic variation, developed during evolution in response to environmental selections. Physalis philadelphica, known as tomatillo in the Solanaceae, is rich in floral and post-floral organ size diversity. However, its genetic variation is unknown. Here P. philadelphica was classified into three groups with large, intermediate, and small reproductive organ size, and a positive correlation was observed between floral organ and berry sizes. Through cDNA-amplified fragment length polymorphism (AFLP) analyses, 263 differentially expressed transcript-derived fragments (TDFs) were isolated from two accessions with different floral organ sizes. The genes encode various transcription factors, protein kinases, and enzymes, and they displayed multiple expression patterns during floral development, indicating a complexity in the genetic basis of phenotypic variation. Detailed expression analyses revealed that they were differentially expressed during floral and post-floral development, implying that they have roles in the development of flowers and fruits. Expression of three genes was further monitored in 26 accessions, and in particular the expression variation of Pp30, encoding an AP2-like transcription factor, correlates well with the observed phenotypic variations, which strongly supports an essential role for the gene in the natural variation of floral and post-floral organ size in Physalis. The results suggest that alteration in the expression pattern of a few key regulatory genes in the developmental process may be an important source of genetic variations that lead to natural variation in morphological traits.
Collapse
Affiliation(s)
- Li Wang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, 100093 Beijing, China
| | - Zhichao Li
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, 100093 Beijing, China
- Graduate University, Chinese Academy of Sciences, Yuquan Road 19, 100049 Beijing, China
| | - Chaoying He
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, 100093 Beijing, China
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
11
|
Zhang J, Khan MR, Tian Y, Li Z, Riss S, He C. Divergences of MPF2-like MADS-domain proteins have an association with the evolution of the inflated calyx syndrome within Solanaceae. PLANTA 2012; 236:1247-1260. [PMID: 22711285 DOI: 10.1007/s00425-012-1684-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 05/31/2012] [Indexed: 06/01/2023]
Abstract
The inflated calyx syndrome (ICS) is a post-floral novelty within Solanaceae. Previous work has shown that MPF2-like MADS-box genes have been recruited for the development and evolution of ICS through heterotopic expression from vegetative to floral organs. ICS seems to be a plesiomorphic trait in Physaleae, but it has been secondarily lost in some lineages during evolution. We hypothesized that molecular and functional divergences of MPF2-like proteins might play a role in the loss of ICS. In this study we analyzed the phylogeny, selection and various functions of MPF2-like proteins with respect to the evolution of ICS. Directional selection of MPF2-like orthologs toward evolution of ICS was detected. While auto-activation capacity between proteins varies in yeast, MPF2-like interaction with floral MADS-domain proteins is robustly detected, hence substantiating their integration into the floral developmental programs. Dimerization with A- (MPF3) and E-function (PFSEP1/3) proteins seems to be essential for ICS development within Solanaceae. Moreover, the occurrence of the enlarged sepals, reminiscent of ICS, and MPF2-like interactions with these specific partners were observed in transgenic Arabidopsis. The interaction spectrum relevant to ICS seems to be plesiomorphic, reinforcing the plesiomorphy of this trait. The inability of some MPF2-like to interact with either the A-function or any of the E-function partners characterized is correlated with the loss of ICS in the lineages that showed a MPF2-like expression in the calyx. Our findings suggest that, after recruitment of MPF2-like genes for floral development, diversification in their coding region due to directional selection leads to a modification of the MADS-domain protein interacting spectrum, which might serve as a constraint for the evolution of ICS within Solanaceae.
Collapse
Affiliation(s)
- Jisi Zhang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Beijing 100093, China
| | | | | | | | | | | |
Collapse
|
12
|
Cohen O, Borovsky Y, David-Schwartz R, Paran I. CaJOINTLESS is a MADS-box gene involved in suppression of vegetative growth in all shoot meristems in pepper. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:4947-57. [PMID: 22859675 PMCID: PMC3427992 DOI: 10.1093/jxb/ers172] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
In aiming to decipher the genetic control of shoot architecture in pepper (Capsicum spp.), the allelic late-flowering mutants E-252 and E-2537 were identified. These mutants exhibit multiple pleiotropic effects on the organization of the sympodial shoot. Genetic mapping and sequence analysis indicated that the mutants are disrupted at CaJOINTLESS, the orthologue of the MADS-box genes JOINTLESS and SVP in tomato and Arabidopsis, respectively. Late flowering of the primary and sympodial shoots of Cajointless indicates that the gene functions as a suppressor of vegetative growth in all shoot meristems. While CaJOINTLESS and JOINTLESS have partially conserved functions, the effect on flowering time and on sympodial development in pepper, as well as the epistasis over FASCICULATE, the homologue of the major determinant of sympodial development SELF-PRUNING, is stronger than in tomato. Furthermore, the solitary terminal flower of pepper is converted into a structure composed of flowers and leaves in the mutant lines. This conversion supports the hypothesis that the solitary flowers of pepper have a cryptic inflorescence identity that is suppressed by CaJOINTLESS. Formation of solitary flowers in wild-type pepper is suggested to result from precocious maturation of the inflorescence meristem.
Collapse
Affiliation(s)
- Oded Cohen
- Institute of Plant Science, Agricultural Research Organization, The Volcani CenterP.O. Box 6, Bet Dagan 50250, Israel
| | - Yelena Borovsky
- Institute of Plant Science, Agricultural Research Organization, The Volcani CenterP.O. Box 6, Bet Dagan 50250, Israel
| | - Rakefet David-Schwartz
- Institute of Plant Science, Agricultural Research Organization, The Volcani CenterP.O. Box 6, Bet Dagan 50250, Israel
| | - Ilan Paran
- Institute of Plant Science, Agricultural Research Organization, The Volcani CenterP.O. Box 6, Bet Dagan 50250, Israel
- To whom correspondence should be addressed: E-mail:
| |
Collapse
|
13
|
Agave tequilana MADS genes show novel expression patterns in meristems, developing bulbils and floral organs. ACTA ACUST UNITED AC 2011; 25:11-26. [PMID: 22012076 DOI: 10.1007/s00497-011-0176-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Accepted: 09/30/2011] [Indexed: 12/21/2022]
Abstract
Agave tequilana is a monocarpic perennial species that flowers after 5-8 years of vegetative growth signaling the end of the plant's life cycle. When fertilization is unsuccessful, vegetative bulbils are induced on the umbels of the inflorescence near the bracteoles from newly formed meristems. Although the regulation of inflorescence and flower development has been described in detail for monocarpic annuals and polycarpic species, little is known at the molecular level for these processes in monocarpic perennials, and few studies have been carried out on bulbils. Histological samples revealed the early induction of umbel meristems soon after the initiation of the vegetative to inflorescence transition in A. tequilana. To identify candidate genes involved in the regulation of floral induction, a search for MADS-box transcription factor ESTs was conducted using an A. tequilana transcriptome database. Seven different MIKC MADS genes classified into 6 different types were identified based on previously characterized A. thaliana and O. sativa MADS genes and sequences from non-grass monocotyledons. Quantitative real-time PCR analysis of the seven candidate MADS genes in vegetative, inflorescence, bulbil and floral tissues uncovered novel patterns of expression for some of the genes in comparison with orthologous genes characterized in other species. In situ hybridization studies using two different genes showed expression in specific tissues of vegetative meristems and floral buds. Distinct MADS gene regulatory patterns in A. tequilana may be related to the specific reproductive strategies employed by this species.
Collapse
|