1
|
Baruah N, Haajanen R, Rahman MT, Pirttilä AM, Koskimäki JJ. Biosynthesis of polyhydroxybutyrate by Methylorubrum extorquens DSM13060 is essential for intracellular colonization in plant endosymbiosis. FRONTIERS IN PLANT SCIENCE 2024; 15:1302705. [PMID: 38390299 PMCID: PMC10883064 DOI: 10.3389/fpls.2024.1302705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 01/15/2024] [Indexed: 02/24/2024]
Abstract
Methylorubrum extorquens DSM13060 is an endosymbiont that lives in the cells of shoot tip meristems. The bacterium is methylotrophic and consumes plant-derived methanol for the production of polyhydroxybutyrate (PHB). The PHB provides protection against oxidative stress for both host and endosymbiont cells through its fragments, methyl-esterified 3-hydroxybutyrate (ME-3HB) oligomers. We evaluated the role of the genes involved in the production of ME-3HB oligomers in the host colonization by the endosymbiont M. extorquens DSM13060 through targeted genetic mutations. The strains with deletions in PHB synthase (phaC), PHB depolymerase (phaZ1), and a transcription factor (phaR) showed altered PHB granule characteristics, as ΔphaC had a significantly low number of granules, ΔphaR had a significantly increased number of granules, and ΔphaZ1 had significantly large PHB granules in the bacterial cells. When the deletion strains were exposed to oxidative stress, the ΔphaC strain was sensitive to 10 mM HO· and 20 mM H2O2. The colonization of the host, Scots pine (Pinus sylvestris L.), by the deletion strains varied greatly. The deletion strain ΔphaR colonized the host mainly intercellularly, whereas the ΔphaZ1 strain was a slightly poorer colonizer than the control. The deletion strain ΔphaC lacked the colonization potential, living mainly on the surfaces of the epidermis of pine roots and shoots in contrast to the control, which intracellularly colonized all pine tissues within the study period. In earlier studies, deletions within the PHB metabolic pathway have had a minor effect on plant colonization by rhizobia. We have previously shown the association between ME-3HB oligomers, produced by PhaC and PhaZ1, and the ability to alleviate host-generated oxidative stress during plant infection by the endosymbiont M. extorquens DSM13060. Our current results show that the low capacity for PHB synthesis leads to poor tolerance of oxidative stress and loss of colonization potential by the endosymbiont. Altogether, our findings demonstrate that the metabolism of PHB in M. extorquens DSM13060 is an important trait in the non-rhizobial endosymbiosis.
Collapse
Affiliation(s)
- Namrata Baruah
- Ecology and Genetics Research Unit, University of Oulu, Oulu, Finland
| | - Roosa Haajanen
- Ecology and Genetics Research Unit, University of Oulu, Oulu, Finland
| | - Mohammad Tanvir Rahman
- Disease Networks, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | | | - Janne J Koskimäki
- Ecology and Genetics Research Unit, University of Oulu, Oulu, Finland
| |
Collapse
|
2
|
Zheng B, Zhang X, Chen P, Du Q, Zhou Y, Yang H, Wang X, Yang F, Yong T, Yang W. Improving maize's N uptake and N use efficiency by strengthening roots' absorption capacity when intercropped with legumes. PeerJ 2021; 9:e11658. [PMID: 34221735 PMCID: PMC8234926 DOI: 10.7717/peerj.11658] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 06/01/2021] [Indexed: 11/25/2022] Open
Abstract
Maize’s nitrogen (N) uptake can be improved through maize-legume intercropping. N uptake mechanisms require further study to better understand how legumes affect root growth and to determine maize’s absorptive capacity in maize-legume intercropping. We conducted a two-year field experiment with two N treatments (zero N (N0) and conventional N (N1)) and three planting patterns (monoculture maize (Zea mays L.) (MM), maize-soybean (Glycine max L. Merr.) strip intercropping (IMS), and maize-peanut (Arachis hypogaea L.) strip intercropping (IMP)). We sought to understand maize’s N uptake mechanisms by investigating root growth and distribution, root uptake capacity, antioxidant enzyme activity, and the antioxidant content in different maize-legume strip intercropping systems. Our results showed that on average, the N uptake of maize was significantly greater by 52.5% in IMS and by 62.4% in IMP than that in MM. The average agronomic efficiency (AE) of maize was increased by 110.5 % in IMS and by 163.4 % in IMP, compared to MM. The apparent recovery efficiency (RE) of maize was increased by 22.3% in IMS. The roots of intercropped maize were extended into soybean and peanut stands underneath the space and even between the inter-rows of legume, resulting in significantly increased root surface area density (RSAD) and total root biomass. The root-bleeding sap intensity of maize was significantly increased by 22.7–49.3% in IMS and 37.9–66.7% in IMP, compared with the MM. The nitrate-N content of maize bleeding sap was significantly greater in IMS and IMP than in MM during the 2018 crop season. The glutathione (GSH) content, superoxide dismutase (SOD), and catalase (CAT) activities in the root significantly increased in IMS and IMP compared to MM. Strip intercropping using legumes increases maize’s aboveground N uptake by promoting root growth and spatial distribution, delaying root senescence, and strengthening root uptake capacity.
Collapse
Affiliation(s)
- Benchuan Zheng
- College of Agronomy, Sichuan Agricultural University, Chengdu, China.,Sichuan Engineering Research Center for Crop Strip Intercropping System/Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu, China
| | - Xiaona Zhang
- College of Agronomy, Sichuan Agricultural University, Chengdu, China.,Sichuan Engineering Research Center for Crop Strip Intercropping System/Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu, China
| | - Ping Chen
- College of Agronomy, Sichuan Agricultural University, Chengdu, China.,Sichuan Engineering Research Center for Crop Strip Intercropping System/Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu, China
| | - Qing Du
- College of Agronomy, Sichuan Agricultural University, Chengdu, China.,Sichuan Engineering Research Center for Crop Strip Intercropping System/Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu, China
| | - Ying Zhou
- College of Agronomy, Sichuan Agricultural University, Chengdu, China.,Sichuan Engineering Research Center for Crop Strip Intercropping System/Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu, China
| | - Huan Yang
- College of Agronomy, Sichuan Agricultural University, Chengdu, China.,Sichuan Engineering Research Center for Crop Strip Intercropping System/Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu, China
| | - Xiaochun Wang
- College of Agronomy, Sichuan Agricultural University, Chengdu, China.,Sichuan Engineering Research Center for Crop Strip Intercropping System/Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu, China
| | - Feng Yang
- College of Agronomy, Sichuan Agricultural University, Chengdu, China.,Sichuan Engineering Research Center for Crop Strip Intercropping System/Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu, China
| | - Taiwen Yong
- College of Agronomy, Sichuan Agricultural University, Chengdu, China.,Sichuan Engineering Research Center for Crop Strip Intercropping System/Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu, China
| | - Wenyu Yang
- College of Agronomy, Sichuan Agricultural University, Chengdu, China.,Sichuan Engineering Research Center for Crop Strip Intercropping System/Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu, China
| |
Collapse
|
3
|
Mucha J, Pawłowski TA, Klupczyńska EA, Guzicka M, Zadworny M. The Effect of Hydroxamic Siderophores Structure on Acetylation of Histone H3 and Alpha Tubulin in Pinus sylvestris Root Cells. Int J Mol Sci 2019; 20:E6099. [PMID: 31816938 PMCID: PMC6928989 DOI: 10.3390/ijms20236099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/18/2019] [Accepted: 11/30/2019] [Indexed: 12/03/2022] Open
Abstract
Protein acetylation affects gene expression, as well as other processes in cells, and it might be dependent on the availability of the metals. However, whether iron chelating compounds (siderophores) can have an effect on the acetylation process in plant roots is largely unknown. In the present study, western blotting and confocal microscopy was used to examine the degree of acetylation of histone H3 and alpha tubulin in Pinus sylvestris root cells in the presence of structurally different siderophores. The effect of metabolites that were produced by pathogenic and mycorrhizal fungi was also assessed. No effect was observed on histone acetylation. By contrast, the metabolites of the pathogenic fungus were able to decrease the level of microtubule acetylation, whereas treatment with iron-free ferrioxamine (DFO) was able to increase it. This latter was not observed when ferrioxamine-iron complexes were used. The pathogen metabolites induced important modifications of cytoskeleton organization. Siderophores also induced changes in the tubulin skeleton and these changes were iron-dependent. The effect of siderophores on the microtubule network was dependent on the presence of iron. More root cells with a depolymerized cytoskeleton were observed when the roots were exposed to iron-free siderophores and the metabolites of pathogenic fungi; whereas, the metabolites from mycorrhizal fungi and iron-enriched forms of siderophores slightly altered the cytoskeleton network of root cells. Collectively, these data indicated that the metabolites of pathogenic fungi mirror siderophore action, and iron limitation can lead to enhanced alternations in cell structure and physiology.
Collapse
Affiliation(s)
- Joanna Mucha
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik, Poland; (T.A.P.); (E.A.K.); (M.G.); (M.Z.)
| | | | | | | | | |
Collapse
|
4
|
Mucha J, Gabała E, Zadworny M. The effects of structurally different siderophores on the organelles of Pinus sylvestris root cells. PLANTA 2019; 249:1747-1760. [PMID: 30820648 DOI: 10.1007/s00425-019-03117-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 02/22/2019] [Indexed: 06/09/2023]
Abstract
Siderophores are a driver of Pinus sylvestris root responses to metabolites secreted by pathogenic and mycorrhizal fungi. Structurally different siderophores regulate the uptake of Fe by microorganisms and may play a key role in the colonization of plants by beneficial or pathogenic fungi. Siderophore action, however, may be dependent on the distribution of Fe within cells. Here, the involvement of siderophores in determining the changes of organelle morphology and element composition of some cellular fractions of root cells in Pinus sylvestris to trophically diverse fungi was investigated. Changes in the morphology and concentrations of different elements within organelles of root cells in response to three structurally different siderophores were examined by transmission electron microscopy combined with energy-dispersive X-ray spectroscopy. Weak development of mitochondrial cristae and the deposition of backup materials in plastids occurred in the absence of Fe in the structures of triacetylfusarinine C and ferricrocin. In response to metabolites of both pathogenic and mycorrhizal fungi, Fe accumulated mainly in the cell walls and cytoplasm. Fe counts increased in all of the analyzed organelles in response to applications of ferricrocin and triacetylfusarinine C. Chelation of Fe within the structure of siderophores prevents the binding of exogenous Fe, decreasing the abundance of Fe in the cell wall and cytoplasm. The concentrations of N, P, K, Ca, Mn, Cu, Mg, and Zn also increased in cells after applications of ferricrocin and triacetylfusarinine C, while the levels of these elements decreased in the cell wall and cytoplasm when Fe was present within the structure of the siderophores. These results provide insight into the siderophore-driven response of plants to various symbionts.
Collapse
Affiliation(s)
- Joanna Mucha
- Institute of Dendrology, Polish Academy of Science, Parkowa 5, 62-035, Kórnik, Poland.
| | - Elżbieta Gabała
- Institute of Plant Protection, National Research Institute, Węgorka 20, 60-318, Poznań, Poland
| | - Marcin Zadworny
- Institute of Dendrology, Polish Academy of Science, Parkowa 5, 62-035, Kórnik, Poland
| |
Collapse
|
5
|
Methyl-esterified 3-hydroxybutyrate oligomers protect bacteria from hydroxyl radicals. Nat Chem Biol 2016; 12:332-8. [PMID: 26974813 DOI: 10.1038/nchembio.2043] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Accepted: 01/05/2016] [Indexed: 12/29/2022]
Abstract
Bacteria rely mainly on enzymes, glutathione and other low-molecular weight thiols to overcome oxidative stress. However, hydroxyl radicals are the most cytotoxic reactive oxygen species, and no known enzymatic system exists for their detoxification. We now show that methyl-esterified dimers and trimers of 3-hydroxybutyrate (ME-3HB), produced by bacteria capable of polyhydroxybutyrate biosynthesis, have 3-fold greater hydroxyl radical-scavenging activity than glutathione and 11-fold higher activity than vitamin C or the monomer 3-hydroxybutyric acid. We found that ME-3HB oligomers protect hypersensitive yeast deletion mutants lacking oxidative stress-response genes from hydroxyl radical stress. Our results show that phaC and phaZ, encoding polymerase and depolymerase, respectively, are activated and polyhydroxybutyrate reserves are degraded for production of ME-3HB oligomers in bacteria infecting plant cells and exposed to hydroxyl radical stress. We found that ME-3HB oligomer production is widespread, especially in bacteria adapted to stressful environments. We discuss how ME-3HB oligomers could provide opportunities for numerous applications in human health.
Collapse
|