1
|
Zhang Y, Dong G, Zhang Y, Jiang Y, Chen F, Ruan B, Wu L, Yu Y. BLA1 Affects Leaf Angles by Altering Brassinosteroid Biosynthesis in Rice ( Oryza sativa L.). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:19629-19643. [PMID: 39207175 DOI: 10.1021/acs.jafc.4c04248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Brassinosteroids (BRs) are crucial plant hormones influencing diverse developmental processes in rice. While several enzymes in BR biosynthesis have been identified, their regulatory mechanisms remain largely unknown. This study highlights a novel regulatory pathway wherein the CHD3 chromatin remodeler, BLA1, epigenetically modulates the expression of key BR biosynthesis genes, BRD1 and D2. Phenotypic analysis of bla1 mutants revealed significant alterations, such as increased leaf angles and longer mesocotyls, which were alleviated by BR synthesis inhibitors. Moreover, the bla1 mutants showed elevated BR levels that correlated with the significant upregulation of the expression levels of BRD1 and D2, particularly at the lamina joint sites. Mechanistically, the yeast one-hybrid and chromatin immunoprecipitation assays revealed specific binding of BLA1 to the promoter regions of BRD1 and D2, accompanied by a marked enrichment of the transcriptionally active histone modification, H3K4me3, on these loci in the bla1 mutant. Functional assessments of the brd1 and d2 mutants confirmed their reduced sensitivity to BR, further underscoring their critical regulatory roles in BR-mediated developmental processes. Our findings uncovered an epigenetic mechanism that governs BR biosynthesis and orchestrates the expression of BRD1 and D2 to modulate BR levels and influence rice growth and development.
Collapse
Affiliation(s)
- Yanli Zhang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
- School of Life Sciences, Central South University, Changsha 410083, Hunan, China
| | - Guojun Dong
- State Key Laboratory for Rice Biology, China National Rice Research Institute, Hangzhou 310006, Zhejiang, China
| | - Ying Zhang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Yaohuang Jiang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Fei Chen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Banpu Ruan
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Limin Wu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Yanchun Yu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
2
|
Zha G, Yin J, Cheng F, Song M, Zhang M, Obel HO, Wang Y, Chen J, Lou Q. Fine mapping of CscpFtsY, a gene conferring the yellow leaf phenotype in cucumber (Cucumis sativus L.). BMC PLANT BIOLOGY 2022; 22:570. [PMID: 36471240 PMCID: PMC9724417 DOI: 10.1186/s12870-022-03922-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/01/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Leaf color mutants are ideal materials to study pigment metabolism and photosynthesis. Leaf color variations are mainly affected by chlorophylls (Chls) and carotenoid contents and chloroplast development in higher plants. However, the regulation of chlorophyll metabolism remains poorly understood in many plant species. The chloroplast signal-recognition particle system is responsible for the insertion of the light-harvesting chlorophyll a/b proteins (LHCPs) to thylakoid membranes, which controls the chloroplast development as well as the regulation of Chls biosynthesis post-translationally in higher plants. RESULTS In this study, the yellow leaf cucumber mutant, named yl, was found in an EMS-induced mutant library, which exhibited a significantly reduced chlorophyll content, abnormal chloroplast ultrastructure and decreased photosynthetic capacity. Genetic analysis demonstrated that the phenotype of yl was controlled by a recessive nuclear gene. Using BSA-seq technology combined with the map-based cloning method, we narrowed the locus to a 100 kb interval in chromosome 3. Linkage analysis and allelism test validated the candidate SNP residing in CsaV3_3G009150 encoding one homolog of chloroplast signal-recognition particle (cpSRP) receptor in Arabidopsis, cpFtsY, could be responsible for the yellow leaf phenotype of yl. The relative expression of CscpFtsY was significantly down-regulated in different organs except for the stem, of yl compared with that in the wild type (WT). Subcellular localization result showed that CscpFtsY located in the chloroplasts of mesophyll cells. CONCLUSIONS The yl mutant displayed Chls-deficient, impaired chloroplast ultrastructure with intermittent grana stacks and significantly decreased photosynthetic capacity. The isolation of CscpFtsY in cucumber could accelerate the progress on chloroplast development by cpSRP-dependant LHCP delivery system and regulation of Chls biosynthesis in a post-translational way.
Collapse
Affiliation(s)
- Gaohui Zha
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No.1, Nanjing, 210095 China
| | - Juan Yin
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No.1, Nanjing, 210095 China
| | - Feng Cheng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No.1, Nanjing, 210095 China
| | - Mengfei Song
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No.1, Nanjing, 210095 China
| | - Mengru Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No.1, Nanjing, 210095 China
| | - Hesbon Ochieng Obel
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No.1, Nanjing, 210095 China
| | - Yi Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No.1, Nanjing, 210095 China
| | - Jinfeng Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No.1, Nanjing, 210095 China
| | - Qunfeng Lou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No.1, Nanjing, 210095 China
| |
Collapse
|
3
|
Zhang T, Dong X, Yuan X, Hong Y, Zhang L, Zhang X, Chen S. Identification and characterization of CsSRP43, a major gene controlling leaf yellowing in cucumber. HORTICULTURE RESEARCH 2022; 9:uhac212. [PMID: 36479584 PMCID: PMC9719040 DOI: 10.1093/hr/uhac212] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 09/14/2022] [Indexed: 06/17/2023]
Abstract
Mutants are crucial to extending our understanding of genes and their functions in higher plants. In this study a spontaneous cucumber mutant, yf, showed yellow color leaves, had significant decreases in related physiological indexes of photosynthesis characteristics, and had more abnormal chloroplasts and thylakoids. Inheritance analysis indicated that the yellow color of the leaf was controlled by a recessive nuclear locus, yf. A candidate gene, CsSRP43, encoding a chloroplast signal recognition particle 43 protein, was identified through map-based cloning and whole-genome sequence analysis. Alignment of the CsSRP43 gene homologs between both parental lines revealed a 7-kb deletion mutation including the promoter region and the coding sequence in the yf mutant. In order to determine if the CsSRP43 gene was involved in the formation of leaf color, the CRISPR/Cas9-mediate system was used to modify CsSRP43 in the 9930 background; two independent transgenic lines, srp43-1 and srp43-2, were generated, and they showed yellow leaves with abnormal chloroplasts and thylakoids. Transcriptomic analysis revealed that differentially expressed genes associated with the photosynthesis-related pathway were highly enriched between srp43-1 and wild type, most of which were significantly downregulated in line srp43-1. Furthermore, yeast two-hybrid and biomolecular fluorescence complementation assays were used to confirm that CsSRP43 directly interacted with LHCP and cpSRP54 proteins. A model was established to explain the molecular mechanisms by which CsSRP43 participates in the leaf color and photosynthesis pathway, and it provides a valuable basis for understanding the molecular and genetic mechanisms of leaf color in cucumber.
Collapse
Affiliation(s)
- Tingting Zhang
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
- Shaanxi Engineering Research Center for Vegetables, Yangling 712100, China
| | - Xiangyu Dong
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
- Shaanxi Engineering Research Center for Vegetables, Yangling 712100, China
| | - Xin Yuan
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
- Shaanxi Engineering Research Center for Vegetables, Yangling 712100, China
| | - Yuanyuan Hong
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
- Shaanxi Engineering Research Center for Vegetables, Yangling 712100, China
| | - Lingling Zhang
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
- Shaanxi Engineering Research Center for Vegetables, Yangling 712100, China
| | - Xuan Zhang
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
- Shaanxi Engineering Research Center for Vegetables, Yangling 712100, China
| | | |
Collapse
|
4
|
Barrero-Gil J, Bouza-Morcillo L, Espinosa-Cores L, Piñeiro M, Jarillo JA. H4 acetylation by the NuA4 complex is required for plastid transcription and chloroplast biogenesis. NATURE PLANTS 2022; 8:1052-1063. [PMID: 36038656 DOI: 10.1038/s41477-022-01229-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
Chloroplast biogenesis is crucial in plant development, as it is essential for the transition to autotrophic growth. This process is light-induced and relies on the orchestrated transcription of nuclear and plastid genes, enabling the effective assembly and regulation of the photosynthetic machinery. Here we reveal a new regulation level for this process by showing the involvement of chromatin remodelling in the nuclear control of plastid gene expression for proper chloroplast biogenesis and function. The two Arabidopsis homologues of yeast EPL1 protein, components of the NuA4 histone acetyltransferase complex, are essential for plastid transcription and correct chloroplast development and performance. We show that EPL1 proteins are light-regulated and necessary for concerted expression of nuclear genes encoding most components of chloroplast transcriptional machinery, directly mediating H4K5ac deposition at these loci and promoting the expression of plastid genes required for chloroplast biogenesis. These data unveil a NuA4-mediated mechanism regulating chloroplast biogenesis that links the transcription of nuclear and plastid genomes during chloroplast development.
Collapse
Affiliation(s)
- Javier Barrero-Gil
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)/CSIC, Campus Montegancedo UPM, Pozuelo de Alarcón (Madrid), Madrid, Spain
| | - Laura Bouza-Morcillo
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)/CSIC, Campus Montegancedo UPM, Pozuelo de Alarcón (Madrid), Madrid, Spain
| | - Loreto Espinosa-Cores
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)/CSIC, Campus Montegancedo UPM, Pozuelo de Alarcón (Madrid), Madrid, Spain
| | - Manuel Piñeiro
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)/CSIC, Campus Montegancedo UPM, Pozuelo de Alarcón (Madrid), Madrid, Spain.
| | - José A Jarillo
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)/CSIC, Campus Montegancedo UPM, Pozuelo de Alarcón (Madrid), Madrid, Spain.
| |
Collapse
|
5
|
Cheng Q, Wang P, Wu G, Wang Y, Tan J, Li C, Zhang X, Liu S, Huang S, Huang T, Yang M, He H, Bian J. Coordination of m 6A mRNA methylation and gene transcriptome in rice response to cadmium stress. RICE (NEW YORK, N.Y.) 2021; 14:62. [PMID: 34224034 PMCID: PMC8257850 DOI: 10.1186/s12284-021-00502-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/08/2021] [Indexed: 05/19/2023]
Abstract
N6-methyladenosine (m6A) is the most prevalent internal modification present in the mRNAs of all higher eukaryotes. However, the role of the m6A methylomes in rice is still poorly understood. With the development of the MeRIP-seq technique, the in-depth identification of mRNAs with m6A modification has become feasible. A study suggested that m6A modification is crucial for posttranscriptional regulation related to Cd2+-induced malignant transformation, but the association between m6A modification in plants and Cd tolerance has not been reported. We investigated the m6A methylomes in the roots of a cadmium (Cd)-treated group and compared them with the roots in the control (CK) group by m6A sequencing of cv. 9311 and cv. Nipponbare (NIP) plants. The results indicated that Cd leads to an altered modification profile in 3,406 differential m6A peaks in cv. 9311 and 2,065 differential m6A peaks in cv. NIP. KEGG pathway analysis of the genes with differentially modified m6A peaks indicated that the "phenylalanine", "tyrosine and tryptophan biosynthesis", "glycine", "adherens junctions", "glycerophospholipid metabolism" and "threonine metabolism" signalling pathways may be associated with the abnormal root development of cv. 9311 rice due to exposure to Cd. The "arginine", "proline metabolism", "glycerolipid", and "protein processing in endoplasmic reticulum" metabolism pathways were significantly enriched in genes with differentially modified m6A peaks in cv. NIP. Unlike that in Arabidopsis, the m6A-modified nucleotide position on mRNAs (m6A peak) distribution in rice exhibited a preference towards both the stop codon and 3' untranslated regions (3' UTRs). These findings provide a resource for plant RNA epitranscriptomic studies and further increase our knowledge on the function of m6A modification in RNA in plants.
Collapse
Affiliation(s)
- Qin Cheng
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, 330045 Nanchang, China
- College of Agronomy, Jiangxi Agricultural University, 330045 Nanchang, China
| | - Peng Wang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, 330045 Nanchang, China
- College of Agronomy, Jiangxi Agricultural University, 330045 Nanchang, China
| | - Guangliang Wu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, 330045 Nanchang, China
- College of Agronomy, Jiangxi Agricultural University, 330045 Nanchang, China
| | - Yanning Wang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, 330045 Nanchang, China
- College of Agronomy, Jiangxi Agricultural University, 330045 Nanchang, China
| | - Jingai Tan
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, 330045 Nanchang, China
- College of Agronomy, Jiangxi Agricultural University, 330045 Nanchang, China
| | - Caijing Li
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, 330045 Nanchang, China
- College of Agronomy, Jiangxi Agricultural University, 330045 Nanchang, China
| | - Xiangyu Zhang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, 330045 Nanchang, China
- College of Agronomy, Jiangxi Agricultural University, 330045 Nanchang, China
| | - Shilei Liu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, 330045 Nanchang, China
- College of Agronomy, Jiangxi Agricultural University, 330045 Nanchang, China
| | - Shiying Huang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, 330045 Nanchang, China
- College of Agronomy, Jiangxi Agricultural University, 330045 Nanchang, China
| | - Tao Huang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, 330045 Nanchang, China
- College of Agronomy, Jiangxi Agricultural University, 330045 Nanchang, China
| | - Mengmeng Yang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, 330045 Nanchang, China
- College of Agronomy, Jiangxi Agricultural University, 330045 Nanchang, China
| | - Haohua He
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, 330045 Nanchang, China
- College of Agronomy, Jiangxi Agricultural University, 330045 Nanchang, China
| | - Jianmin Bian
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, 330045 Nanchang, China
- College of Agronomy, Jiangxi Agricultural University, 330045 Nanchang, China
| |
Collapse
|
6
|
Locus-specific paramutation in Zea mays is maintained by a PICKLE-like chromodomain helicase DNA-binding 3 protein controlling development and male gametophyte function. PLoS Genet 2020; 16:e1009243. [PMID: 33320854 PMCID: PMC7837471 DOI: 10.1371/journal.pgen.1009243] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 01/26/2021] [Accepted: 11/02/2020] [Indexed: 12/22/2022] Open
Abstract
Paramutations represent directed and meiotically-heritable changes in gene regulation leading to apparent violations of Mendelian inheritance. Although the mechanism and evolutionary importance of paramutation behaviors remain largely unknown, genetic screens in maize (Zea mays) identify five components affecting 24 nucleotide RNA biogenesis as required to maintain repression of a paramutant purple plant1 (pl1) allele. Currently, the RNA polymerase IV largest subunit represents the only component also specifying proper development. Here we identify a chromodomain helicase DNA-binding 3 (CHD3) protein orthologous to Arabidopsis (Arabidopsis thaliana) PICKLE as another component maintaining both pl1 paramutation and normal somatic development but without affecting overall small RNA biogenesis. In addition, genetic tests show this protein contributes to proper male gametophyte function. The similar mutant phenotypes documented in Arabidopsis and maize implicate some evolutionarily-conserved gene regulation while developmental defects associated with the two paramutation mutants are largely distinct. Our results show that a CHD3 protein responsible for normal plant ontogeny and sperm transmission also helps maintain meiotically-heritable epigenetic regulatory variation for specific alleles. This finding implicates an intersection of RNA polymerase IV function and nucleosome positioning in the paramutation process. Genes are switched “on” and “off” during normal development by regulating DNA accessibility within the chromosomes. How certain gene variants permanently maintain “off” states from one generation to the next remains unclear, but studies in multiple eukaryotes implicate roles for specific types of small RNAs, some of which define cytosine methylation patterns. In corn, these RNAs come from at least two RNA polymerase II-derived complexes sharing a common catalytic subunit (RPD1). Although RPD1 both controls the normal developmental switching of many genes and permanently maintains some of these “off” states across generations, how RPD1 function defines heritable DNA accessibility is unknown. We discovered that a protein (CHD3a) belonging to a group known to alter nucleosome positioning is also required to help maintain a heritable “off” state for one particular corn gene variant controlling both plant and flower color. We also found CHD3a necessary for normal plant development and sperm transmission consistent with the idea that proper nucleosome positioning defines evolutionarily-important gene expression patterns. Because both CHD3a and RPD1 maintain the heritable “off” state of a specific gene variant, their functions appear to be mechanistically linked.
Collapse
|
7
|
Lavarenne J, Gonin M, Champion A, Javelle M, Adam H, Rouster J, Conejéro G, Lartaud M, Verdeil JL, Laplaze L, Sallaud C, Lucas M, Gantet P. Transcriptome profiling of laser-captured crown root primordia reveals new pathways activated during early stages of crown root formation in rice. PLoS One 2020; 15:e0238736. [PMID: 33211715 PMCID: PMC7676735 DOI: 10.1371/journal.pone.0238736] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 08/22/2020] [Indexed: 12/04/2022] Open
Abstract
Crown roots constitute the main part of the rice root system. Several key genes involved in crown root initiation and development have been identified by functional genomics approaches. Nevertheless, these approaches are impaired by functional redundancy and mutant lethality. To overcome these limitations, organ targeted transcriptome analysis can help to identify genes involved in crown root formation and early development. In this study, we generated an atlas of genes expressed in developing crown root primordia in comparison with adjacent stem cortical tissue at three different developmental stages before emergence, using laser capture microdissection. We identified 3975 genes differentially expressed in crown root primordia. About 30% of them were expressed at the three developmental stages, whereas 10.5%, 19.5% and 12.8% were specifically expressed at the early, intermediate and late stages, respectively. Sorting them by functional ontology highlighted an active transcriptional switch during the process of crown root primordia formation. Cross-analysis with other rice root development-related datasets revealed genes encoding transcription factors, chromatin remodeling factors, peptide growth factors, and cell wall remodeling enzymes that are likely to play a key role during crown root primordia formation. This atlas constitutes an open primary data resource for further studies on the regulation of crown root initiation and development.
Collapse
Affiliation(s)
- Jérémy Lavarenne
- Université de Montpellier, IRD, UMR DIADE, Montpellier, France
- Limagrain Field Seeds, Traits and Technologies, Groupe Limagrain—Centre de Recherche, Route d'Ennezat, Chappes, France
| | - Mathieu Gonin
- Université de Montpellier, IRD, UMR DIADE, Montpellier, France
| | - Antony Champion
- Université de Montpellier, IRD, UMR DIADE, Montpellier, France
| | - Marie Javelle
- Limagrain Field Seeds, Traits and Technologies, Groupe Limagrain—Centre de Recherche, Route d'Ennezat, Chappes, France
| | - Hélène Adam
- Université de Montpellier, IRD, UMR DIADE, Montpellier, France
| | - Jacques Rouster
- Limagrain Field Seeds, Traits and Technologies, Groupe Limagrain—Centre de Recherche, Route d'Ennezat, Chappes, France
| | - Geneviève Conejéro
- CIRAD, UMR1334 AGAP, PHIV-MRI, Montpellier, France
- Université de Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | - Marc Lartaud
- CIRAD, UMR1334 AGAP, PHIV-MRI, Montpellier, France
- Université de Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | - Jean-Luc Verdeil
- CIRAD, UMR1334 AGAP, PHIV-MRI, Montpellier, France
- Université de Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | - Laurent Laplaze
- Université de Montpellier, IRD, UMR DIADE, Montpellier, France
| | - Christophe Sallaud
- Limagrain Field Seeds, Traits and Technologies, Groupe Limagrain—Centre de Recherche, Route d'Ennezat, Chappes, France
| | - Mikael Lucas
- Université de Montpellier, IRD, UMR DIADE, Montpellier, France
| | - Pascal Gantet
- Université de Montpellier, IRD, UMR DIADE, Montpellier, France
- * E-mail:
| |
Collapse
|
8
|
Lavarenne J, Gonin M, Guyomarc'h S, Rouster J, Champion A, Sallaud C, Laplaze L, Gantet P, Lucas M. Inference of the gene regulatory network acting downstream of CROWN ROOTLESS 1 in rice reveals a regulatory cascade linking genes involved in auxin signaling, crown root initiation, and root meristem specification and maintenance. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 100:954-968. [PMID: 31369175 DOI: 10.1111/tpj.14487] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 07/16/2019] [Accepted: 07/17/2019] [Indexed: 06/10/2023]
Abstract
Crown roots (CRs) are essential components of the rice root system. Several genes involved in CR initiation or development have been identified but our knowledge about how they organize to form a gene regulatory network (GRN) is still limited. To characterize the regulatory cascades acting during CR formation, we used a systems biology approach to infer the GRN controlling CR formation downstream of CROWN ROOTLESS 1 (CRL1), coding for an ASL (asymmetric leaves-2-like)/LBD (LOB domain) transcription factor necessary for CR initiation. A time-series transcriptomic dataset was generated after synchronized induction of CR formation by dexamethasone-mediated expression of CRL1 expression in a crl1 mutant background. This time series revealed three different genome expression phases during the early steps of CR formation and was further exploited to infer a GRN using a dedicated algorithm. The predicted GRN was confronted with experimental data and 72% of the inferred links were validated. Interestingly, this network revealed a regulatory cascade linking CRL1 to other genes involved in CR initiation, root meristem specification and maintenance, such as QUIESCENT-CENTER-SPECIFIC HOMEOBOX, and in auxin signalling. This predicted regulatory cascade was validated in vivo using transient activation assays. Thus, the CRL1-dependant GRN reflects major gene regulation events at play during CR formation and constitutes a valuable source of discovery to better understand this developmental process.
Collapse
Affiliation(s)
- Jérémy Lavarenne
- UMR DIADE, Université de Montpellier, IRD, 911 Avenue Agropolis, 34394, Montpellier Cedex 5, France
- Centre de Recherches de Chappes, Biogemma, Route d'Ennezat, 63720, Chappes, France
| | - Mathieu Gonin
- UMR DIADE, Université de Montpellier, IRD, 911 Avenue Agropolis, 34394, Montpellier Cedex 5, France
| | - Soazig Guyomarc'h
- UMR DIADE, Université de Montpellier, IRD, 911 Avenue Agropolis, 34394, Montpellier Cedex 5, France
| | - Jacques Rouster
- Centre de Recherches de Chappes, Biogemma, Route d'Ennezat, 63720, Chappes, France
| | - Antony Champion
- UMR DIADE, Université de Montpellier, IRD, 911 Avenue Agropolis, 34394, Montpellier Cedex 5, France
| | - Christophe Sallaud
- Centre de Recherches de Chappes, Biogemma, Route d'Ennezat, 63720, Chappes, France
| | - Laurent Laplaze
- UMR DIADE, Université de Montpellier, IRD, 911 Avenue Agropolis, 34394, Montpellier Cedex 5, France
| | - Pascal Gantet
- UMR DIADE, Université de Montpellier, IRD, 911 Avenue Agropolis, 34394, Montpellier Cedex 5, France
| | - Mikaël Lucas
- UMR DIADE, Université de Montpellier, IRD, 911 Avenue Agropolis, 34394, Montpellier Cedex 5, France
| |
Collapse
|
9
|
Mutations in the Rice OsCHR4 Gene, Encoding a CHD3 Family Chromatin Remodeler, Induce Narrow and Rolled Leaves with Increased Cuticular Wax. Int J Mol Sci 2019; 20:ijms20102567. [PMID: 31130602 PMCID: PMC6566577 DOI: 10.3390/ijms20102567] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 05/22/2019] [Accepted: 05/24/2019] [Indexed: 12/27/2022] Open
Abstract
Leaf blade width, curvature, and cuticular wax are important agronomic traits of rice. Here, we report the rice Oschr4-5 mutant characterized by pleiotropic phenotypes, including narrow and rolled leaves, enhanced cuticular wax deposition and reduced plant height and tiller number. The reduced leaf width is caused by a reduced number of longitudinal veins and increased auxin content. The cuticular wax content was significantly higher in the Oschr4-5 mutant, resulting in reduced water loss rate and enhanced drought tolerance. Molecular characterization reveals that a single-base deletion results in a frame-shift mutation from the second chromodomain of OsCHR4, a CHD3 (chromodomain helicase DNA-binding) family chromatin remodeler, in the Oschr4-5 mutant. Expressions of seven wax biosynthesis genes (GL1-4, WSL4, OsCER7, LACS2, LACS7, ROC4 and BDG) and four auxin biosynthesis genes (YUC2, YUC3, YUC5 and YUC6) was up-regulated in the Oschr4-5 mutant. Chromatin immunoprecipitation assays revealed that the transcriptionally active histone modification H3K4me3 was increased, whereas the repressive H3K27me3 was reduced in the upregulated genes in the Oschr4-5 mutant. Therefore, OsCHR4 regulates leaf morphogenesis and cuticle wax formation by epigenetic modulation of auxin and wax biosynthetic genes expression.
Collapse
|
10
|
Meng F, Xiang D, Zhu J, Li Y, Mao C. Molecular Mechanisms of Root Development in Rice. RICE (NEW YORK, N.Y.) 2019; 12:1. [PMID: 30631971 PMCID: PMC6328431 DOI: 10.1186/s12284-018-0262-x] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 12/27/2018] [Indexed: 05/20/2023]
Abstract
Roots are fundamentally important for growth and development, anchoring the plant to its growth substrate, facilitating water and nutrient uptake from the soil, and sensing and responding to environmental signals such as biotic and abiotic stresses. Understanding the molecular mechanisms controlling root architecture is essential for improving nutrient uptake efficiency and crop yields. In this review, we describe the progress being made in the identification of genes and regulatory pathways involved in the development of root systems in rice (Oryza sativa L.), including crown roots, lateral roots, root hairs, and root length. Genes involved in the adaptation of roots to the environmental nutrient status are reviewed, and strategies for further study and agricultural applications are discussed. The growth and development of rice roots are controlled by both genetic factors and environmental cues. Plant hormones, especially auxin and cytokinin, play important roles in root growth and development. Understanding the molecular mechanisms regulating root architecture and response to environmental signals can contribute to the genetic improvement of crop root systems, enhancing their adaptation to stressful environmental conditions.
Collapse
Affiliation(s)
- Funing Meng
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Dan Xiang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jianshu Zhu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yong Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Chuanzao Mao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
11
|
Li C, Liu Y, Shen WH, Yu Y, Dong A. Chromatin-remodeling factor OsINO80 is involved in regulation of gibberellin biosynthesis and is crucial for rice plant growth and development. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2018; 60:144-159. [PMID: 29045007 DOI: 10.1111/jipb.12603] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 10/17/2017] [Indexed: 05/07/2023]
Abstract
The phytohormone gibberellin (GA) plays essential roles in plant growth and development. Here, we report that OsINO80, a conserved ATP-dependent chromatin-remodeling factor in rice (Oryza sativa), functions in both GA biosynthesis and diverse biological processes. OsINO80-knockdown mutants, derived from either T-DNA insertion or RNA interference, display typical GA-deficient phenotypes, including dwarfism, reduced cell length, late flowering, retarded seed germination and impaired reproductive development. Consistently, transcriptome analyses reveal that OsINO80 knockdown results in downregulation by more than two-fold of over 1,000 genes, including the GA biosynthesis genes CPS1 and GA3ox2, and the dwarf phenotype of OsINO80-knockdown mutants can be rescued by the application of exogenous GA3. Chromatin immunoprecipitation (ChIP) experiments show that OsINO80 directly binds to the chromatin of CPS1 and GA3ox2 loci. Biochemical assays establish that OsINO80 specially interacts with histone variant H2A.Z and the H2A.Z enrichments at CPS1 and GA3ox2 are decreased in OsINO80-knockdown mutants. Thus, our study identified a rice chromatin-remodeling factor, OsINO80, and demonstrated that OsINO80 is involved in regulation of the GA biosynthesis pathway and plays critical functions for many aspects of rice plant growth and development.
Collapse
Affiliation(s)
- Chao Li
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Yuhao Liu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Wen-Hui Shen
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, China
- Institut de Biologie Moléculaire des Plantes, UPR2357 CNRS, Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg Cédex, France
| | - Yu Yu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Aiwu Dong
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, China
| |
Collapse
|
12
|
Cho SH, Lee CH, Gi E, Yim Y, Koh HJ, Kang K, Paek NC. The Rice Rolled Fine Striped (RFS) CHD3/Mi-2 Chromatin Remodeling Factor Epigenetically Regulates Genes Involved in Oxidative Stress Responses During Leaf Development. FRONTIERS IN PLANT SCIENCE 2018; 9:364. [PMID: 29616070 PMCID: PMC5870552 DOI: 10.3389/fpls.2018.00364] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 03/05/2018] [Indexed: 05/20/2023]
Abstract
In rice (Oryza sativa), moderate leaf rolling increases photosynthetic competence and raises grain yield; therefore, this important agronomic trait has attracted much attention from plant biologists and breeders. However, the relevant molecular mechanism remains unclear. Here, we isolated and characterized Rolled Fine Striped (RFS), a key gene affecting rice leaf rolling, chloroplast development, and reactive oxygen species (ROS) scavenging. The rfs-1 gamma-ray allele and the rfs-2 T-DNA insertion allele of RFS failed to complement each other and their mutants had similar phenotypes, producing extremely incurved leaves due to defective development of vascular cells on the adaxial side. Map-based cloning showed that the rfs-1 mutant harbors a 9-bp deletion in a gene encoding a predicted CHD3/Mi-2 chromatin remodeling factor belonging to the SNF2-ATP-dependent chromatin remodeling family. RFS was expressed in various tissues and accumulated mainly in the vascular cells throughout leaf development. Furthermore, RFS deficiency resulted in a cell death phenotype that was caused by ROS accumulation in developing leaves. We found that expression of five ROS-scavenging genes [encoding catalase C, ascorbate peroxidase 8, a putative copper/zinc superoxide dismutase (SOD), a putative SOD, and peroxiredoxin IIE2] decreased in rfs-2 mutants. Western-blot and chromatin immunoprecipitation (ChIP) assays demonstrated that rfs-2 mutants have reduced H3K4me3 levels in ROS-related genes. Loss-of-function in RFS also led to multiple developmental defects, affecting pollen development, grain filling, and root development. Our results suggest that RFS is required for many aspects of plant development and its function is closely associated with epigenetic regulation of genes that modulate ROS homeostasis.
Collapse
Affiliation(s)
- Sung-Hwan Cho
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Chung-Hee Lee
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Eunji Gi
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Yehyun Yim
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Hee-Jong Koh
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Kiyoon Kang
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
- *Correspondence: Kiyoon Kang, Nam-Chon Paek,
| | - Nam-Chon Paek
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
- Crop Biotechnology Institute, Institutes of Green Bio Science & Technology, Seoul National University, Seoul, South Korea
- *Correspondence: Kiyoon Kang, Nam-Chon Paek,
| |
Collapse
|
13
|
Us-Camas R, Castillo-Castro E, Aguilar-Espinosa M, Limones-Briones V, Rivera-Madrid R, Robert-Díaz ML, De-la-Peña C. Assessment of molecular and epigenetic changes in the albinism of Agave angustifolia Haw. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 263:156-167. [PMID: 28818371 DOI: 10.1016/j.plantsci.2017.07.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 06/09/2017] [Accepted: 07/10/2017] [Indexed: 06/07/2023]
Abstract
Albinism in plants is a rare phenomenon that occurs in nature and is characterized by the total or partial loss of photosynthetic pigments. Although progress has been made in understanding the nature of this phenomenon, the precise causes and biological basis are still unexplored. Here, we study the genetic and epigenetic differences between green (G), variegated (V) and albino (A) A. angustifolia Haw. plantlets obtained by in vitro propagation in order to present new insights into albinism from a plant system that offers a unique set of biological phenotypic characteristics. Low transcript levels of genes involved in carotenoids and photosynthesis such as PSY, PDS, LCYƐ, rubS, PEPCase and LHCP suggest a disruption in these processes in albino plants. Due to a high level of genetic similarity being found between the three phenotypes, we analyzed global DNA methylation and different histone marks (H3K4me2, H3K36me2, H3K9ac, H3K9me2 and H3K27me3). Although no significant differences in global 5-methyl deoxicytidine were found, almost a 2-4.5-fold increase in H3K9ac was observed in albino plants in comparison with variegated or green plants, suggesting a change in chromatin compaction related to A. angustifolia albinism.
Collapse
Affiliation(s)
- Rosa Us-Camas
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Calle 43 No. 130 x 32 y 34. Col. Chuburná de Hidalgo, 97205 Mérida, Yucatán, Mexico
| | - Eduardo Castillo-Castro
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Calle 43 No. 130 x 32 y 34. Col. Chuburná de Hidalgo, 97205 Mérida, Yucatán, Mexico
| | - Margarita Aguilar-Espinosa
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Calle 43 No. 130 x 32 y 34. Col. Chuburná de Hidalgo, 97205 Mérida, Yucatán, Mexico
| | - Verónica Limones-Briones
- Unidad de Recursos Naturales, Centro de Investigación Científica de Yucatán, Calle 43 No. 130 x 32 y 34. Col. Chuburná de Hidalgo, 97205 Mérida, Yucatán, Mexico
| | - Renata Rivera-Madrid
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Calle 43 No. 130 x 32 y 34. Col. Chuburná de Hidalgo, 97205 Mérida, Yucatán, Mexico
| | - Manuel L Robert-Díaz
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Calle 43 No. 130 x 32 y 34. Col. Chuburná de Hidalgo, 97205 Mérida, Yucatán, Mexico
| | - Clelia De-la-Peña
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Calle 43 No. 130 x 32 y 34. Col. Chuburná de Hidalgo, 97205 Mérida, Yucatán, Mexico.
| |
Collapse
|
14
|
Kumar M, Gho YS, Jung KH, Kim SR. Genome-Wide Identification and Analysis of Genes, Conserved between japonica and indica Rice Cultivars, that Respond to Low-Temperature Stress at the Vegetative Growth Stage. FRONTIERS IN PLANT SCIENCE 2017; 8:1120. [PMID: 28713404 PMCID: PMC5491850 DOI: 10.3389/fpls.2017.01120] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 06/09/2017] [Indexed: 05/14/2023]
Abstract
Cold stress is very detrimental to crop production. However, only a few genes in rice have been identified with known functions related to cold tolerance. To meet this agronomic challenge more effectively, researchers must take global approaches to select useful candidate genes and find the major regulatory factors. We used five Gene expression omnibus series data series of Affymetrix array data, produced with cold stress-treated samples from the NCBI Gene Expression Omnibus (http://www.ncbi.nlm.nih.gov/geo/), and identified 502 cold-inducible genes common to both japonica and indica rice cultivars. From them, we confirmed that the expression of two randomly chosen genes was increased by cold stress in planta. In addition, overexpression of OsWRKY71 enhanced cold tolerance in 'Dongjin,' the tested japonica cultivar. Comparisons between japonica and indica rice, based on calculations of plant survival rates and chlorophyll fluorescence, confirmed that the japonica rice was more cold-tolerant. Gene Ontology enrichment analysis indicate that the 'L-phenylalanine catabolic process,' within the Biological Process category, was the most highly overrepresented under cold-stress conditions, implying its significance in that response in rice. MapMan analysis classified 'Major Metabolic' processes and 'Regulatory Gene Modules' as two other major determinants of the cold-stress response and suggested several key cis-regulatory elements. Based on these results, we proposed a model that includes a pathway for cold stress-responsive signaling. Results from our functional analysis of the main signal transduction and transcription regulation factors identified in that pathway will provide insight into novel regulatory metabolism(s), as well as a foundation by which we can develop crop plants with enhanced cold tolerance.
Collapse
Affiliation(s)
- Manu Kumar
- Department of Life Sciences, Sogang UniversitySeoul, South Korea
| | - Yun-Shil Gho
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee UniversityYongin, South Korea
| | - Ki-Hong Jung
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee UniversityYongin, South Korea
- *Correspondence: Seong-Ryong Kim, Ki-Hong Jung,
| | - Seong-Ryong Kim
- Department of Life Sciences, Sogang UniversitySeoul, South Korea
- *Correspondence: Seong-Ryong Kim, Ki-Hong Jung,
| |
Collapse
|
15
|
Ma C, Cao J, Li J, Zhou B, Tang J, Miao A. Phenotypic, histological and proteomic analyses reveal multiple differences associated with chloroplast development in yellow and variegated variants from Camellia sinensis. Sci Rep 2016; 6:33369. [PMID: 27633059 PMCID: PMC5025893 DOI: 10.1038/srep33369] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 08/26/2016] [Indexed: 11/20/2022] Open
Abstract
Leaf colour variation is observed in several plants. We obtained two types of branches with yellow and variegated leaves from Camellia sinensis. To reveal the mechanisms that underlie the leaf colour variations, combined morphological, histological, ionomic and proteomic analyses were performed using leaves from abnormal branches (variants) and normal branches (CKs). The measurement of the CIE-Lab coordinates showed that the brightness and yellowness of the variants were more intense than the CKs. When chloroplast profiles were analysed, HY1 (branch with yellow leaves) and HY2 (branch with variegated leaves) displayed abnormal chloroplast structures and a reduced number and size compared with the CKs, indicating that the abnormal chloroplast development might be tightly linked to the leaf colour variations. Moreover, the concentration of elemental minerals was different between the variants and the CKs. Furthermore, DEPs (differentially expressed proteins) were identified in the variants and the CKs by a quantitative proteomics analysis using the label-free approach. The DEPs were significantly involved in photosynthesis and included PSI, PSII, cytochrome b6/f complex, photosynthetic electron transport, LHC and F-type ATPase. Our results suggested that a decrease in the abundance of photosynthetic proteins might be associated with the changes of leaf colours in tea plants.
Collapse
Affiliation(s)
- Chengying Ma
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.,Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation &Utilization, Guangzhou 510640, China
| | - Junxi Cao
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.,Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation &Utilization, Guangzhou 510640, China
| | - Jianke Li
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Bo Zhou
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.,Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation &Utilization, Guangzhou 510640, China
| | - Jinchi Tang
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.,Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation &Utilization, Guangzhou 510640, China
| | - Aiqing Miao
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.,Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation &Utilization, Guangzhou 510640, China
| |
Collapse
|
16
|
Wang Y, Wang D, Gan T, Liu L, Long W, Wang Y, Niu M, Li X, Zheng M, Jiang L, Wan J. CRL6, a member of the CHD protein family, is required for crown root development in rice. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 105:185-194. [PMID: 27108205 DOI: 10.1016/j.plaphy.2016.04.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 03/29/2016] [Accepted: 04/12/2016] [Indexed: 05/25/2023]
Abstract
The root system in monocotyledonous plants is largely composed of postembryonic shoot-borne roots named crown roots, which are important for nutrients and water uptake. The molecular mechanism underlying regulation of crown root development is not fully explored. In this study, we characterized a rice (Oryza sativa) mutant defective in crown root formation, designated as crown rootless6 (crl6). Histological analysis showed that CRL6 influences crown root formation by regulating primordial initiation and development. Map-based cloning and subsequent complementation tests verified that the CRL6 gene encodes a member of the large chromodomain, helicase/ATPase, and DNA-binding domain (CHD) family protein. Realtime RT-PCR analysis showed that CRL6 was most highly expressed in the stem base region where crown roots initiated. In addition, auxin-action inhibited phenotype was observed during crl6 development. The expressions of OsIAA genes were down-regulated in crl6. Our results provide evidence that CRL6 plays an important role in crown root development in rice via auxin-related signaling pathway.
Collapse
Affiliation(s)
- Yihua Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Di Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Ting Gan
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Linglong Liu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Wuhua Long
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Yunlong Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Mei Niu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaohui Li
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Ming Zheng
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Ling Jiang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Jianmin Wan
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China; National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
17
|
Zhao DS, Zhang CQ, Li QF, Yang QQ, Gu MH, Liu QQ. A residue substitution in the plastid ribosomal protein L12/AL1 produces defective plastid ribosome and causes early seedling lethality in rice. PLANT MOLECULAR BIOLOGY 2016; 91:161-77. [PMID: 26873698 DOI: 10.1007/s11103-016-0453-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Accepted: 02/08/2016] [Indexed: 05/25/2023]
Abstract
The plastid ribosome is essential for chloroplast biogenesis as well as seedling formation. As the plastid ribosome closely resembles the prokaryotic 70S ribosome, many plastid ribosomal proteins (PRPs) have been identified in higher plants. However, their assembly in the chloroplast ribosome in rice remains unclear. In the present study, we identified a novel rice mutant, albino lethal 1 (al1), from a chromosome segment substitution line population. The al1 mutant displayed an albino phenotype at the seedling stage and did not survive past the three-leaf stage. No other apparent differences in plant morphology were observed in the al1 mutant. The albino phenotype of the al1 mutant was associated with decreased chlorophyll content and abnormal chloroplast morphology. Using fine mapping, AL1 was shown to encode the PRPL12, a protein localized in the chloroplasts of rice, and a spontaneous single-nucleotide mutation (C/T), resulting in a residue substitution from leucine in AL1 to phenylalanine in al1, was found to be responsible for the early seedling lethality. This point mutation is located at the L10 interface feature of the L12/AL1 protein. Yeast two-hybrid analysis showed that there was no physical interaction between al1 and PRPL10. In addition, the mutation had little effect on the transcript abundance of al1, but had a remarkable effect on the protein abundance of al1 and transcript abundance of chloroplast biogenesis-related and photosynthesis-related genes. These results provide a first glimpse into the molecular details of L12's function in rice.
Collapse
Affiliation(s)
- Dong-Sheng Zhao
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Chang-Quan Zhang
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Qian-Feng Li
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Qing-Qing Yang
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Ming-Hong Gu
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Qiao-Quan Liu
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou, 225009, People's Republic of China.
| |
Collapse
|
18
|
Ma X, Ma J, Zhai H, Xin P, Chu J, Qiao Y, Han L. CHR729 Is a CHD3 Protein That Controls Seedling Development in Rice. PLoS One 2015; 10:e0138934. [PMID: 26398683 PMCID: PMC4580627 DOI: 10.1371/journal.pone.0138934] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 09/05/2015] [Indexed: 12/22/2022] Open
Abstract
CHD3 is one of the chromatin-remodeling factors that contribute to controlling the expression of genes associated with plant development. Loss-of-function mutants display morphological and growth defects. However, the molecular mechanisms underlying CHD3 regulation of plant development remain unclear. In this study, a rice CHD3 protein, CHR729, was identified. The corresponding mutant line (t483) exhibited late seed germination, low germination rate, dwarfism, low tiller number, root growth inhibition, adaxial albino leaves, and short and narrow leaves. CHR729 encoded a nuclear protein and was expressed in almost all organs. RNA-sequencing analysis showed that several plant hormone-related genes were up- or down-regulated in t483 compared to wild type. In particular, expression of the gibberellin synthetase gibberellin 20 oxidase 4 gene was elevated in the mutant. Endogenous gibberellin assays demonstrated that the content of bioactive GA3 was reduced in t483 compared to wild type. Moreover, the seedling dwarfism, late seed germination, and short root length phenotypes of t483 were partially rescued by treatment with exogenous GA3. These results suggest that the rice CHD3 protein CHR729 plays an important role in many aspects of seedling development and controls this development via the gibberellin pathway.
Collapse
Affiliation(s)
- Xiaoding Ma
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jian Ma
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Honghong Zhai
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Peiyong Xin
- National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Jinfang Chu
- National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yongli Qiao
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Longzhi Han
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
- * E-mail:
| |
Collapse
|
19
|
Histone H3K4me3 and H3K27me3 regulatory genes control stable transmission of an epimutation in rice. Sci Rep 2015; 5:13251. [PMID: 26285801 PMCID: PMC4541256 DOI: 10.1038/srep13251] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 07/22/2015] [Indexed: 11/08/2022] Open
Abstract
DNA methylation loss can produce inheritable active epialleles in plants. The mechanism involved in the stable transmission of hypomethylated epimuations is presently not clear. Here we show that maintenance of a stably hypomethylated active epiallele in rice required a CHD3 protein (CHR729) and that over-expression of an H3K4me3 demethylase (JMJ703) or H3K27me3 methyltransferase (SDG711) could stably resilence the epiallele. CHR729 and JMJ703 have antagonistic function in H3K4me3 in maintaining the active state of the epiallele, whereas SDG711-mediated H3K27me3 was sufficient to stably repress the locus. The data suggest that H3K4me3 and H3K27me3 controlled by these chromatin regulators may be involved in stable transmission/resetting of epigenetic variation in rice.
Collapse
|
20
|
Pogson BJ, Ganguly D, Albrecht-Borth V. Insights into chloroplast biogenesis and development. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:1017-24. [PMID: 25667967 DOI: 10.1016/j.bbabio.2015.02.003] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 12/29/2014] [Accepted: 02/03/2015] [Indexed: 12/16/2022]
Abstract
In recent years many advances have been made to obtain insight into chloroplast biogenesis and development. In plants several plastids types exist such as the proplastid (which is the progenitor of all plastids), leucoplasts (group of colourless plastids important for storage including elaioplasts (lipids), amyloplasts (starch) or proteinoplasts (proteins)), chromoplasts (yellow to orange-coloured due to carotenoids, in flowers or in old leaves as gerontoplasts), and the green chloroplasts. Chloroplasts are indispensable for plant development; not only by performing photosynthesis and thus rendering the plant photoautotrophic, but also for biochemical processes (which in some instances can also take place in other plastids types), such as the synthesis of pigments, lipids, and plant hormones and sensing environmental stimuli. Although we understand many aspects of these processes there are gaps in our understanding of the establishment of functional chloroplasts and their regulation. Why is that so? Even though chloroplast function is comparable in all plants and most of the algae, ferns and moss, detailed analyses have revealed many differences, specifically with respect to its biogenesis. As an update to our prior review on the genetic analysis of chloroplast biogenesis and development [1] herein we will focus on recent advances in Angiosperms (monocotyledonous and dicotyledonous plants) that provide novel insights and highlight the challenges and prospects for unravelling the regulation of chloroplast biogenesis specifically during the establishment of the young plants. This article is part of a Special Issue entitled: Chloroplast Biogenesis.
Collapse
Affiliation(s)
| | - Diep Ganguly
- Australian National University, Canberra, Australia
| | | |
Collapse
|
21
|
Guo M, Wang R, Wang J, Hua K, Wang Y, Liu X, Yao S. ALT1, a Snf2 family chromatin remodeling ATPase, negatively regulates alkaline tolerance through enhanced defense against oxidative stress in rice. PLoS One 2014; 9:e112515. [PMID: 25473841 PMCID: PMC4256374 DOI: 10.1371/journal.pone.0112515] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 10/06/2014] [Indexed: 11/19/2022] Open
Abstract
Alkaline salt stress adversely affects rice growth, productivity and grain quality. However, the mechanism underlying this process remains elusive. We characterized here an alkaline tolerant mutant, alt1 in rice. Map-based cloning revealed that alt1 harbors a mutation in a chromatin remodeling ATPase gene. ALT1-RNAi transgenic plants under different genetic background mimicked the alt1 phenotype, exhibiting tolerance to alkaline stress in a transcript dosage-dependent manner. The predicted ALT1 protein belonged to the Ris1 subgroup of the Snf2 family and was localized in the nucleus, and transcription of ALT1 was transiently suppressed after alkaline treatment. Although the absorption of several metal ions maintained well in the mutant under alkaline stress, expression level of the genes involved in metal ions homeostasis was not altered in the alt1 mutant. Classification of differentially expressed abiotic stress related genes, as revealed by microarray analysis, found that the majority (50/78) were involved in ROS production, ROS scavenging, and DNA repair. This finding was further confirmed by that alt1 exhibited lower levels of H2O2 under alkaline stress and tolerance to methyl viologen treatment. Taken together, these results suggest that ALT1 negatively functions in alkaline tolerance mainly through the defense against oxidative damage, and provide a potential two-step strategy for improving the tolerance of rice plants to alkaline stress.
Collapse
Affiliation(s)
- Mingxin Guo
- State Key Laboratory of Plant Genomics and National Plant Gene Research Center, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ruci Wang
- State Key Laboratory of Plant Genomics and National Plant Gene Research Center, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Juan Wang
- State Key Laboratory of Plant Genomics and National Plant Gene Research Center, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Kai Hua
- State Key Laboratory of Plant Genomics and National Plant Gene Research Center, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yueming Wang
- State Key Laboratory of Plant Genomics and National Plant Gene Research Center, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Xiaoqiang Liu
- State Key Laboratory of Plant Genomics and National Plant Gene Research Center, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Shanguo Yao
- State Key Laboratory of Plant Genomics and National Plant Gene Research Center, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- * E-mail:
| |
Collapse
|
22
|
Hu Y, Lai Y, Zhu D. Transcription regulation by CHD proteins to control plant development. FRONTIERS IN PLANT SCIENCE 2014; 5:223. [PMID: 24904618 PMCID: PMC4036436 DOI: 10.3389/fpls.2014.00223] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 05/05/2014] [Indexed: 05/19/2023]
Abstract
Chromodomain-Helicase-DNA (CHD)-binding proteins have been characterized in various species as important transcription regulators by their chromatin remodeling activity. However, in plant the function of these proteins has hardly been analyzed before except that Arabidopsis PIKLE and rice CHR729 are identified to play critical roles in the regulation of series of genes involved in developmental or stress responding process. In this review we focus on how plant CHD proteins regulate gene expression and the role of these proteins in controlling plant development and stress response.
Collapse
Affiliation(s)
- Yongfeng Hu
- *Correspondence: Yongfeng Hu, Jingchu University of Technology, Xiangshan Road 33, Jingmen, China e-mail:
| | | | | |
Collapse
|
23
|
Chen X, Zhou DX. Rice epigenomics and epigenetics: challenges and opportunities. CURRENT OPINION IN PLANT BIOLOGY 2013; 16:164-9. [PMID: 23562565 DOI: 10.1016/j.pbi.2013.03.004] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 02/16/2013] [Accepted: 03/14/2013] [Indexed: 05/23/2023]
Abstract
During recent years rice genome-wide epigenomic information such as DNA methylation and histone modifications, which are important for genome activity has been accumulated. The function of a number of rice epigenetic regulators has been studied, many of which are found to be involved in a diverse range of developmental and stress-responsive pathways. Analysis of epigenetic variations among different rice varieties indicates that epigenetic modification may lead to inheritable phenotypic variation. Characterizing phenotypic consequences of rice epigenomic variations and the underlining chromatin mechanism and identifying epialleles related to important agronomic traits may provide novel strategies to enhance agronomically favorable traits and grain productivity in rice.
Collapse
Affiliation(s)
- Xiangsong Chen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China
| | | |
Collapse
|
24
|
Xu J, Yang J, Wu Z, Liu H, Huang F, Wu Y, Carrie C, Narsai R, Murcha M, Whelan J, Wu P. Identification of a dual-targeted protein belonging to the mitochondrial carrier family that is required for early leaf development in rice. PLANT PHYSIOLOGY 2013; 161:2036-48. [PMID: 23411694 PMCID: PMC3613474 DOI: 10.1104/pp.112.210831] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
A dual-targeted protein belonging to the mitochondrial carrier family was characterized in rice (Oryza sativa) and designated 3'-Phosphoadenosine 5'-Phosphosulfate Transporter1 (PAPST1). The papst1 mutant plants showed a defect in thylakoid development, resulting in leaf chlorosis at an early leaf developmental stage, while normal leaf development was restored 4 to 6 d after leaf emergence. OsPAPST1 is highly expressed in young leaves and roots, while the expression is reduced in mature leaves, in line with the recovery of chloroplast development seen in the older leaves of papst1 mutant plants. OsPAPST1 is located on the outer mitochondrial membrane and chloroplast envelope. Whole-genome transcriptomic analysis reveals reduced expression of genes encoding photosynthetic components (light reactions) in papst1 mutant plants. In addition, sulfur metabolism is also perturbed in papst1 plants, and it was seen that PAPST1 can act as a nucleotide transporter when expressed in Escherichia coli that can be inhibited significantly by 3'-phosphoadenosine 5'-phosphosulfate. Given these findings, together with the altered phenotype seen only when leaves are first exposed to light, it is proposed that PAPST1 may act as a 3'-phosphoadenosine 5'-phosphosulfate carrier that has been shown to act as a retrograde signal between chloroplasts and the nucleus.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Ping Wu
- Corresponding author; e-mail
| |
Collapse
|