1
|
Li J, Han F, Yuan T, Li W, Li Y, Wu HX, Wei H, Niu S. The methylation landscape of giga-genome and the epigenetic timer of age in Chinese pine. Nat Commun 2023; 14:1947. [PMID: 37029142 PMCID: PMC10082083 DOI: 10.1038/s41467-023-37684-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 03/27/2023] [Indexed: 04/09/2023] Open
Abstract
Epigenetics has been revealed to play a crucial role in the long-term memory in plants. However, little is known about whether the epigenetic modifications occur with age progressively in conifers. Here, we present the single-base resolution DNA methylation landscapes of the 25-gigabase Chinese pine (Pinus tabuliformis) genome at different ages. The result shows that DNA methylation is closely coupled with the regulation of gene transcription. The age-dependent methylation profile with a linearly increasing trend is the most significant pattern of DMRs between ages. Two segments at the five-prime end of the first ultra-long intron in DAL1, a conservative age biomarker in conifers, shows a gradual decline of CHG methylation as the age increased, which is highly correlated with its expression profile. Similar high correlation is also observed in nine other age marker genes. Our results suggest that DNA methylation serves as an important epigenetic signature of developmental age in conifers.
Collapse
Affiliation(s)
- Jiang Li
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, PR China
| | - Fangxu Han
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, PR China
| | - Tongqi Yuan
- College of Material Science and Technology, Beijing Forestry University, Beijing, 100083, P. R. China
| | - Wei Li
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, PR China
| | - Yue Li
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, PR China
| | - Harry X Wu
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Linnaeus väg 6, SE-901 83, Umeå, Sweden
- CSIRO National Research Collection Australia, Black Mountain Laboratory, Canberra, ACT, 2601, Australia
| | - Hairong Wei
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI, 49931, USA
| | - Shihui Niu
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, PR China.
| |
Collapse
|
2
|
Chakraborty T, Payne H, Mosher RA. Expansion and contraction of small RNA and methylation machinery throughout plant evolution. CURRENT OPINION IN PLANT BIOLOGY 2022; 69:102260. [PMID: 35849937 DOI: 10.1016/j.pbi.2022.102260] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/09/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
The revolution in sequencing has created a wealth of plant genomes that can be mined to understand the evolution of biological complexity. Complexity is often driven by gene duplication, which allows paralogs to specialize in an activity of the ancestral gene or acquire novel functions. Angiosperms encode a variety of gene silencing pathways that share related machinery for small RNA biosynthesis and function. Recent phylogenetic analysis of these gene families plots the expansion, specialization, and occasional contraction of this core machinery. This analysis reveals the ancient origin of RNA-directed DNA Methylation in early land plants, or possibly their algal ancestors, as well as ongoing duplications that evolve novel small RNA pathways.
Collapse
Affiliation(s)
- Tania Chakraborty
- School of Plant Sciences, University of Arizona, Tucson, AZ 85721-0036, USA
| | - Hayden Payne
- School of Plant Sciences, University of Arizona, Tucson, AZ 85721-0036, USA
| | - Rebecca A Mosher
- School of Plant Sciences, University of Arizona, Tucson, AZ 85721-0036, USA.
| |
Collapse
|
3
|
Gao Y, Cui Y, Zhao R, Chen X, Zhang J, Zhao J, Kong L. Cryo-Treatment Enhances the Embryogenicity of Mature Somatic Embryos via the lncRNA-miRNA-mRNA Network in White Spruce. Int J Mol Sci 2022; 23:ijms23031111. [PMID: 35163033 PMCID: PMC8834816 DOI: 10.3390/ijms23031111] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/09/2022] [Accepted: 01/14/2022] [Indexed: 12/04/2022] Open
Abstract
In conifers, somatic embryogenesis is uniquely initiated from immature embryos in a narrow time window, which is considerably hindered by the difficulty to induce embryogenic tissue (ET) from other tissues, including mature somatic embryos. In this study, the embryogenic ability of newly induced ET and DNA methylation levels was detected, and whole-transcriptome sequencing analyses were carried out. The results showed that ultra-low temperature treatment significantly enhanced ET induction from mature somatic embryos, with the induction rate from 0.4% to 15.5%, but the underlying mechanisms remain unclear. The newly induced ET showed higher capability in generating mature embryos than the original ET. DNA methylation levels fluctuated during the ET induction process. Here, WGCNA analysis revealed that OPT4, TIP1-1, Chi I, GASA5, GST, LAX3, WRKY7, MYBS3, LRR-RLK, PBL7, and WIN1 genes are involved in stress response and auxin signal transduction. Through co-expression analysis, lncRNAs MSTRG.505746.1, MSTRG.1070680.1, and MSTRG.33602.1 might bind to pre-novel_miR_339 to promote the expression of WRKY7 genes for stress response; LAX3 could be protected by lncRNAs MSTRG.1070680.1 and MSTRG.33602.1 via serving as sponges for novel_miR_495 to initiate auxin signal transduction; lncRNAs MSTRG.505746.1, MSTRG.1070680.1, and MSTRG.33602.1 might serve as sponges for novel_miR_527 to enhance the expression of Chi I for early somatic embryo development. This study provides new insight into the area of stress-enhanced early somatic embryogenesis in conifers, which is also attributable to practical applications.
Collapse
Affiliation(s)
- Ying Gao
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (Y.G.); (Y.C.); (R.Z.); (X.C.); (J.Z.)
| | - Ying Cui
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (Y.G.); (Y.C.); (R.Z.); (X.C.); (J.Z.)
| | - Ruirui Zhao
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (Y.G.); (Y.C.); (R.Z.); (X.C.); (J.Z.)
| | - Xiaoyi Chen
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (Y.G.); (Y.C.); (R.Z.); (X.C.); (J.Z.)
| | - Jinfeng Zhang
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (Y.G.); (Y.C.); (R.Z.); (X.C.); (J.Z.)
| | - Jian Zhao
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (Y.G.); (Y.C.); (R.Z.); (X.C.); (J.Z.)
- Correspondence: (J.Z.); (L.K.)
| | - Lisheng Kong
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (Y.G.); (Y.C.); (R.Z.); (X.C.); (J.Z.)
- Centre for Forest Biology, Department of Biology, University of Victoria, Victoria, BC V8W 3N5, Canada
- Correspondence: (J.Z.); (L.K.)
| |
Collapse
|
4
|
Meijer A, De Meyer T, Vandepoele K, Kyndt T. Spatiotemporal expression profile of novel and known small RNAs throughout rice plant development focussing on seed tissues. BMC Genomics 2022; 23:44. [PMID: 35012466 PMCID: PMC8750796 DOI: 10.1186/s12864-021-08264-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 12/13/2021] [Indexed: 02/10/2023] Open
Abstract
Background Small RNAs (sRNAs) regulate numerous plant processes directly related to yield, such as disease resistance and plant growth. To exploit this yield-regulating potential of sRNAs, the sRNA profile of one of the world’s most important staple crops – rice – was investigated throughout plant development using next-generation sequencing. Results Root and leaves were investigated at both the vegetative and generative phase, and early-life sRNA expression was characterized in the embryo and endosperm. This led to the identification of 49,505 novel sRNAs and 5581 tRNA-derived sRNAs (tsRNAs). In all tissues, 24 nt small interfering RNAs (siRNAs) were highly expressed and associated with euchromatic, but not heterochromatic transposable elements. Twenty-one nt siRNAs deriving from genic regions in the endosperm were exceptionally highly expressed, mimicking previously reported expression levels of 24 nt siRNAs in younger endosperm samples. In rice embryos, sRNA content was highly diverse while tsRNAs were underrepresented, possibly due to snoRNA activity. Publicly available mRNA expression and DNA methylation profiles were used to identify putative siRNA targets in embryo and endosperm. These include multiple genes related to the plant hormones gibberellic acid and ethylene, and to seed phytoalexin and iron content. Conclusions This work introduces multiple sRNAs as potential regulators of rice yield and quality, identifying them as possible targets for the continuous search to optimize rice production. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08264-z.
Collapse
Affiliation(s)
- Anikó Meijer
- Department of Biotechnology, Ghent University, Ghent, Belgium
| | - Tim De Meyer
- Department of Data Analysis and Mathematical Modelling, Ghent University, Ghent, Belgium
| | - Klaas Vandepoele
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium. .,VIB Center for Plant Systems Biology, Ghent, Belgium. .,Bioinformatics Institute Ghent, Ghent University, Ghent, Belgium.
| | - Tina Kyndt
- Department of Biotechnology, Ghent University, Ghent, Belgium.
| |
Collapse
|
5
|
Alves A, Cordeiro D, Correia S, Miguel C. Small Non-Coding RNAs at the Crossroads of Regulatory Pathways Controlling Somatic Embryogenesis in Seed Plants. PLANTS (BASEL, SWITZERLAND) 2021; 10:504. [PMID: 33803088 PMCID: PMC8001652 DOI: 10.3390/plants10030504] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/26/2021] [Accepted: 03/01/2021] [Indexed: 11/25/2022]
Abstract
Small non-coding RNAs (sncRNAs) are molecules with important regulatory functions during development and environmental responses across all groups of terrestrial plants. In seed plants, the development of a mature embryo from the zygote follows a synchronized cell division sequence, and growth and differentiation events regulated by highly regulated gene expression. However, given the distinct features of the initial stages of embryogenesis in gymnosperms and angiosperms, it is relevant to investigate to what extent such differences emerge from differential regulation mediated by sncRNAs. Within these, the microRNAs (miRNAs) are the best characterized class, and while many miRNAs are conserved and significantly represented across angiosperms and other seed plants during embryogenesis, some miRNA families are specific to some plant lineages. Being a model to study zygotic embryogenesis and a relevant biotechnological tool, we systematized the current knowledge on the presence and characterization of miRNAs in somatic embryogenesis (SE) of seed plants, pinpointing the miRNAs that have been reported to be associated with SE in angiosperm and gymnosperm species. We start by conducting an overview of sncRNA expression profiles in the embryonic tissues of seed plants. We then highlight the miRNAs described as being involved in the different stages of the SE process, from its induction to the full maturation of the somatic embryos, adding references to zygotic embryogenesis when relevant, as a contribution towards a better understanding of miRNA-mediated regulation of SE.
Collapse
Affiliation(s)
- Ana Alves
- BioISI—Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016 Lisboa, Portugal;
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
| | - Daniela Cordeiro
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal; (D.C.); (S.C.)
| | - Sandra Correia
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal; (D.C.); (S.C.)
| | - Célia Miguel
- BioISI—Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016 Lisboa, Portugal;
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal
| |
Collapse
|
6
|
Zhang J, Lin Y, Wu F, Zhang Y, Cheng L, Huang M, Tong Z. Profiling of MicroRNAs and Their Targets in Roots and Shoots Reveals a Potential MiRNA-Mediated Interaction Network in Response to Phosphate Deficiency in the Forestry Tree Betula luminifera. Front Genet 2021; 12:552454. [PMID: 33584823 PMCID: PMC7876418 DOI: 10.3389/fgene.2021.552454] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 01/06/2021] [Indexed: 01/14/2023] Open
Abstract
Inorganic phosphate (Pi) is often lacking in natural and agro-climatic environments, which impedes the growth of economically important woody species. Plants have developed strategies to cope with low Pi (LP) availability. MicroRNAs (miRNAs) play important roles in responses to abiotic stresses, including nutrition stress, by regulating target gene expression. However, the miRNA-mediated regulation of these adaptive responses and their underlying coordinating signals are still poorly understood in forestry trees such as Betula luminifera. Transcriptomic libraries, small RNA (sRNA) libraries, and a mixed degradome cDNA library of B. luminifera roots and shoots treated under LP and normal conditions (CK) were constructed and sequenced using next-generation deep sequencing. A comprehensive B. luminifera transcriptome derived from its roots and shoots was constructed, and a total of 76,899 unigenes were generated. Analysis of the transcriptome identified 8,095 and 5,584 differentially expressed genes in roots and shoots, respectively, under LP conditions. sRNA sequencing analyses indicated that 66 and 60 miRNAs were differentially expressed in roots and shoots, respectively, under LP conditions. A total of 109 and 112 miRNA-target pairs were further validated in the roots and shoots, respectively, using degradome sequencing. Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis of differential miRNA targets indicated that the "ascorbate and aldarate metabolism" pathway responded to LP, suggesting miRNA-target pairs might participating in the removing of reactive oxidative species under LP stress. Moreover, a putative network of miRNA-target interactions involved in responses to LP stress in B. luminifera is proposed. Taken together, these findings provide useful information to decipher miRNA functions and establish a framework for exploring P signaling networks regulated by miRNAs in B. luminifera and other woody plants. It may provide new insights into the genetic engineering of high use efficiency of Pi in forestry trees.
Collapse
Affiliation(s)
- Junhong Zhang
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Bio-Technology, Zhejiang A&F University, Hangzhou, China
| | | | | | | | | | | | - Zaikang Tong
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Bio-Technology, Zhejiang A&F University, Hangzhou, China
| |
Collapse
|
7
|
López-Ruiz BA, Juárez-González VT, Gómez-Felipe A, De Folter S, Dinkova TD. tasiR-ARFs Production and Target Regulation during In Vitro Maize Plant Regeneration. PLANTS (BASEL, SWITZERLAND) 2020; 9:E849. [PMID: 32640631 PMCID: PMC7411845 DOI: 10.3390/plants9070849] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 12/11/2022]
Abstract
During in vitro maize plant regeneration somatic cells change their normal fate and undergo restructuring to generate pluripotent cells able to originate new plants. Auxins are essential to achieve such plasticity. Their physiological effects are mediated by auxin response factors (ARFs) that bind auxin responsive elements within gene promoters. Small trans-acting (ta)-siRNAs, originated from miR390-guided TAS3 primary transcript cleavage, target ARF3/4 class (tasiR-ARFs). Here we found that TAS3b precursor as well as derived tasiR-ARFbD5 and tasiR-ARFbD6 display significantly lower levels in non-embryogenic callus (NEC), while TAS3g, miR390 and tasiR-ARFg are more abundant in the same tissue. However, Argonaute (AGO7) and leafbladeless 1 (LBLl) required for tasiR-ARF biogenesis showed significantly higher transcript levels in EC suggesting limited tasiR-ARF biogenesis in NEC. The five maize ARFs targeted by tasiR-ARFs were also significantly enriched in EC and accompanied by higher auxin accumulation with punctuate patterns in this tissue. At hormone half-reduction and photoperiod implementation, plant regeneration initiated from EC with transient TAS3g, miR390 and tasiR-ARFg increase. Upon complete hormone depletion, TAS3b became abundant and derived tasiR-ARFs gradually increased at further regeneration stages. ZmARF transcripts targeted by tasiR-ARFs, as well as AGO7 and LBL1 showed significantly lower levels during regeneration than in EC. These results indicate a dynamic tasiR-ARF mediated regulation throughout maize in vitro plant regeneration.
Collapse
Affiliation(s)
- Brenda Anabel López-Ruiz
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de Mexico, 04510 Ciudad de Mexico, Mexico; (B.A.L.-R.); (V.T.J.-G.)
| | - Vasti Thamara Juárez-González
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de Mexico, 04510 Ciudad de Mexico, Mexico; (B.A.L.-R.); (V.T.J.-G.)
| | - Andrea Gómez-Felipe
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Unidad de Genómica Avanzada (UGA-LANGEBIO), 36821 Irapuato Gto., Mexico; (A.G.-F.); (S.D.F.)
| | - Stefan De Folter
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Unidad de Genómica Avanzada (UGA-LANGEBIO), 36821 Irapuato Gto., Mexico; (A.G.-F.); (S.D.F.)
| | - Tzvetanka D. Dinkova
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de Mexico, 04510 Ciudad de Mexico, Mexico; (B.A.L.-R.); (V.T.J.-G.)
| |
Collapse
|
8
|
De La Torre AR, Piot A, Liu B, Wilhite B, Weiss M, Porth I. Functional and morphological evolution in gymnosperms: A portrait of implicated gene families. Evol Appl 2020; 13:210-227. [PMID: 31892953 PMCID: PMC6935586 DOI: 10.1111/eva.12839] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 04/25/2019] [Accepted: 07/02/2019] [Indexed: 12/12/2022] Open
Abstract
Gymnosperms diverged from their sister plant clade of flowering plants 300 Mya. Morphological and functional divergence between the two major seed plant clades involved significant changes in their reproductive biology, water-conducting systems, secondary metabolism, stress defense mechanisms, and small RNA-mediated epigenetic silencing. The relatively recent sequencing of several gymnosperm genomes and the development of new genomic resources have enabled whole-genome comparisons within gymnosperms, and between angiosperms and gymnosperms. In this paper, we aim to understand how genes and gene families have contributed to the major functional and morphological differences in gymnosperms, and how this information can be used for applied breeding and biotechnology. In addition, we have analyzed the angiosperm versus gymnosperm evolution of the pleiotropic drug resistance (PDR) gene family with a wide range of functionalities in plants' interaction with their environment including defense mechanisms. Some of the genes reviewed here are newly studied members of gene families that hold potential for biotechnological applications related to commercial and pharmacological value. Some members of conifer gene families can also be exploited for their potential in phytoremediation applications.
Collapse
Affiliation(s)
| | - Anthony Piot
- Department of Wood and Forest SciencesLaval UniversityQuebec CityQuebecCanada
- Institute for System and Integrated Biology (IBIS)Laval UniversityQuebec CityQuebecCanada
- Centre for Forest Research (CEF)Laval UniversityQuebec CityQuebecCanada
| | - Bobin Liu
- School of ForestryNorthern Arizona UniversityFlagstaffAZUSA
- College of ForestryFujian Agricultural and Forestry UniversityFuzhouFujianChina
| | | | - Matthew Weiss
- School of ForestryNorthern Arizona UniversityFlagstaffAZUSA
| | - Ilga Porth
- Department of Wood and Forest SciencesLaval UniversityQuebec CityQuebecCanada
- Institute for System and Integrated Biology (IBIS)Laval UniversityQuebec CityQuebecCanada
- Centre for Forest Research (CEF)Laval UniversityQuebec CityQuebecCanada
| |
Collapse
|
9
|
Nakamura M, Köhler C, Hennig L. Tissue-specific transposon-associated small RNAs in the gymnosperm tree, Norway spruce. BMC Genomics 2019; 20:997. [PMID: 31856707 PMCID: PMC6923980 DOI: 10.1186/s12864-019-6385-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 12/11/2019] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Small RNAs (sRNAs) are regulatory molecules impacting on gene expression and transposon activity. MicroRNAs (miRNAs) are responsible for tissue-specific and environmentally-induced gene repression. Short interfering RNAs (siRNA) are constitutively involved in transposon silencing across different type of tissues. The male gametophyte in angiosperms has a unique set of sRNAs compared to vegetative tissues, including phased siRNAs from intergenic or genic regions, or epigenetically activated siRNAs. This is contrasted by a lack of knowledge about the sRNA profile of the male gametophyte of gymnosperms. RESULTS Here, we isolated mature pollen from male cones of Norway spruce and investigated its sRNA profiles. While 21-nt sRNAs is the major size class of sRNAs in needles, in pollen 21-nt and 24-nt sRNAs are the most abundant size classes. Although the 24-nt sRNAs were exclusively derived from TEs in pollen, both 21-nt and 24-nt sRNAs were associated with TEs. We also investigated sRNAs from somatic embryonic callus, which has been reported to contain 24-nt sRNAs. Our data show that the 24-nt sRNA profiles are tissue-specific and differ between pollen and cell culture. CONCLUSION Our data reveal that gymnosperm pollen, like angiosperm pollen, has a unique sRNA profile, differing from vegetative leaf tissue. Thus, our results reveal that angiosperm and gymnosperm pollen produce new size classes not present in vegetative tissues; while in angiosperm pollen 21-nt sRNAs are generated, in the gymnosperm Norway spruce 24-nt sRNAs are generated. The tissue-specific production of distinct TE-derived sRNAs in angiosperms and gymnosperms provides insights into the diversification process of sRNAs in TE silencing pathways between the two groups of seed plants.
Collapse
Affiliation(s)
- Miyuki Nakamura
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden.
| | - Claudia Köhler
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
| | - Lars Hennig
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
| |
Collapse
|
10
|
Singh K, Dardick C, Kumar Kundu J. RNAi-Mediated Resistance Against Viruses in Perennial Fruit Plants. PLANTS 2019; 8:plants8100359. [PMID: 31546695 PMCID: PMC6843808 DOI: 10.3390/plants8100359] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 09/19/2019] [Accepted: 09/20/2019] [Indexed: 12/02/2022]
Abstract
Small RNAs (sRNAs) are 20–30-nucleotide-long, regulatory, noncoding RNAs that induce silencing of target genes at the transcriptional and posttranscriptional levels. They are key components for cellular functions during plant development, hormone signaling, and stress responses. Generated from the cleavage of double-stranded RNAs (dsRNAs) or RNAs with hairpin structures by Dicer-like proteins (DCLs), they are loaded onto Argonaute (AGO) protein complexes to induce gene silencing of their complementary targets by promoting messenger RNA (mRNA) cleavage or degradation, translation inhibition, DNA methylation, and/or histone modifications. This mechanism of regulating RNA activity, collectively referred to as RNA interference (RNAi), which is an evolutionarily conserved process in eukaryotes. Plant RNAi pathways play a fundamental role in plant immunity against viruses and have been exploited via genetic engineering to control disease. Plant viruses of RNA origin that contain double-stranded RNA are targeted by the RNA-silencing machinery to produce virus-derived small RNAs (vsRNAs). Some vsRNAs serve as an effector to repress host immunity by capturing host RNAi pathways. High-throughput sequencing (HTS) strategies have been used to identify endogenous sRNA profiles, the “sRNAome”, and analyze expression in various perennial plants. Therefore, the review examines the current knowledge of sRNAs in perennial plants and fruits, describes the development and implementation of RNA interference (RNAi) in providing resistance against economically important viruses, and explores sRNA targets that are important in regulating a variety of biological processes.
Collapse
Affiliation(s)
- Khushwant Singh
- Division of Crop Protection and Plant Health, Crop Research Institute, Prague 161 06, Czech Republic.
| | - Chris Dardick
- United States Department of Agriculture, Agricultural Research Service, Appalachian Fruit Research Station, Kearneysville, WV 25430, USA.
| | - Jiban Kumar Kundu
- Division of Crop Protection and Plant Health, Crop Research Institute, Prague 161 06, Czech Republic.
| |
Collapse
|
11
|
Rodrigues AS, Chaves I, Costa BV, Lin YC, Lopes S, Milhinhos A, Van de Peer Y, Miguel CM. Small RNA profiling in Pinus pinaster reveals the transcriptome of developing seeds and highlights differences between zygotic and somatic embryos. Sci Rep 2019; 9:11327. [PMID: 31383905 PMCID: PMC6683148 DOI: 10.1038/s41598-019-47789-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 07/24/2019] [Indexed: 02/07/2023] Open
Abstract
Regulation of seed development by small non-coding RNAs (sRNAs) is an important mechanism controlling a crucial phase of the life cycle of seed plants. In this work, sRNAs from seed tissues (zygotic embryos and megagametophytes) and from somatic embryos of Pinus pinaster were analysed to identify putative regulators of seed/embryo development in conifers. In total, sixteen sRNA libraries covering several developmental stages were sequenced. We show that embryos and megagametophytes express a large population of 21-nt sRNAs and that substantial amounts of 24-nt sRNAs were also detected, especially in somatic embryos. A total of 215 conserved miRNAs, one third of which are conifer-specific, and 212 high-confidence novel miRNAs were annotated. MIR159, MIR171 and MIR394 families were found in embryos, but were greatly reduced in megagametophytes. Other families, like MIR397 and MIR408, predominated in somatic embryos and megagametophytes, suggesting their expression in somatic embryos is associated with in vitro conditions. Analysis of the predicted miRNA targets suggests that miRNA functions are relevant in several processes including transporter activity at the cotyledon-forming stage, and sulfur metabolism across several developmental stages. An important resource for studying conifer embryogenesis is made available here, which may also provide insightful clues for improving clonal propagation via somatic embryogenesis.
Collapse
Affiliation(s)
- Andreia S Rodrigues
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Av. República, 2780-157, Oeiras, Portugal
| | - Inês Chaves
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Av. República, 2780-157, Oeiras, Portugal
| | - Bruno Vasques Costa
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Av. República, 2780-157, Oeiras, Portugal
- INESC-ID, Instituto Superior Técnico, Universidade de Lisboa, Rua Alves Redol 9, Lisboa, 1000-029, Portugal
| | - Yao-Cheng Lin
- Biotechnology Center in Southern Taiwan and Agricultural Biotechnology Research Center, Academia Sinica, Tainan, Taiwan
- VIB-UGent Center for Plant Systems Biology, Ghent, Belgium
| | - Susana Lopes
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Av. República, 2780-157, Oeiras, Portugal
| | - Ana Milhinhos
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Av. República, 2780-157, Oeiras, Portugal
| | - Yves Van de Peer
- VIB-UGent Center for Plant Systems Biology, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Private bag X20, Pretoria, 0028, South Africa
| | - Célia M Miguel
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901, Oeiras, Portugal.
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Av. República, 2780-157, Oeiras, Portugal.
- BioISI - Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal.
| |
Collapse
|
12
|
Galdino JH, Eguiluz M, Guzman F, Margis R. Novel and Conserved miRNAs Among Brazilian Pine and Other Gymnosperms. Front Genet 2019; 10:222. [PMID: 30984236 PMCID: PMC6448024 DOI: 10.3389/fgene.2019.00222] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 02/28/2019] [Indexed: 01/01/2023] Open
Abstract
The knowledge about plant miRNAs has increased exponentially, with thousands of miRNAs been reported in different plant taxa using high throughput sequencing technologies and bioinformatic tools. Nevertheless, several groups of plants remain unexplored, and the gap of knowledge about conifer miRNAs is considerable. There is no sequence or functional information available on miRNAs in Araucariaceae. This group is represented in Brazil by only one species, Araucaria angustifolia, an endangered species known as Brazilian pine. In the present study, Brazilian pine has its transcriptome explored with respect to small RNAs, representing the first description in a member of the Araucariaceae family. The screening for conserved miRNAs in Brazilian pine revealed 115 sequences of 30 miRNA families. A total of 106 precursors sequences were predicted. Forty one comprised conserved miRNAs from 16 families, whereas 65 were annotated as novel miRNAs. The comparison of Brazilian pine precursors with sRNA libraries of other five conifer species indicates that 9 out 65 novel miRNAs are conserved among gymnosperms, while 56 seems to be specific for Brazilian pine or restricted to Araucariaceae family. Analysis comparing novel Brazilian pine miRNAs precursors and Araucaria cunninghamii RNA-seq data identified seven orthologs between both species. Mature miRNA identified by bioinformatics predictions were validated using stem-loop RT-qPCR assays. The expression pattern of conserved and novel miRNAs was analyzed in five different tissues of 3-month-old Araucaria seedlings. The present study provides insights about the nature and composition of miRNAs in an Araucariaceae species, with valuable information on miRNAs diversity and conservation in this taxon.
Collapse
Affiliation(s)
- José Henrique Galdino
- Programa de Pós-graduação e Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Brazil
| | - Maria Eguiluz
- Programa de Pós-graduação e Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Brazil
| | - Frank Guzman
- Programa de Pós-graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Brazil
| | - Rogerio Margis
- Programa de Pós-graduação e Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Brazil
- Programa de Pós-graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Brazil
- Departamento de Biofísica, Instituto de Biociências, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Brazil
| |
Collapse
|
13
|
Zhu X, Jiu S, Li X, Zhang K, Wang M, Wang C, Fang J. In silico identification and computational characterization of endogenous small interfering RNAs from diverse grapevine tissues and stages. Genes Genomics 2018; 40:801-817. [PMID: 30047108 DOI: 10.1007/s13258-018-0679-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 02/28/2018] [Indexed: 10/17/2022]
Abstract
Small interfering RNAs (siRNAs) are effectors of regulatory pathways underlying plant development, metabolism, and stress- and nutrient-signaling regulatory networks. The endogenous siRNAs are generally not conserved between plants; consequently, it is necessary and important to identify and characterize siRNAs from various plants. To address the nature and functions of siRNAs, and understand the biological roles of the huge siRNA population in grapevine (Vitis vinifera L.). The high-throughput sequencing technology was used to identify a large set of putative endogenous siRNAs from six grapevine tissues/organs. Subsequently, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis was performed to classify the target genes of siRNA. In total, 520,519 candidate siRNAs were identified and their expression profiles exhibited typical temporal characters during grapevine development. In addition, we identified two grapevine trans-acting siRNA (TAS) gene homologs (VvTAS3 and VvTAS4) and the derived trans-acting siRNAs (tasiRNAs) that could target grapevine auxin response factor (ARF) and myeloblastosis (MYB) genes. Furthermore, the GO and KEGG analysis of target genes showed that most of them covered a broad range of functional categories, especially involving in disease-resistance process. The large-scale and completely genome-wide level identification and characterization of grapevine endogenous siRNAs from the diverse tissues by high throughput technology revealed the nature and functions of siRNAs in grapevine.
Collapse
Affiliation(s)
- Xudong Zhu
- College of Horticulture, Nanjing Agricultural University, Weigang 1 hao, Nanjing, 210095, China
| | - Songtao Jiu
- College of Horticulture, Nanjing Agricultural University, Weigang 1 hao, Nanjing, 210095, China
| | - Xiaopeng Li
- College of Horticulture, Nanjing Agricultural University, Weigang 1 hao, Nanjing, 210095, China
| | - Kekun Zhang
- College of Horticulture, Nanjing Agricultural University, Weigang 1 hao, Nanjing, 210095, China
| | - Mengqi Wang
- College of Horticulture, Nanjing Agricultural University, Weigang 1 hao, Nanjing, 210095, China
| | - Chen Wang
- College of Horticulture, Nanjing Agricultural University, Weigang 1 hao, Nanjing, 210095, China
| | - Jinggui Fang
- College of Horticulture, Nanjing Agricultural University, Weigang 1 hao, Nanjing, 210095, China.
| |
Collapse
|
14
|
Ujino-Ihara T, Ueno S, Uchiyama K, Futamura N. Comprehensive analysis of small RNAs expressed in developing male strobili of Cryptomeria japonica. PLoS One 2018. [PMID: 29529051 PMCID: PMC5846777 DOI: 10.1371/journal.pone.0193665] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Deep sequencing of small RNAs (sRNAs) in developing male strobili of second-generation offspring originating from a nuclear genic male sterile tree of Cryptomeria japonica were performed to characterize sRNA populations in the male strobili at early pollen developmental stages. Comparing to sequences of microRNA (miRNA) families of plant species and sRNAs expressed in the reproductive organs of representative vascular plants, 37 conserved miRNA families were detected, of which eight were ubiquitously expressed in the reproductive organs of land plant species. In contrast, miR1083 was common in male reproductive organs of gymnosperm species but absent in angiosperm species. In addition to conserved miRNAs, 199 novel miRNAs candidates were predicted. The expression patterns of the obtained sRNAs were further investigated to detect the differentially expressed (DE) sRNAs between genic male sterile and fertile individuals. A total of 969 DE sRNAs were obtained and only three known miRNA families were included among them. These results suggest that both conserved and species-specific sRNAs contribute to the development of male strobili in C. japonica.
Collapse
Affiliation(s)
- Tokuko Ujino-Ihara
- Department of Forest Molecular Genetics and Biotechnology, Forestry and Forest Products Research Institute, Forest Research and Management Organization, Tsukuba, Ibaraki, Japan
- * E-mail:
| | - Saneyoshi Ueno
- Department of Forest Molecular Genetics and Biotechnology, Forestry and Forest Products Research Institute, Forest Research and Management Organization, Tsukuba, Ibaraki, Japan
| | - Kentaro Uchiyama
- Department of Forest Molecular Genetics and Biotechnology, Forestry and Forest Products Research Institute, Forest Research and Management Organization, Tsukuba, Ibaraki, Japan
| | - Norihiro Futamura
- Department of Forest Molecular Genetics and Biotechnology, Forestry and Forest Products Research Institute, Forest Research and Management Organization, Tsukuba, Ibaraki, Japan
| |
Collapse
|
15
|
Liu Y, El-Kassaby YA. Landscape of Fluid Sets of Hairpin-Derived 21-/24-nt-Long Small RNAs at Seed Set Uncovers Special Epigenetic Features in Picea glauca. Genome Biol Evol 2017; 9:82-92. [PMID: 28082604 PMCID: PMC5381586 DOI: 10.1093/gbe/evw283] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2016] [Indexed: 12/23/2022] Open
Abstract
Conifers’ exceptionally large genome (20–30 Gb) is scattered with 60% retrotransposon (RT) components and we have little knowledge on their origin and evolutionary implications. RTs may impede the expression of flanking genes and provide sources of the formation of novel small RNA (sRNAs) populations to constrain events of transposon (TE) proliferation/transposition. Here we show a declining expression of 24-nt-long sRNAs and low expression levels of their key processing gene, pgRTL2 (RNASE THREE LIKE 2) at seed set in Picea glauca. The sRNAs in 24-nt size class are significantly less enriched in type and read number than 21-nt sRNAs and have not been documented in other species. The architecture of MIR loci generating highly expressed 24-/21-nt sRNAs is featured by long terminal repeat—retrotransposons (LTR-RTs) in families of Ty3/Gypsy and Ty1/Copia elements. This implies that the production of sRNAs may be predominantly originated from TE fragments on chromosomes. Furthermore, a large proportion of highly expressed 24-nt sRNAs does not have predictable targets against unique genes in Picea, suggestive of their potential pathway in DNA methylation modifications on, for instance, TEs. Additionally, the classification of computationally predicted sRNAs suggests that 24-nt sRNA targets may bear particular functions in metabolic processes while 21-nt sRNAs target genes involved in many different biological processes. This study, therefore, directs our attention to a possible extrapolation that lacking of 24-nt sRNAs at the late conifer seed developmental phase may result in less constraints in TE activities, thus contributing to the massive expansion of genome size.
Collapse
Affiliation(s)
- Yang Liu
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Yousry A El-Kassaby
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
16
|
Yakovlev IA, Fossdal CG. In Silico Analysis of Small RNAs Suggest Roles for Novel and Conserved miRNAs in the Formation of Epigenetic Memory in Somatic Embryos of Norway Spruce. Front Physiol 2017; 8:674. [PMID: 28943851 PMCID: PMC5596105 DOI: 10.3389/fphys.2017.00674] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 08/23/2017] [Indexed: 12/27/2022] Open
Abstract
Epigenetic memory in Norway spruce affects the timing of bud burst and bud set, vitally important adaptive traits for this long-lived forest species. Epigenetic memory is established in response to the temperature conditions during embryogenesis. Somatic embryogenesis at different epitype inducing (EpI) temperatures closely mimics the natural processes of epigenetic memory formation in seeds, giving rise to epigenetically different clonal plants in a reproducible and predictable manner, with respect to altered bud phenology. MicroRNAs (miRNAs) and other small non-coding RNAs (sRNAs) play an essential role in the regulation of plant gene expression and may affect this epigenetic mechanism. We used NGS sequencing and computational in silico methods to identify and profile conserved and novel miRNAs among small RNAs in embryogenic tissues of Norway spruce at three EpI temperatures (18, 23 and 28°C). We detected three predominant classes of sRNAs related to a length of 24 nt, followed by a 21–22 nt class and a third 31 nt class of sRNAs. More than 2100 different miRNAs within the prevailing length 21–22 nt were identified. Profiling these putative miRNAs allowed identification of 1053 highly expressed miRNAs, including 523 conserved and 530 novels. 654 of these miRNAs were found to be differentially expressed (DEM) depending on EpI temperature. For most DEMs, we defined their putative mRNA targets. The targets represented mostly by transcripts of multiple-repeats proteins, like TIR, NBS-LRR, PPR and TPR repeat, Clathrin/VPS proteins, Myb-like, AP2, etc. Notably, 124 DE miRNAs targeted 203 differentially expressed epigenetic regulators. Developing Norway spruce embryos possess a more complex sRNA structure than that reported for somatic tissues. A variety of the predicted miRNAs showed distinct EpI temperature dependent expression patterns. These putative EpI miRNAs target spruce genes with a wide range of functions, including genes known to be involved in epigenetic regulation, which in turn could provide a feedback process leading to the formation of epigenetic marks. We suggest that TIR, NBS and LRR domain containing proteins could fulfill more general functions for signal transduction from external environmental stimuli and conversion them into molecular response. Fine-tuning of the miRNA production likely participates in both developmental regulation and epigenetic memory formation in Norway spruce.
Collapse
|
17
|
Rodrigues AS, Miguel CM. The pivotal role of small non-coding RNAs in the regulation of seed development. PLANT CELL REPORTS 2017; 36:653-667. [PMID: 28289886 DOI: 10.1007/s00299-017-2120-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 02/09/2017] [Indexed: 05/27/2023]
Abstract
Seeds represent a crucial stage of the seed plants life cycle. It is during seed development that the foundations of the future plant body, and the ability to give rise to a new plant capable of growing under sometimes adverse environmental conditions, are established. Small non-coding RNAs are major regulators of gene expression both at the post-transcriptional and transcriptional levels and, not surprisingly, these elements play major roles in seed development and germination. We review here the current knowledge about small RNA expression and functions in seed development, going from the morphogenesis phase comprehending embryo development and patterning, to the several steps of the maturation phase, ending in the transition to the germination. A special focus is given to the small RNAs for which functional studies have been conducted and their participation in regulatory networks operating in seeds. Many challenges remain ahead for dissecting the complex small RNA landscape in seeds, but this is a highly relevant issue in plant biology and advances in this area will most certainly impact plant breeding.
Collapse
Affiliation(s)
- Andreia S Rodrigues
- Instituto de Biologia Experimental e Tecnológica (iBET), Apartado 12, 2780-901, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Av. da República, 2780-157, Oeiras, Portugal
| | - Célia M Miguel
- Instituto de Biologia Experimental e Tecnológica (iBET), Apartado 12, 2780-901, Oeiras, Portugal.
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Av. da República, 2780-157, Oeiras, Portugal.
- Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa (FCUL), Campo Grande, 1749-016, Lisbon, Portugal.
| |
Collapse
|
18
|
Transcriptome Analysis of mRNA and miRNA in Somatic Embryos of Larix leptolepis Subjected to Hydrogen Treatment. Int J Mol Sci 2016; 17:ijms17111951. [PMID: 27879674 PMCID: PMC5133945 DOI: 10.3390/ijms17111951] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 11/02/2016] [Accepted: 11/16/2016] [Indexed: 01/07/2023] Open
Abstract
Hydrogen is a therapeutic antioxidant that has been used extensively in clinical trials. It also acts as a bioactive molecule that can alleviate abiotic stress in plants. However, the biological effects of hydrogen in somatic embryos and the underlying molecular basis remain largely unknown. In this study, the morphological and physiological influence of exogenous H2 treatment during somatic embryogenesis was characterized in Larix leptolepis Gordon. The results showed that exposure to hydrogen increased the proportions of active pro-embryogenic cells and normal somatic embryos. We sequenced mRNA and microRNA (miRNA) libraries to identify global transcriptome changes at different time points during H2 treatment of larch pro-embryogenic masses (PEMs). A total of 45,393 mRNAs and 315 miRNAs were obtained. Among them, 4253 genes and 96 miRNAs were differentially expressed in the hydrogen-treated libraries compared with the control. Further, a large number of the differentially expressed mRNAs and miRNAs were related to reactive oxygen species (ROS) homeostasis and cell cycle regulation. We also identified 4399 potential target genes for 285 of the miRNAs. The differential expression data and the mRNA-miRNA interaction network described here provide new insights into the molecular mechanisms that determine the performance of PEMs exposed to H2 during somatic embryogenesis.
Collapse
|
19
|
Niu SH, Liu C, Yuan HW, Li P, Li Y, Li W. Identification and expression profiles of sRNAs and their biogenesis and action-related genes in male and female cones of Pinus tabuliformis. BMC Genomics 2015; 16:693. [PMID: 26369937 PMCID: PMC4570457 DOI: 10.1186/s12864-015-1885-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 08/27/2015] [Indexed: 01/08/2023] Open
Abstract
Background Small RNA (sRNA) play pivotal roles in reproductive development, and their biogenesis and action mechanisms are well characterised in angiosperm plants; however, corresponding studies in conifers are very limited. To improve our understanding of the roles of sRNA pathways in the reproductive development of conifers, the genes associated with sRNA biogenesis and action pathways were identified and analysed, and sRNA sequencing and parallel analysis of RNA ends (PARE) were performed in male and female cones of the Chinese pine (Pinus tabuliformis). Results Based on high-quality reference transcriptomic sequences, 21 high-confidence homologues involved in sRNA biogenesis and action in P. tabuliformis were identified, including two different DCL3 genes and one AGO4 gene. More than 75 % of genes involved in sRNA biogenesis and action have higher expression levels in female than in male cones. Twenty-six microRNA (miRNA) families and 74 targets, including 46 24-nt sRNAs with a 5’ A, which are specifically expressed in male cones or female cones and probably bind to AGO4, were identified. Conclusions The sRNA pathways have higher activity in female than in male cones, and the miRNA pathways are the main sRNA pathways in P. tabuliformis. The low level of 24-nt short-interfering RNAs in conifers is not caused by the absence of biogenesis-related genes or AGO-binding proteins, but most likely caused by the low accumulation of these key components. The identification of sRNAs and their targets, as well as genes associated with sRNA biogenesis and action, will provide a good starting point for investigations into the roles of sRNA pathways in cone development in conifers. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1885-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shi-Hui Niu
- National Engineering Laboratory for Forest Tree Breeding, College of Biological Science and Technology, Beijing Forestry University, Beijing, 100083, People's Republic of China.
| | - Chang Liu
- National Engineering Laboratory for Forest Tree Breeding, College of Biological Science and Technology, Beijing Forestry University, Beijing, 100083, People's Republic of China.
| | - Hu-Wei Yuan
- National Engineering Laboratory for Forest Tree Breeding, College of Biological Science and Technology, Beijing Forestry University, Beijing, 100083, People's Republic of China.
| | - Pei Li
- National Engineering Laboratory for Forest Tree Breeding, College of Biological Science and Technology, Beijing Forestry University, Beijing, 100083, People's Republic of China.
| | - Yue Li
- National Engineering Laboratory for Forest Tree Breeding, College of Biological Science and Technology, Beijing Forestry University, Beijing, 100083, People's Republic of China.
| | - Wei Li
- National Engineering Laboratory for Forest Tree Breeding, College of Biological Science and Technology, Beijing Forestry University, Beijing, 100083, People's Republic of China.
| |
Collapse
|
20
|
Ma L, Hatlen A, Kelly LJ, Becher H, Wang W, Kovarik A, Leitch IJ, Leitch AR. Angiosperms Are Unique among Land Plant Lineages in the Occurrence of Key Genes in the RNA-Directed DNA Methylation (RdDM) Pathway. Genome Biol Evol 2015; 7:2648-62. [PMID: 26338185 PMCID: PMC4607528 DOI: 10.1093/gbe/evv171] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The RNA-directed DNA methylation (RdDM) pathway can be divided into three phases: 1) small interfering RNA biogenesis, 2) de novo methylation, and 3) chromatin modification. To determine the degree of conservation of this pathway we searched for key genes among land plants. We used OrthoMCL and the OrthoMCL Viridiplantae database to analyze proteomes of species in bryophytes, lycophytes, monilophytes, gymnosperms, and angiosperms. We also analyzed small RNA size categories and, in two gymnosperms, cytosine methylation in ribosomal DNA. Six proteins were restricted to angiosperms, these being NRPD4/NRPE4, RDM1, DMS3 (defective in meristem silencing 3), SHH1 (SAWADEE homeodomain homolog 1), KTF1, and SUVR2, although we failed to find the latter three proteins in Fritillaria persica, a species with a giant genome. Small RNAs of 24 nt in length were abundant only in angiosperms. Phylogenetic analyses of Dicer-like (DCL) proteins showed that DCL2 was restricted to seed plants, although it was absent in Gnetum gnemon and Welwitschia mirabilis. The data suggest that phases (1) and (2) of the RdDM pathway, described for model angiosperms, evolved with angiosperms. The absence of some features of RdDM in F. persica may be associated with its large genome. Phase (3) is probably the most conserved part of the pathway across land plants. DCL2, involved in virus defense and interaction with the canonical RdDM pathway to facilitate methylation of CHH, is absent outside seed plants. Its absence in G. gnemon, and W. mirabilis coupled with distinctive patterns of CHH methylation, suggest a secondary loss of DCL2 following the divergence of Gnetales.
Collapse
Affiliation(s)
- Lu Ma
- School of Biological and Chemical Sciences, Queen Mary University of London, United Kingdom
| | - Andrea Hatlen
- School of Biological and Chemical Sciences, Queen Mary University of London, United Kingdom
| | - Laura J Kelly
- School of Biological and Chemical Sciences, Queen Mary University of London, United Kingdom
| | - Hannes Becher
- School of Biological and Chemical Sciences, Queen Mary University of London, United Kingdom
| | - Wencai Wang
- School of Biological and Chemical Sciences, Queen Mary University of London, United Kingdom
| | - Ales Kovarik
- Department of Molecular Epigenetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic
| | - Ilia J Leitch
- Department of Comparative Plant and Fungal Biology Royal Botanic Gardens, Kew, Richmond, Surrey, United Kingdom
| | - Andrew R Leitch
- School of Biological and Chemical Sciences, Queen Mary University of London, United Kingdom
| |
Collapse
|
21
|
Huang Y, Kendall T, Forsythe ES, Dorantes-Acosta A, Li S, Caballero-Pérez J, Chen X, Arteaga-Vázquez M, Beilstein MA, Mosher RA. Ancient Origin and Recent Innovations of RNA Polymerase IV and V. Mol Biol Evol 2015; 32:1788-99. [PMID: 25767205 PMCID: PMC4476159 DOI: 10.1093/molbev/msv060] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Small RNA-mediated chromatin modification is a conserved feature of eukaryotes. In flowering plants, the short interfering (si)RNAs that direct transcriptional silencing are abundant and subfunctionalization has led to specialized machinery responsible for synthesis and action of these small RNAs. In particular, plants possess polymerase (Pol) IV and Pol V, multi-subunit homologs of the canonical DNA-dependent RNA Pol II, as well as specialized members of the RNA-dependent RNA Polymerase (RDR), Dicer-like (DCL), and Argonaute (AGO) families. Together these enzymes are required for production and activity of Pol IV-dependent (p4-)siRNAs, which trigger RNA-directed DNA methylation (RdDM) at homologous sequences. p4-siRNAs accumulate highly in developing endosperm, a specialized tissue found only in flowering plants, and are rare in nonflowering plants, suggesting that the evolution of flowers might coincide with the emergence of specialized RdDM machinery. Through comprehensive identification of RdDM genes from species representing the breadth of the land plant phylogeny, we describe the ancient origin of Pol IV and Pol V, suggesting that a nearly complete and functional RdDM pathway could have existed in the earliest land plants. We also uncover innovations in these enzymes that are coincident with the emergence of seed plants and flowering plants, and recent duplications that might indicate additional subfunctionalization. Phylogenetic analysis reveals rapid evolution of Pol IV and Pol V subunits relative to their Pol II counterparts and suggests that duplicates were retained and subfunctionalized through Escape from Adaptive Conflict. Evolution within the carboxy-terminal domain of the Pol V largest subunit is particularly striking, where illegitimate recombination facilitated extreme sequence divergence.
Collapse
Affiliation(s)
- Yi Huang
- The School of Plant Sciences, The University of Arizona
| | - Timmy Kendall
- The School of Plant Sciences, The University of Arizona
| | | | - Ana Dorantes-Acosta
- Instituto de Biotecnología y Ecología Aplicada (INBIOTECA), Universidad Veracruzana, Veracruz, México
| | - Shaofang Li
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside
| | | | - Xuemei Chen
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside
| | - Mario Arteaga-Vázquez
- Instituto de Biotecnología y Ecología Aplicada (INBIOTECA), Universidad Veracruzana, Veracruz, México
| | | | - Rebecca A Mosher
- The School of Plant Sciences, The University of Arizona The Bio5 Institute, The University of Arizona
| |
Collapse
|
22
|
Lin Y, Lin L, Lai R, Liu W, Chen Y, Zhang Z, XuHan X, Lai Z. MicroRNA390-Directed TAS3 Cleavage Leads to the Production of tasiRNA-ARF3/4 During Somatic Embryogenesis in Dimocarpus longan Lour. FRONTIERS IN PLANT SCIENCE 2015; 6:1119. [PMID: 26734029 PMCID: PMC4680215 DOI: 10.3389/fpls.2015.01119] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 11/26/2015] [Indexed: 05/18/2023]
Abstract
Trans-acting short-interfering RNAs (tasiRNAs) originate from TAS3 families through microRNA (miRNA) 390-guided cleavage of primary transcripts and target auxin response factors (ARF3/-4), which are involved in the normal development of lateral roots and flowers in plants. However, their roles in embryo development are still unclear. Here, the pathway miR390-TAS3-ARF3/-4 was identified systematically for the first time during somatic embryo development in Dimocarpus longan. We identified the miR390 primary transcript and promoter. The promoter contained cis-acting elements responsive to stimuli such as light, salicylic acid, anaerobic induction, fungal elicitor, circadian control, and heat stress. The longan TAS3 transcript, containing two miR390-binding sites, was isolated; the miR390- guided cleavage site located near the 3' end of the TAS3 transcript was verified. Eight TAS3-tasiRNAs with the 21-nucleotides phase were found among longan small RNA data, further confirming that miR390-directed TAS3 cleavage leads to the production of tasiRNA in longan. Among them, TAS3_5'D5+ and 5'D6+ tasiRNAs were highly abundant, and verified to target ARF3 and -4, implying that miR390-guided TAS3 cleavage with 21-nucleotides phase leading to the production of tasiRNA-ARF is conserved in plants. Pri-miR390 was highly expressed in friable-embryogenic callus (EC), and less expressed in incomplete compact pro-embryogenic cultures, while miR390 showed its lowest expression in EC and highest expression in torpedo-shaped embryos (TEs). DlTAS3 and DlARF4 both exhibited their lowest expressions in EC, and reached their peaks in the globular embryos stage, which were mainly inversely proportional to the expression of miR390, especially at the globular embryos to cotyledonary embryos (CEs) stages. While DlARF3 showed little variation from the EC to TEs stages, and exhibited its lowest expression in the CEs stage. There was a general lack of correlation between the expressions of DlARF3 and miR390. In addition, pri-miR390, DlTAS3, DlARF3 and -4 were up-regulated by 2,4-D in a concentration-dependent manner. They were also preferentially expressed in roots, pulp, and seeds of 'Sijimi' longan, implying their extended roles in the development of longan roots and fruit. This study provided insights into a possible role of miR390-tasiRNAs-ARF in plant somatic embryo development.
Collapse
|
23
|
Bi Q, Guo B, Zhang D, Guan W. Identification and characterization of conserved and novel microRNAs in Xanthoceras sorbifolium via deep sequencing. Genes Genomics 2014. [DOI: 10.1007/s13258-014-0248-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
24
|
De Paolo S, Salvemini M, Gaudio L, Aceto S. De novo transcriptome assembly from inflorescence of Orchis italica: analysis of coding and non-coding transcripts. PLoS One 2014; 9:e102155. [PMID: 25025767 PMCID: PMC4099010 DOI: 10.1371/journal.pone.0102155] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 06/16/2014] [Indexed: 01/09/2023] Open
Abstract
The floral transcriptome of Orchis italica, a wild orchid species, was obtained using Illumina RNA-seq technology and specific de novo assembly and analysis tools. More than 100 million raw reads were processed resulting in 132,565 assembled transcripts and 86,079 unigenes with an average length of 606 bp and N50 of 956 bp. Functional annotation assigned 38,984 of the unigenes to records present in the NCBI non-redundant protein database, 32,161 of them to Gene Ontology terms, 15,775 of them to Eukaryotic Orthologous Groups (KOG) and 7,143 of them to Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. The in silico expression analysis based on the Fragments Per Kilobase of transcript per Million mapped reads (FPKM) was confirmed by real-time RT-PCR experiments on 10 selected unigenes, which showed high and statistically significant positive correlation with the RNA-seq based expression data. The prediction of putative long non-coding RNAs was assessed using two different software packages, CPC and Portrait, resulting in 7,779 unannotated unigenes that matched the threshold values for both of the analyses. Among the predicted long non-coding RNAs, one is the homologue of TAS3, a long non-coding RNA precursor of trans-acting small interfering RNAs (ta-siRNAs). The differential expression pattern observed for the selected putative long non-coding RNAs suggests their possible functional role in different floral tissues.
Collapse
Affiliation(s)
- Sofia De Paolo
- Department of Biology, University of Naples Federico II, Napoli, Italy
| | - Marco Salvemini
- Department of Biology, University of Naples Federico II, Napoli, Italy
| | - Luciano Gaudio
- Department of Biology, University of Naples Federico II, Napoli, Italy
| | - Serena Aceto
- Department of Biology, University of Naples Federico II, Napoli, Italy
- * E-mail:
| |
Collapse
|
25
|
Quinn CR, Iriyama R, Fernando DD. Expression patterns of conserved microRNAs in the male gametophyte of loblolly pine (Pinus taeda). PLANT REPRODUCTION 2014; 27:69-78. [PMID: 24664256 DOI: 10.1007/s00497-014-0241-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 03/13/2014] [Indexed: 06/03/2023]
Abstract
MicroRNAs (miRNAs) are small RNAs that regulate genes involved in various aspects of plant development, but their presence and expression patterns in the male gametophytes of gymnosperms have not yet been established. Therefore, this study identified and compared the expression patterns of conserved miRNAs from two stages of the male gametophyte of loblolly pine (Pinus taeda), which are the mature (ungerminated) and germinated pollen. Microarray was used to identify conserved miRNAs that varied in expression between these two stages of the loblolly pine male gametophyte. Forty-seven conserved miRNAs showed significantly different expression levels between mature and germinated loblolly pine pollen. In particular, miRNAs representing 14 and 8 families were up- and down-regulated in germinated loblolly pine pollen, respectively. qRT-PCR was used to validate their expression patterns using representative miRNAs. Target genes and proteins were identified using psRNATarget program. Predicted targets of the 22 miRNA families belong mostly to classes of genes involved in defense/stress response, metabolism, regulation, and signaling. qRT-PCR was also used to validate the expression patterns of representative target genes. This study shows that conserved miRNAs are expressed in mature and germinated loblolly pine pollen. Many of these miRNAs are differentially expressed, which indicates that the two stages of the male gametophyte examined are regulated at the miRNA level. This study also expands our knowledge of the male gametophytes of seed plants by providing insights on some similarities and differences in the types and expression patterns of conserved miRNAs between loblolly pine with those of rice and Arabidopsis.
Collapse
Affiliation(s)
- Christina R Quinn
- Department of Environmental and Forest Biology, State University of New York College of Environmental Science and Forestry, One Forestry Drive, Syracuse, NY, 13210, USA
| | | | | |
Collapse
|
26
|
Abstract
RNA-directed DNA methylation (RdDM) is the major small RNA-mediated epigenetic pathway in plants. RdDM requires a specialized transcriptional machinery that comprises two plant-specific RNA polymerases - Pol IV and Pol V - and a growing number of accessory proteins, the functions of which in the RdDM mechanism are only partially understood. Recent work has revealed variations in the canonical RdDM pathway and identified factors that recruit Pol IV and Pol V to specific target sequences. RdDM, which transcriptionally represses a subset of transposons and genes, is implicated in pathogen defence, stress responses and reproduction, as well as in interallelic and intercellular communication.
Collapse
|
27
|
Zhang J, Zhang S, Han S, Li X, Tong Z, Qi L. Deciphering small noncoding RNAs during the transition from dormant embryo to germinated embryo in Larches (Larix leptolepis). PLoS One 2013; 8:e81452. [PMID: 24339932 PMCID: PMC3858266 DOI: 10.1371/journal.pone.0081452] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 10/11/2013] [Indexed: 11/25/2022] Open
Abstract
Small RNAs (sRNAs), as a key component of molecular biology, play essential roles in plant development, hormone signaling, and stress response. However, little is known about the relationships among sRNAs, hormone signaling, and dormancy regulation in gymnosperm embryos. To investigate the roles of sRNAs in embryo dormancy maintenance and release in Larix leptolepis, we deciphered the endogenous “sRNAome” in dormant and germinated embryos. High-throughput sequencing of sRNA libraries showed that dormant embryos exhibited a length bias toward 24-nt while germinated embryos showed a bias toward 21-nt lengths. This might be associated with distinct levels of RNA-dependent RNA polymerase2 (RDR2) and/or RDR6, which is regulated by hormones. Proportions of miRNAs to nonredundant and redundant sRNAs were higher in germinated embryos than in dormant embryos, while the ratio of unknown sRNAs was higher in dormant embryos than in germinated embryos. We identified a total of 160 conserved miRNAs from 38 families, 3 novel miRNAs, and 16 plausible miRNA candidates, of which many were upregulated in germinated embryos relative to dormant embryos. These findings indicate that larches and possibly other gymnosperms have complex mechanisms of gene regulation involving miRNAs and other sRNAs operating transcriptionally and posttranscriptionally during embryo dormancy and germination. We propose that abscisic acid modulates embryo dormancy and germination at least in part through regulation of the expression level of sRNA-biogenesis genes, thus changing the sRNA components.
Collapse
Affiliation(s)
- Junhong Zhang
- Nurturing Station for the State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture and Forestry University, Lin’an, Hangzhou, Zhejiang, P.R. China
- Laboratory of Cell Biology, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, P.R. China
| | - Shougong Zhang
- Laboratory of Cell Biology, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, P.R. China
| | - Suying Han
- Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing, P.R. China
| | - Xinmin Li
- Laboratory of Cell Biology, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, P.R. China
- Department of Pathology and Laboratory Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Zaikang Tong
- Nurturing Station for the State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture and Forestry University, Lin’an, Hangzhou, Zhejiang, P.R. China
- * E-mail: (ZT); (LQ)
| | - Liwang Qi
- Laboratory of Cell Biology, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, P.R. China
- * E-mail: (ZT); (LQ)
| |
Collapse
|
28
|
The Norway spruce genome sequence and conifer genome evolution. Nature 2013; 497:579-84. [DOI: 10.1038/nature12211] [Citation(s) in RCA: 1065] [Impact Index Per Article: 88.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2013] [Accepted: 04/22/2013] [Indexed: 12/18/2022]
|