1
|
Taway K, Dachphun I, Vuttipongchaikij S, Suttangkakul A. Evaluation of cucumber UBL5 promoter as a tool for transgene expression and genome editing in plants. Transgenic Res 2023; 32:437-449. [PMID: 37351728 DOI: 10.1007/s11248-023-00359-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 06/12/2023] [Indexed: 06/24/2023]
Abstract
Transgene expression and genome editing can help improve cucumber varieties to better respond to climate change. This study aimed to evaluate the applicability of the CsUBL5 promoter in transgene expression and genome editing in cucumber. The CsUBL5 promoter was cloned and analyzed to identify cis-elements that respond to abiotic signals, hormones, signal molecules, and nutrient treatments. 5' deletion constructs of the promoter were tested for their ability to drive GUS reporter expression in cucumber cotyledons, Arabidopsis seedlings, and tobacco leaves, and their response to various treatments including SA, light, drought, IAA, and GA was determined. The results showed that the CsUBL5 promoter effectively drove transgene expression in these plants, and their expressions under treatments were consistent with the predicted cis-elements, with some exceptions. Furthermore, the pCsUBL5-749 deletion construct can improve genome editing efficiency in cucumber when driving Cas9 expression. The editing efficiency of two sgRNAs targeting the ATG6 gene in cucumber was up to 4.6-fold higher using pCsUBL5-749 compared to a rice UBI promoter, although the effects of changing promoter on the editing efficiency is sgRNA specific. These findings highlight the potential utility of the CsUBL5 promoter for improving cucumber varieties through genetic engineering and genome editing. It also demonstrates the importance of modulating Cas9 expression to increase genome editing efficiency in cucumbers.
Collapse
Affiliation(s)
- Kamonchanok Taway
- Department of Genetics, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
| | - Issariya Dachphun
- Department of Genetics, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
| | - Supachai Vuttipongchaikij
- Department of Genetics, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
- Omics Center for Agriculture, Bioresources, Food and Health, Kasetsart University (OmiKU), Bangkok, 10900, Thailand
- Center of Advanced Studies for Tropical Natural Resources, Kasetsart University, Ngam Wong Wan Road, Chattuchak, Bangkok, 10900, Thailand
| | - Anongpat Suttangkakul
- Department of Genetics, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand.
- Omics Center for Agriculture, Bioresources, Food and Health, Kasetsart University (OmiKU), Bangkok, 10900, Thailand.
- Center of Advanced Studies for Tropical Natural Resources, Kasetsart University, Ngam Wong Wan Road, Chattuchak, Bangkok, 10900, Thailand.
| |
Collapse
|
2
|
Imtiaz K, Ahmed M, Annum N, Tester M, Saeed NA. AtCIPK16, a CBL-interacting protein kinase gene, confers salinity tolerance in transgenic wheat. FRONTIERS IN PLANT SCIENCE 2023; 14:1127311. [PMID: 37008481 PMCID: PMC10060804 DOI: 10.3389/fpls.2023.1127311] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/27/2023] [Indexed: 06/19/2023]
Abstract
Globally, wheat is the major source of staple food, protein, and basic calories for most of the human population. Strategies must be adopted for sustainable wheat crop production to fill the ever-increasing food demand. Salinity is one of the major abiotic stresses involved in plant growth retardation and grain yield reduction. In plants, calcineurin-B-like proteins form a complicated network with the target kinase CBL-interacting protein kinases (CIPKs) in response to intracellular calcium signaling as a consequence of abiotic stresses. The AtCIPK16 gene has been identified in Arabidopsis thaliana and found to be significantly upregulated under salinity stress. In this study, the AtCIPK16 gene was cloned in two different plant expression vectors, i.e., pTOOL37 having a UBI1 promoter and pMDC32 having a 2XCaMV35S constitutive promoter transformed through the Agrobacterium-mediated transformation protocol, in the local wheat cultivar Faisalabad-2008. Based on their ability to tolerate different levels of salt stress (0, 50, 100, and 200 mM), the transgenic wheat lines OE1, OE2, and OE3 expressing AtCIPK16 under the UBI1 promoter and OE5, OE6, and OE7 expressing the same gene under the 2XCaMV35S promoter performed better at 100 mM of salinity stress as compared with the wild type. The AtCIPK16 overexpressing transgenic wheat lines were further investigated for their K+ retention ability in root tissues by utilizing the microelectrode ion flux estimation technique. It has been demonstrated that after 10 min of 100 mM NaCl application, more K+ ions were retained in the AtCIPK16 overexpressing transgenic wheat lines than in the wild type. Moreover, it could be concluded that AtCIPK16 functions as a positive elicitor in sequestering Na+ ions into the cell vacuole and retaining more cellular K+ under salt stress to maintain ionic homeostasis.
Collapse
Affiliation(s)
- Khadija Imtiaz
- Wheat Biotechnology Lab, Agriculture Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Constituent College Pakistan Institute of Engineering and Applied Sciences, Faisalabad, Pakistan
| | - Moddassir Ahmed
- Wheat Biotechnology Lab, Agriculture Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Constituent College Pakistan Institute of Engineering and Applied Sciences, Faisalabad, Pakistan
| | - Nazish Annum
- Wheat Biotechnology Lab, Agriculture Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Constituent College Pakistan Institute of Engineering and Applied Sciences, Faisalabad, Pakistan
| | - Mark Tester
- Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Nasir A. Saeed
- Wheat Biotechnology Lab, Agriculture Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Constituent College Pakistan Institute of Engineering and Applied Sciences, Faisalabad, Pakistan
| |
Collapse
|
3
|
Overexpression of Type 1 and 2 Diacylglycerol Acyltransferase Genes ( JcDGAT1 and JcDGAT2) Enhances Oil Production in the Woody Perennial Biofuel Plant Jatropha curcas. PLANTS 2021; 10:plants10040699. [PMID: 33916393 PMCID: PMC8066779 DOI: 10.3390/plants10040699] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/29/2021] [Accepted: 04/02/2021] [Indexed: 12/19/2022]
Abstract
Diacylglycerol acyltransferase (DGAT) is the only enzyme that catalyzes the acyl-CoA-dependent acylation of sn-1, 2-diacylglycerol (DAG) to form triacylglycerol (TAG). The two main types of DGAT enzymes in the woody perennial biofuel plant Jatropha curcas, JcDGAT1 and JcDGAT2, were previously characterized only in heterologous systems. In this study, we investigated the functions of JcDGAT1 and JcDGAT2 in J. curcas.JcDGAT1 and JcDGAT2 were found to be predominantly expressed during the late stages of J. curcas seed development, in which large amounts of oil accumulated. As expected, overexpression of JcDGAT1 or JcDGAT2 under the control of the CaMV35S promoter gave rise to an increase in seed kernel oil production, reaching a content of 53.7% and 55.7% of the seed kernel dry weight, respectively, which were respectively 25% and 29.6% higher than that of control plants. The increase in seed oil content was accompanied by decreases in the contents of protein and soluble sugars in the seeds. Simultaneously, there was a two- to four-fold higher leaf TAG content in transgenic plants than in control plants. Moreover, by analysis of the fatty acid (FA) profiles, we found that JcDGAT1 and JcDGAT2 had the same substrate specificity with preferences for C18:2 in seed TAGs, and C16:0, C18:0, and C18:1 in leaf TAGs. Therefore, our study confirms the important role of JcDGAT1 and JcDGAT2 in regulating oil production in J. curcas.
Collapse
|
4
|
Gupta D, Dey N, Leelavathi S, Ranjan R. Development of efficient synthetic promoters derived from pararetrovirus suitable for translational research. PLANTA 2021; 253:42. [PMID: 33475866 DOI: 10.1007/s00425-021-03565-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/04/2021] [Indexed: 06/12/2023]
Abstract
MAIN CONCLUSION In this study, useful hybrid promoters were developed for efficient ectopic gene expression in monocot and dicot plants, and they hold strong prominence in both transgenic research and biotech industries. This study deals with developing novel synthetic promoters derived from Rice Tungro Bacilliform Virus (RTBV) and Mirabilis Mosaic Virus (MMV). Despite numerous availability, there is a severe scarcity of promoters universally suitable for monocot and dicot plants. Here, eight chimeric promoter constructs were synthesized as gBlocks gene fragments through domain swapping and hybridization by incorporating important domains of previously characterized RTBV and MMV promoters. The developed promoter constructs were assessed for transient GUS expression in tobacco protoplast (Xanthi Brad) and agro-infiltrated tobacco, petunia, rice and pearl millet. Protoplast expression analysis showed that two promoter constructs, namely pUPMA-RP1-MP1GUS and pUPMA-RP4-MP1GUS exhibited 3.56 and 2.5 times higher activities than that of the CaMV35S promoter. We had observed the similar type of expression patterns of these promoters in agroinfiltration-based transient studies. RP1-MP1 and RP4-MP1 promoters exhibited 1.87- and 1.68-fold increase expression in transgenic tobacco plants; while, a 1.95-fold increase was found in RP1-MP1 transgenic rice plants when compared their activities with CaMV35S promoter. Furthermore, on evaluating these promoter constructs for their expression in the bacterial system, pUPMA-RP1-MP1GFP was found to have the highest GFP expression. Moreover, the promoter construct was also evaluated for its capacity to express the HMP3 gene. Biobeads of encapsulated bacterial cells expressing HMP3 gene under control of the pUPMA-RP4-MP1 promoter were found to reduce 72.9% copper and 29.2% zinc concentration from wastewater. Our results had demonstrated that the developed promoter constructs could be used for translational research in dicot, monocot plants and bacterial systems for efficient gene expression.
Collapse
Affiliation(s)
- Dipinte Gupta
- Plant Biotechnology Lab, Department of Botany, Faculty of Science, Dayalbagh Educational Institute (Deemed University), Dayalbagh, Agra, 282005, India
| | - Nrisingha Dey
- Institute of Life Science, Nalco Square, Bhubaneshwar, Odisha, 751023, India
| | - Sadhu Leelavathi
- Plant Biology: Plant Transformation Research Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, 110067, India
| | - Rajiv Ranjan
- Plant Biotechnology Lab, Department of Botany, Faculty of Science, Dayalbagh Educational Institute (Deemed University), Dayalbagh, Agra, 282005, India.
| |
Collapse
|
5
|
Liu S, Liu C, Wang X, Chen H. Seed-specific activity of the Arabidopsis β-glucosidase 19 promoter in transgenic Arabidopsis and tobacco. PLANT CELL REPORTS 2021; 40:213-221. [PMID: 33099669 DOI: 10.1007/s00299-020-02627-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 10/10/2020] [Indexed: 05/09/2023]
Abstract
KEY MESSAGE The promoter of the Arabidopsis thaliana β-glucosidase 19 gene directs GUS expression in a seed-specific manner in transgenic Arabidopsis and tobacco. In the present study, an 898-bp putative promoter of the Arabidopsis β-glucosidase 19 (AtBGLU19) gene was cloned. The bioinformatics analysis of the cis-acting elements indicated that this putative promoter contains many seed-specific elements, such as RY elements. The features of this promoter fragment were evaluated for the capacity to direct the β-glucuronidase (GUS) reporter gene in transgenic Arabidopsis and tobacco. Histochemical and fluorometric GUS analyses of transgenic Arabidopsis plants revealed that the AtBGLU19 promoter directed strong GUS activity in late-maturing seeds and dry seeds, whereas no GUS expression was observed in other organs. The results indicated that the AtBGLU19 promoter was able to direct GUS expression in a seed-specific manner in transgenic Arabidopsis. In tobacco, the intensity of the staining and the level of GUS activity were considerably higher in the seeds than in the other tissues. These results further confirmed that the AtBGLU19 promoter is seed specific and can be used to control transgene expression in a heterologous plant system.
Collapse
Affiliation(s)
- Shijuan Liu
- School of Life Science, Qufu Normal University, Qufu, 273165, China.
| | - Changju Liu
- School of Life Science, Qufu Normal University, Qufu, 273165, China
| | - Xue Wang
- School of Life Science, Qufu Normal University, Qufu, 273165, China
| | - Huiqing Chen
- School of Life Science, Qufu Normal University, Qufu, 273165, China
| |
Collapse
|
6
|
|
7
|
Wang JX, Ming X, Tao YB, Xu ZF. Jatropha curcas ortholog of tomato MADS-box gene 6 ( JcTM6) promoter exhibits floral-specific activity in Arabidopsis thaliana. PeerJ 2020; 8:e9827. [PMID: 32995079 PMCID: PMC7502236 DOI: 10.7717/peerj.9827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 08/05/2020] [Indexed: 11/20/2022] Open
Abstract
Background Jatropha curcas L., a perennial oilseed plant, is considered as a promising feedstock for biodiesel production. Genetic modification of flowering characteristics is critical for Jatropha breeding. However, analysis of floral-specific promoters in Jatropha is limited. Methods In this study, we isolated the Jatropha ortholog of TM6 (JcTM6) gene from Jatropha flower cDNA library and detected the expression pattern of JcTM6 gene by quantitative reverse transcription-polymerase chain reaction (qRT-PCR). We isolated a 1.8-kb fragment from the 5’ region of the JcTM6 gene and evaluated its spatiotemporal expression pattern in Arabidopsis using the β-glucuronidase (GUS) reporter gene and Arabidopsis ATP/ADP isopentenyltransferase 4 (AtIPT4) gene, respectively. Results JcTM6 was identified as a flower-specific gene in Jatropha. As expected, JcTM6 promoter was only active in transgenic Arabidopsis flowers with the strongest activity in stamens. Moreover, JcTM6:AtIPT4 transgenic Arabidopsis showed a phenotype of large flowers without any alterations in other organs. Furthermore, deletion of the region from –1,717 to –876 bp resulted in the disappearance of promoter activity in stamens but an increase in promoter activity in young leaves, sepals, and petals. Deletion analysis suggests that the –1,717- to –876-bp promoter fragment contains regulatory elements that confer promoter activity in stamens and inhibit activity in young leaves, sepals, and petals.
Collapse
Affiliation(s)
- Jing-Xian Wang
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Innovation Academy for Seed Design, Chinese Academy of Sciences, Menglun, Mengla, Yunnan, China
| | - Xin Ming
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Innovation Academy for Seed Design, Chinese Academy of Sciences, Menglun, Mengla, Yunnan, China
| | - Yan-Bin Tao
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Innovation Academy for Seed Design, Chinese Academy of Sciences, Menglun, Mengla, Yunnan, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Mengla, Yunnan, China
| | - Zeng-Fu Xu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Innovation Academy for Seed Design, Chinese Academy of Sciences, Menglun, Mengla, Yunnan, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Mengla, Yunnan, China
| |
Collapse
|
8
|
Xu Y, Jin Z, Xu B, Li J, Li Y, Wang X, Wang A, Hu W, Huang D, Wei Q, Xu Z, Song S. Identification of transcription factors interacting with a 1274 bp promoter of MaPIP1;1 which confers high-level gene expression and drought stress Inducibility in transgenic Arabidopsis thaliana. BMC PLANT BIOLOGY 2020; 20:278. [PMID: 32546127 PMCID: PMC7298759 DOI: 10.1186/s12870-020-02472-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 05/26/2020] [Indexed: 05/08/2023]
Abstract
BACKGROUND Drought stress can severely affect plant growth and crop yield. The cloning and identification of drought-inducible promoters would be of value for genetically-based strategies to improve resistance of crops to drought. RESULTS Previous studies showed that the MaPIP1;1 gene encoding an aquaporin is involved in the plant drought stress response. In this study, the promoter pMaPIP1;1, which lies 1362 bp upstream of the MaPIP1;1 transcriptional initiation site, was isolated from the banana genome..And the transcription start site(A) is 47 bp before the ATG. To functionally validate the promoter, various lengths of pMaPIP1;1 were deleted and fused to GUS to generate pMaPIP1;1::GUS fusion constructs that were then transformed into Arabidopsis to generate four transformants termed M-P1, M-P2, M-P3 and M-P4.Mannitol treatment was used to simulate drought conditions. All four transformants reacted well to mannitol treatment. M-P2 (- 1274 bp to - 1) showed the highest transcriptional activity among all transgenic Arabidopsis tissues, indicating that M-P2 was the core region of pMaPIP1;1. This region of the promoter also confers high levels of gene expression in response to mannitol treatment. Using M-P2 as a yeast one-hybrid bait, 23 different transcription factors or genes that interacted with MaPIP1;1 were screened. In an dual luciferase assay for complementarity verification, the transcription factor MADS3 positively regulated MaPIP1;1 transcription when combined with the banana promoter. qRT-PCR showed that MADS3 expression was similar in banana leaves and roots under drought stress. In banana plants grown in 45% soil moisture to mimic drought stress, MaPIP1;1 expression was maximized, which further demonstrated that the MADS3 transcription factor can synergize with MaPIP1;1. CONCLUSIONS Together our results revealed that MaPIP1;1 mediates molecular mechanisms associated with drought responses in banana, and will expand our understanding of how AQP gene expression is regulated. The findings lay a foundation for genetic improvement of banana drought resistance.
Collapse
Affiliation(s)
- Yi Xu
- Key Laboratory of Genetic Improvement of Bananas, Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Zhiqiang Jin
- Key Laboratory of Tropical Crop Biotechnology, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Biyu Xu
- Key Laboratory of Tropical Crop Biotechnology, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Jingyang Li
- Key Laboratory of Genetic Improvement of Bananas, Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Yujia Li
- Key Laboratory of Genetic Improvement of Bananas, Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Xiaoyi Wang
- Key Laboratory of Genetic Improvement of Bananas, Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Anbang Wang
- Key Laboratory of Genetic Improvement of Bananas, Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Wei Hu
- Key Laboratory of Tropical Crop Biotechnology, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Dongmei Huang
- Key Laboratory of Genetic Improvement of Bananas, Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Qing Wei
- Key Laboratory of Genetic Improvement of Bananas, Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Zhuye Xu
- Hainan University, Haikou, China
| | - Shun Song
- Key Laboratory of Genetic Improvement of Bananas, Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| |
Collapse
|
9
|
Identification of a 119-bp Promoter of the Maize Sulfite Oxidase Gene ( ZmSO) That Confers High-Level Gene Expression and ABA or Drought Inducibility in Transgenic Plants. Int J Mol Sci 2019; 20:ijms20133326. [PMID: 31284569 PMCID: PMC6651508 DOI: 10.3390/ijms20133326] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 07/01/2019] [Accepted: 07/03/2019] [Indexed: 12/21/2022] Open
Abstract
Drought adversely affects crop growth and yields. The cloning and characterization of drought- or abscisic acid (ABA)-inducible promoters is of great significance for their utilization in the genetic improvement of crop resistance. Our previous studies have shown that maize sulfite oxidase (SO) has a sulfite-oxidizing function and is involved in the drought stress response. However, the promoter of the maize SO gene has not yet been characterized. In this study, the promoter (ZmSOPro, 1194 bp upstream region of the translation initiation site) was isolated from the maize genome. The in-silico analysis of the ZmSOPro promoter identified several cis-elements responsive to the phytohormone ABA and drought stress such as ABA-responsive element (ABRE) and MYB binding site (MBS), besides a number of core cis-acting elements, such as TATA-box and CAAT-box. A 5′ RACE (rapid amplification of cDNA ends) assay identified an adenine residue as the transcription start site of the ZmSO. The ZmSOPro activity was detected by β-glucuronidase (GUS) staining at nearly all developmental stages and in most plant organs, except for the roots in transgenic Arabidopsis. Moreover, its activity was significantly induced by ABA and drought stress. The 5′-deletion mutant analysis of the ZmSOPro in tobacco plants revealed that a 119-bp fragment in the ZmSOPro (upstream of the transcription start site) is a minimal region, which is required for its high-level expression. Moreover, the minimal ZmSOPro was significantly activated by ABA or drought stress in transgenic plants. Further mutant analysis indicated that the MBS element in the minimal ZmSOPro region (119 bp upstream of the transcription start site) is responsible for ABA and drought-stress induced expression. These results improve our understanding of the transcriptional regulation mechanism of the ZmSO gene, and the characterized 119-bp promoter fragment could be an ideal candidate for drought-tolerant gene engineering in both monocot and dicot crops.
Collapse
|
10
|
Yu H, Khalid MHB, Lu F, Sun F, Qu J, Liu B, Li W, Fu F. Isolation and identification of a vegetative organ-specific promoter from maize. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2019; 25:277-287. [PMID: 30804649 PMCID: PMC6352524 DOI: 10.1007/s12298-018-0546-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 04/28/2018] [Accepted: 05/03/2018] [Indexed: 05/03/2023]
Abstract
To avoid the unregulated overexpression of the exogenous genes, specific or inducible expression is necessary for some exogenous genes in transgenic plants. But little is known about organ- or tissue-specific promoters in maize. In the present study, the expression of a maize pentatricopeptide repeat (PPR) protein encoding gene, GRMZM2G129783, was analyzed by RNA-sequencing data and confirmed by quantitative real time PCR. The results showed that the PPR GRMZM2G129783 gene specifically expressed in vegetative organs. Consequently, a 1830 bp sequence upstream of the start codon of the promoter for GRMZM2G129783 gene was isolated from maize genome (P 1830 ). To validate whether the promoter possesses the vegetative organ-specificity, the full-length and three 5'-end deletion fragments of P 1830 of different length (1387, 437, and 146 bp) were fused with glucuronidase (GUS) gene to generate promoter::GUS constructs and transformed into tobacco. The transient expression and fluorometric GUS assay in transgenic tobacco showed that all promoter could drive the expression of the GUS gene, the - 437 to - 146 bp region possessed some crucial elements for root-specific expression, and the shortest and optimal sequence to maintain transcription activity was 146 and 437 bp in length, respectively. These results indicate that the promoter of the PPR GRMZM2G129783 gene is a vegetative organ-specific promoter and will be useful in transgenic modification of commercial crops for moderate specific expression after further evaluation in monocotyledons.
Collapse
Affiliation(s)
- HaoQiang Yu
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture; Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130 People’s Republic of China
| | - Muhammad Hayder Bin Khalid
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture; Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130 People’s Republic of China
| | - FengZhong Lu
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture; Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130 People’s Republic of China
| | - FuAi Sun
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture; Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130 People’s Republic of China
| | - JingTao Qu
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture; Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130 People’s Republic of China
| | - BingLiang Liu
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture; Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130 People’s Republic of China
| | - WanChen Li
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture; Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130 People’s Republic of China
| | - FengLing Fu
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture; Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130 People’s Republic of China
| |
Collapse
|
11
|
Jiang P, Zhang K, Ding Z, He Q, Li W, Zhu S, Cheng W, Zhang K, Li K. Characterization of a strong and constitutive promoter from the Arabidopsis serine carboxypeptidase-like gene AtSCPL30 as a potential tool for crop transgenic breeding. BMC Biotechnol 2018; 18:59. [PMID: 30241468 PMCID: PMC6151023 DOI: 10.1186/s12896-018-0470-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 09/13/2018] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Transgenic technology has become an important technique for crop genetic improvement. The application of well-characterized promoters is essential for developing a vector system for efficient genetic transformation. Therefore, isolation and functional validation of more alternative constitutive promoters to the CaMV35S promoter is highly desirable. RESULTS In this study, a 2093-bp sequence upstream of the translation initiation codon ATG of AtSCPL30 was isolated as the full-length promoter (PD1). To characterize the AtSCPL30 promoter (PD1) and eight 5' deleted fragments (PD2-PD9) of different lengths were fused with GUS to produce the promoter::GUS plasmids and were translocated into Nicotiana benthamiana. PD1-PD9 could confer strong and constitutive expression of transgenes in almost all tissues and development stages in Nicotiana benthamiana transgenic plants. Additionally, PD2-PD7 drove transgene expression consistently over twofold higher than the well-used CaMV35S promoter under normal and stress conditions. Among them, PD7 was only 456 bp in length, and its transcriptional activity was comparable to that of PD2-PD6. Moreover, GUS transient assay in the leaves of Nicotiana benthamiana revealed that the 162-bp (- 456~ - 295 bp) and 111-bp (- 294~ - 184 bp) fragments from the AtSCPL30 promoter could increase the transcriptional activity of mini35S up to 16- and 18-fold, respectively. CONCLUSIONS As a small constitutive strong promoter of plant origin, PD7 has the advantage of biosafety and reduces the probability of transgene silencing compared to the virus-derived CaMV35S promoter. PD7 would also be an alternative constitutive promoter to the CaMV35S promoter when multigene transformation was performed in the same vector, thereby avoiding the overuse of the CaMV35S promoter and allowing for the successful application of transgenic technology. And, the 162- and 111-bp fragments will also be very useful for synthetic promoter design based on their high enhancer activities.
Collapse
Affiliation(s)
- Pingping Jiang
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, Jinan, Shandong China
| | - Ke Zhang
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, Jinan, Shandong China
| | - Zhaohua Ding
- Maize Institute of Shandong Academy of Agricultural Sciences, Jinan, Shandong China
| | - Qiuxia He
- Biology Institute of Shandong Academy of Sciences, Jinan, Shandong China
| | - Wendi Li
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, Jinan, Shandong China
| | - Shuangfeng Zhu
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, Jinan, Shandong China
| | - Wen Cheng
- Maize Institute of Shandong Academy of Agricultural Sciences, Jinan, Shandong China
| | - Kewei Zhang
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, Jinan, Shandong China
| | - Kunpeng Li
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, Jinan, Shandong China
| |
Collapse
|
12
|
Lv S, Chen X, Mou C, Dai S, Bian Y, Kang H. Agrobacterium-mediated transformation of the ascomycete mushroom Morchella importuna using polyubiquitin and glyceraldehyde-3-phosphate dehydrogenase promoter-based binary vectors. World J Microbiol Biotechnol 2018; 34:148. [DOI: 10.1007/s11274-018-2529-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 08/31/2018] [Indexed: 01/30/2023]
|
13
|
Qamar Z, Riaz S, Nasir IA, Ali Q, Husnain T. Transformation and evaluation of different transgenic lines for Glyphosate tolerance and cane borer resistance genes in sugarcane (Saccharum officinarum L.). CYTOL GENET+ 2017. [DOI: 10.3103/s0095452717050085] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Cao X, Fan G, Dong Y, Zhao Z, Deng M, Wang Z, Liu W. Proteome Profiling of Paulownia Seedlings Infected with Phytoplasma. FRONTIERS IN PLANT SCIENCE 2017; 8:342. [PMID: 28344590 PMCID: PMC5344924 DOI: 10.3389/fpls.2017.00342] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 02/27/2017] [Indexed: 05/29/2023]
Abstract
Phytoplasma is an insect-transmitted pathogen that causes witches' broom disease in many plants. Paulownia witches' broom is one of the most destructive diseases threatening Paulownia production. The molecular mechanisms associated with this disease have been investigated by transcriptome sequencing, but changes in protein abundance have not been investigated with isobaric tags for relative and absolute quantitation. Previous results have shown that methyl methane sulfonate (MMS) can help Paulownia seedlings recover from the symptoms of witches' broom and reinstate a healthy morphology. In this study, a transcriptomic-assisted proteomic technique was used to analyze the protein changes in phytoplasma-infected Paulownia tomentosa seedlings, phytoplasma-infected seedlings treated with 20 and 60 mg·L-1 MMS, and healthy seedlings. A total of 2,051 proteins were obtained, 879 of which were found to be differentially abundant in pairwise comparisons between the sample groups. Among the differentially abundant proteins, 43 were related to Paulownia witches' broom disease and many of them were annotated to be involved in photosynthesis, expression of dwarf symptom, energy production, and cell signal pathways.
Collapse
Affiliation(s)
- Xibing Cao
- Institute of Paulownia, Henan Agricultural UniversityZhengzhou, China
- College of Forestry, Henan Agricultural UniversityZhengzhou, China
| | - Guoqiang Fan
- Institute of Paulownia, Henan Agricultural UniversityZhengzhou, China
- College of Forestry, Henan Agricultural UniversityZhengzhou, China
| | - Yanpeng Dong
- Institute of Paulownia, Henan Agricultural UniversityZhengzhou, China
- College of Forestry, Henan Agricultural UniversityZhengzhou, China
| | - Zhenli Zhao
- Institute of Paulownia, Henan Agricultural UniversityZhengzhou, China
- College of Forestry, Henan Agricultural UniversityZhengzhou, China
| | - Minjie Deng
- Institute of Paulownia, Henan Agricultural UniversityZhengzhou, China
- College of Forestry, Henan Agricultural UniversityZhengzhou, China
| | - Zhe Wang
- Institute of Paulownia, Henan Agricultural UniversityZhengzhou, China
| | - Wenshan Liu
- Institute of Paulownia, Henan Agricultural UniversityZhengzhou, China
- College of Forestry, Henan Agricultural UniversityZhengzhou, China
| |
Collapse
|
15
|
Hu YX, Tao YB, Xu ZF. Overexpression of Jatropha Gibberellin 2-oxidase 6 ( JcGA2ox6) Induces Dwarfism and Smaller Leaves, Flowers and Fruits in Arabidopsis and Jatropha. FRONTIERS IN PLANT SCIENCE 2017; 8:2103. [PMID: 29312375 PMCID: PMC5733080 DOI: 10.3389/fpls.2017.02103] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Accepted: 11/27/2017] [Indexed: 05/09/2023]
Abstract
Gibberellins (GAs) are plant hormones that play fundamental roles in plant growth and development. Gibberellin 2-oxidase (GA2ox) plays a direct role in determining the levels of bioactive GAs by catalyzing bioactive GAs or their immediate precursors to inactive forms. In this study, a GA2ox gene, designated JcGA2ox6, was isolated from Jatropha curcas. JcGA2ox6 is expressed in all tissues of adult Jatropha, with the highest expression level in male flowers and the lowest expression level in young leaves. Overexpression of JcGA2ox6 in Arabidopsis resulted in a typical dwarf phenotype, along with late flowering, smaller leaves and flowers, shorter siliques and smaller seeds. Similarly, when JcGA2ox6 was overexpressed in Jatropha, the transgenic plants exhibited a dwarf phenotype with dark-green leaves and smaller inflorescences, flowers, fruits and seeds. However, the flowering time of Jatropha was not affected by overexpression of JcGA2ox6, unlike that in the transgenic Arabidopsis. Moreover, the number of flowers per inflorescence, the weight of 10 seeds and the seed oil content were significantly decreased in transgenic Jatropha. The results indicated that overexpression of JcGA2ox6 had a great impact on the vegetative and reproductive growth of transgenic Jatropha. Furthermore, we found that the dwarf phenotype of transgenic Jatropha was caused by a decrease in endogenous bioactive GA4, which was correlated with the degree of dwarfism.
Collapse
Affiliation(s)
- Ying-Xiong Hu
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yan-Bin Tao
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China
- *Correspondence: Yan-Bin Tao, Zeng-Fu Xu,
| | - Zeng-Fu Xu
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China
- *Correspondence: Yan-Bin Tao, Zeng-Fu Xu,
| |
Collapse
|
16
|
Tao YB, He LL, Niu L, Xu ZF. Isolation and characterization of the Jatropha curcas APETALA1 (JcAP1) promoter conferring preferential expression in inflorescence buds. PLANTA 2016; 244:467-78. [PMID: 27095108 DOI: 10.1007/s00425-016-2519-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Accepted: 04/04/2016] [Indexed: 06/05/2023]
Abstract
MAIN CONCLUSION The 1.5 kb JcAP1 promoter from the biofuel plant Jatropha curcas is predominantly active in the inflorescence buds of transgenic plants, in which the -1313/-1057 region is essential for maintaining the activity. Arabidopsis thaliana APETALA1 (AP1) is a MADS-domain transcription factor gene that functions primarily in flower development. We isolated a homolog of AP1 from Jatropha curcas (designated JcAP1), which was shown to exhibit flower-specific expression in Jatropha. JcAP1 is first expressed in inflorescence buds and continues to be primarily expressed in the sepals. We isolated a 1.5 kb JcAP1 promoter and evaluated its activity in transgenic Arabidopsis and Jatropha using the β-glucuronidase (GUS) reporter gene. In transgenic Arabidopsis and Jatropha, the inflorescence buds exhibited notable GUS activity, whereas the sepals did not. Against expectations, the JcAP1 promoter was active in the anthers of Arabidopsis and Jatropha and was highly expressed in Jatropha seeds. An analysis of promoter deletions in transgenic Arabidopsis revealed that deletion of the -1313/-1057 region resulted in loss of JcAP1 promoter activity in the inflorescence buds and increased activity in the anthers. These results suggested that some regulatory sequences in the -1313/-1057 region are essential for maintaining promoter activity in inflorescence buds and can partly suppress activity in the anthers. Based on these findings, we hypothesized that other elements located upstream of the 1.5 kb JcAP1 promoter may be required for flower-specific activation. The JcAP1 promoter characterized in this study can be used to drive transgene expression in both the inflorescence buds and seeds of Jatropha.
Collapse
Affiliation(s)
- Yan-Bin Tao
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, 666303, Yunnan, China
| | - Liang-Liang He
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, 666303, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Longjian Niu
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, 666303, Yunnan, China
- School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, China
| | - Zeng-Fu Xu
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, 666303, Yunnan, China.
| |
Collapse
|
17
|
Tang M, Tao YB, Xu ZF. Ectopic expression of Jatropha curcas APETALA1 (JcAP1) caused early flowering in Arabidopsis, but not in Jatropha. PeerJ 2016; 4:e1969. [PMID: 27168978 PMCID: PMC4860315 DOI: 10.7717/peerj.1969] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 04/03/2016] [Indexed: 11/20/2022] Open
Abstract
Jatropha curcas is a promising feedstock for biofuel production because Jatropha oil is highly suitable for the production of biodiesel and bio-jet fuels. However, Jatropha exhibits a low seed yield as a result of unreliable and poor flowering. APETALA1 (AP1) is a floral meristem and organ identity gene in higher plants. The flower meristem identity genes of Jatropha have not yet been identified or characterized. To better understand the genetic control of flowering in Jatropha, an AP1 homolog (JcAP1) was isolated from Jatropha. An amino acid sequence analysis of JcAP1 revealed a high similarity to the AP1 proteins of other perennial plants. JcAP1 was expressed in inflorescence buds, flower buds, sepals and petals. The highest expression level was observed during the early developmental stage of the flower buds. The overexpression of JcAP1 using the cauliflower mosaic virus (CaMV) 35S promoter resulted in extremely early flowering and abnormal flowers in transgenic Arabidopsis plants. Several flowering genes downstream of AP1 were up-regulated in the JcAP1-overexpressing transgenic plant lines. Furthermore, JcAP1 overexpression rescued the phenotype caused by the Arabidopsis AP1 loss-of-function mutant ap1-11. Therefore, JcAP1 is an ortholog of AtAP1, which plays a similar role in the regulation of flowering in Arabidopsis. However, the overexpression of JcAP1 in Jatropha using the same promoter resulted in little variation in the flowering time and floral organs, indicating that JcAP1 may be insufficient to regulate flowering by itself in Jatropha. This study helps to elucidate the function of JcAP1 and contributes to the understanding of the molecular mechanisms of flower development in Jatropha.
Collapse
Affiliation(s)
- Mingyong Tang
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yan-Bin Tao
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences , Menglun, Mengla, Yunnan , China
| | - Zeng-Fu Xu
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences , Menglun, Mengla, Yunnan , China
| |
Collapse
|
18
|
Hou J, Jiang P, Qi S, Zhang K, He Q, Xu C, Ding Z, Zhang K, Li K. Isolation and Functional Validation of Salinity and Osmotic Stress Inducible Promoter from the Maize Type-II H+-Pyrophosphatase Gene by Deletion Analysis in Transgenic Tobacco Plants. PLoS One 2016; 11:e0154041. [PMID: 27101137 PMCID: PMC4839719 DOI: 10.1371/journal.pone.0154041] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 04/07/2016] [Indexed: 11/19/2022] Open
Abstract
Salinity and drought severely affect both plant growth and productivity, making the isolation and characterization of salinity- or drought-inducible promoters suitable for genetic improvement of crop resistance highly desirable. In this study, a 1468-bp sequence upstream of the translation initiation codon ATG of the promoter for ZmGAPP (maize Type-II H+-pyrophosphatase gene) was cloned. Nine 5´ deletion fragments (D1-D9) of different lengths of the ZmGAPP promoter were fused with the GUS reporter and translocated into tobacco. The deletion analysis showed that fragments D1-D8 responded well to NaCl and PEG stresses, whereas fragment D9 and CaMV 35S did not. The D8 segment (219 bp; -219 to -1 bp) exhibited the highest promoter activity of all tissues, with the exception of petals among the D1-D9 transgenic tobacco, which corresponds to about 10% and 25% of CaMV 35S under normal and NaCl or PEG stress conditions, respectively. As such, the D8 segment may confer strong gene expression in a salinity and osmotic stress inducible manner. A 71-bp segment (-219 to -148 bp) was considered as the key region regulating ZmGAPP response to NaCl or PEG stress, as transient transformation assays demonstrated that the 71-bp sequence was sufficient for the salinity or osmotic stress response. These results enhance our understanding of the molecular mechanisms regulating ZmGAPP expression, and that the D8 promoter would be an ideal candidate for moderating expression of drought and salinity response genes in transgenic plants.
Collapse
Affiliation(s)
- Jiajia Hou
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, Shanda South Road 27, Jinan, Shandong, 250100, China
| | - Pingping Jiang
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, Shanda South Road 27, Jinan, Shandong, 250100, China
| | - Shoumei Qi
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, Shanda South Road 27, Jinan, Shandong, 250100, China
| | - Ke Zhang
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, Shanda South Road 27, Jinan, Shandong, 250100, China
| | - Qiuxia He
- Biology Institute of Shandong Academy of Sciences, Jinan, Shandong, China
| | - Changzheng Xu
- RCBB, College of Resources and Environment, Southwest University, Tiansheng Road 2, Beibei Dist., 400716, Chongqing, China
| | - Zhaohua Ding
- Maize Institute of Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| | - Kewei Zhang
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, Shanda South Road 27, Jinan, Shandong, 250100, China
| | - Kunpeng Li
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, Shanda South Road 27, Jinan, Shandong, 250100, China
| |
Collapse
|
19
|
Zhang H, Hou J, Jiang P, Qi S, Xu C, He Q, Ding Z, Wang Z, Zhang K, Li K. Identification of a 467 bp Promoter of Maize Phosphatidylinositol Synthase Gene (ZmPIS) Which Confers High-Level Gene Expression and Salinity or Osmotic Stress Inducibility in Transgenic Tobacco. FRONTIERS IN PLANT SCIENCE 2016; 7:42. [PMID: 26870063 PMCID: PMC4740949 DOI: 10.3389/fpls.2016.00042] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 01/11/2016] [Indexed: 05/03/2023]
Abstract
Salinity and drought often affect plant growth and crop yields. Cloning and identification of salinity and drought stress inducible promoters is of great significance for their use in the genetic improvement of crop resistance. Previous studies showed that phosphatidylinositol synthase is involved in plant salinity and drought stress responses but its promoter has not been characterized by far. In the study, the promoter (pZmPIS, 1834 bp upstream region of the translation initiation site) was isolated from maize genome. To functionally validate the promoter, eight 5' deletion fragments of pZmPIS in different lengths were fused to GUS to produce pZmPIS::GUS constructs and transformed into tobacco, namely PZ1-PZ8. The transcription activity and expression pattern obviously changed when the promoter was truncated. Previous studies have demonstrated that NaCl and PEG treatments are usually used to simulate salinity and drought treatments. The results showed that PZ1-PZ7 can respond well upon NaCl and PEG treatments, while PZ8 not. PZ7 (467 bp) displayed the highest transcription activity in all tissues of transgenic tobacco amongst 5' deleted promoter fragments, which corresponds to about 20 and 50% of CaMV35S under normal and NaCl or PEG treatment, respectively. This implied that PZ7 is the core region of pZmPIS which confers high-level gene expression and NaCl or PEG inducible nature. The 113 bp segment between PZ7 and PZ8 (-467 to -355 bp) was considered as the key sequence for ZmPIS responding to NaCl or PEG treatment. GUS transient assay in tobacco leaves showed that this segment was sufficient for the NaCl or PEG stress response. Bioinformatic analysis revealed that the 113 bp sequence may contain new elements that are crucial for ZmPIS response to NaCl or PEG stress. These results promote our understanding on transcriptional regulation mechanism of ZmPIS and the characterized PZ7 promoter fragment would be an ideal candidate for the overexpression of drought and salinity responsive gene to improve crop resistance.
Collapse
Affiliation(s)
- Hongli Zhang
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong UniversityJinan, China
| | - Jiajia Hou
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong UniversityJinan, China
| | - Pingping Jiang
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong UniversityJinan, China
| | - Shoumei Qi
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong UniversityJinan, China
| | - Changzheng Xu
- Research Center of Bioenergy and Bioremediation, College of Resources and Environment, Southwest UniversityChongqing, China
| | - Qiuxia He
- Biology Institute of Shandong Academy of SciencesJinan, China
| | - Zhaohua Ding
- Maize Institute of Shandong Academy of Agricultural SciencesJinan, China
| | - Zhiwu Wang
- Maize Institute of Shandong Academy of Agricultural SciencesJinan, China
| | - Kewei Zhang
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong UniversityJinan, China
| | - Kunpeng Li
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong UniversityJinan, China
- *Correspondence: Kunpeng Li,
| |
Collapse
|
20
|
Fu Q, Li C, Tang M, Tao YB, Pan BZ, Zhang L, Niu L, He H, Wang X, Xu ZF. An efficient protocol for Agrobacterium-mediated transformation of the biofuel plant Jatropha curcas by optimizing kanamycin concentration and duration of delayed selection. PLANT BIOTECHNOLOGY REPORTS 2015; 9:405-416. [PMID: 26640597 PMCID: PMC4662722 DOI: 10.1007/s11816-015-0377-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 10/17/2015] [Indexed: 05/04/2023]
Abstract
Jatropha curcas is considered a potential biodiesel feedstock crop. Currently, the value of J. curcas is limited because its seed yield is generally low. Transgenic modification is a promising approach to improve the seed yield of J. curcas. Although Agrobacterium-mediated genetic transformation of J. curcas has been pursued for several years, the transformation efficiency remains unsatisfying. Therefore, a highly efficient and simple Agrobacterium-mediated genetic transformation method for J. curcas should be developed. We examined and optimized several key factors that affect genetic transformation of J. curcas in this study. The results showed that the EHA105 strain was superior to the other three Agrobacterium tumefaciens strains for infecting J. curcas cotyledons, and the supplementation of 100 mM acetosyringone slightly increased the transient transformation frequency. Use of the appropriate inoculation method, optimal kanamycin concentration and appropriate duration of delayed selection also improved the efficiency of stable genetic transformation of J. curcas. The percentage of β-glucuronidase positive J. curcas shoots reached as high as 56.0 %, and 1.70 transformants per explant were obtained with this protocol. Furthermore, we optimized the root-inducing medium to achieve a rooting rate of 84.9 %. Stable integration of the T-DNA into the genomes of putative transgenic lines was confirmed by PCR and Southern blot analysis. Using this improved protocol, a large number of transgenic J. curcas plantlets can be routinely obtained within approximately 4 months. The detailed information provided here for each step of J. curcas transformation should enable successful implementation of this transgenic technology in other laboratories.
Collapse
Affiliation(s)
- Qiantang Fu
- />Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, 666303 Yunnan China
| | - Chaoqiong Li
- />Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, 666303 Yunnan China
- />College of Life Science and Agriculture, Zhoukou Normal University, Zhoukou, 466001 Henan China
| | - Mingyong Tang
- />Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, 666303 Yunnan China
- />University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Yan-Bin Tao
- />Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, 666303 Yunnan China
| | - Bang-Zhen Pan
- />Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, 666303 Yunnan China
| | - Lu Zhang
- />Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, 666303 Yunnan China
| | - Longjian Niu
- />Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, 666303 Yunnan China
| | - Huiying He
- />Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, 666303 Yunnan China
| | - Xiulan Wang
- />Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, 666303 Yunnan China
| | - Zeng-Fu Xu
- />Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, 666303 Yunnan China
| |
Collapse
|