1
|
Agatha O, Mutwil-Anderwald D, Tan JY, Mutwil M. Plant sesquiterpene lactones. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230350. [PMID: 39343024 PMCID: PMC11449222 DOI: 10.1098/rstb.2023.0350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/14/2024] [Accepted: 06/25/2024] [Indexed: 10/01/2024] Open
Abstract
Sesquiterpene lactones (STLs) are a prominent group of plant secondary metabolites predominantly found in the Asteraceae family and have multiple ecological roles and medicinal applications. This review describes the evolutionary and ecological significance of STLs, highlighting their roles in plant defence mechanisms against herbivory and as phytotoxins, alongside their function as environmental signalling molecules. We also cover the substantial role of STLs in medicine and their mode of action in health and disease. We discuss the biosynthetic pathways and the various modifications that make STLs one of the most diverse groups of metabolites. Finally, we discuss methods for identifying and predicting STL biosynthesis pathways. This article is part of the theme issue 'The evolution of plant metabolism'.
Collapse
Affiliation(s)
- Olivia Agatha
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive , Singapore 637551, Singapore
| | - Daniela Mutwil-Anderwald
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive , Singapore 637551, Singapore
| | - Jhing Yein Tan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive , Singapore 637551, Singapore
| | - Marek Mutwil
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive , Singapore 637551, Singapore
| |
Collapse
|
2
|
Majumder S, Mason CM. A machine learning approach to study plant functional trait divergence. APPLICATIONS IN PLANT SCIENCES 2024; 12:e11576. [PMID: 39360189 PMCID: PMC11443442 DOI: 10.1002/aps3.11576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 11/30/2023] [Accepted: 12/07/2023] [Indexed: 10/04/2024]
Abstract
Premise Plant functional traits are often used to describe the spectra of ecological strategies used by different species. Here, we demonstrate a machine learning approach for identifying the traits that contribute most to interspecific phenotypic divergence in a multivariate trait space. Methods Descriptive and predictive machine learning approaches were applied to trait data for the genus Helianthus, including random forest and gradient boosting machine classifiers and recursive feature elimination. These approaches were applied at the genus level as well as within each of the three major clades within the genus to examine the variability in the major axes of trait divergence in three independent species radiations. Results Machine learning models were able to predict species identity from functional traits with high accuracy, and differences in functional trait importance were observed between the genus and clade levels indicating different axes of phenotypic divergence. Conclusions Applying machine learning approaches to identify divergent traits can provide insights into the predictability or repeatability of evolution through the comparison of parallel diversifications of clades within a genus. These approaches can be implemented in a range of contexts across basic and applied plant science from interspecific divergence to intraspecific variation across time, space, and environmental conditions.
Collapse
Affiliation(s)
- Sambadi Majumder
- Department of Biology University of Central Florida Orlando 32816 Florida USA
- Present address: Global Water Security Center University of Alabama 1041 Cyber Hall, Box 870206 Tuscaloosa 35487 Alabama USA
| | - Chase M Mason
- Department of Biology University of Central Florida Orlando 32816 Florida USA
- Department of Biology University of British Columbia Okanagan Kelowna V1W5H9 British Columbia Canada
| |
Collapse
|
3
|
Huebbers JW, Büttgen K, Leissing F, Mantz M, Pauly M, Huesgen PF, Panstruga R. An advanced method for the release, enrichment and purification of high-quality Arabidopsis thaliana rosette leaf trichomes enables profound insights into the trichome proteome. PLANT METHODS 2022; 18:12. [PMID: 35086542 PMCID: PMC8796501 DOI: 10.1186/s13007-021-00836-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/29/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Rosette leaf trichomes of Arabidopsis thaliana have been broadly used to study cell development, cell differentiation and, more recently, cell wall biogenesis. However, trichome-specific biochemical or -omics analyses require a proper separation of trichomes from residual plant tissue. Thus, different strategies were proposed in the past for trichome isolation, which mostly rely on harsh conditions and suffer from low yield, thereby limiting the spectrum of downstream analyses. RESULTS To take trichome-leaf separation to the next level, we revised a previously proposed method for isolating A. thaliana trichomes by optimizing the mechanical and biochemical specifications for trichome release. We additionally introduced a density gradient centrifugation step to remove residual plant debris. We found that prolonged, yet mild seedling agitation increases the overall trichome yield by more than 60% compared to the original protocol. We noticed that subsequent density gradient centrifugation further visually enhances trichome purity, which may be advantageous for downstream analyses. Gene expression analysis by quantitative reverse transcriptase-polymerase chain reaction validated a substantial enrichment upon purification of trichomes by density gradient centrifugation. Histochemical and biochemical investigation of trichome cell wall composition indicated that unlike the original protocol gentle agitation during trichome release largely preserves trichome integrity. We used enriched and density gradient-purified trichomes for proteomic analysis in comparison to trichome-depleted leaf samples and present a comprehensive reference data set of trichome-resident and -enriched proteins. Collectively we identified 223 proteins that are highly enriched in trichomes as compared to trichome-depleted leaves. We further demonstrate that the procedure can be applied to retrieve diverse glandular and non-glandular trichome types from other plant species. CONCLUSIONS We provide an advanced method for the isolation of A. thaliana leaf trichomes that outcompetes previous procedures regarding yield and purity. Due to the large amount of high-quality trichomes our method enabled profound insights into the so far largely unexplored A. thaliana trichome proteome. We anticipate that our protocol will be of use for a variety of downstream analyses, which are expected to shed further light on the biology of leaf trichomes in A. thaliana and possibly other plant species.
Collapse
Affiliation(s)
- Jan W Huebbers
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Worringerweg 1, 52056, Aachen, Germany
| | - Kim Büttgen
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Worringerweg 1, 52056, Aachen, Germany
| | - Franz Leissing
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Worringerweg 1, 52056, Aachen, Germany
| | - Melissa Mantz
- Central Institute for Engineering, Electronics and Analytics, ZEA-3, Forschungszentrum Jülich, Jülich, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) Medical Faculty and University Hospital, University of Cologne, Cologne, Germany
| | - Markus Pauly
- Institute for Plant Cell Biology and Biotechnology, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, 40225, Düsseldorf, Germany
| | - Pitter F Huesgen
- Central Institute for Engineering, Electronics and Analytics, ZEA-3, Forschungszentrum Jülich, Jülich, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) Medical Faculty and University Hospital, University of Cologne, Cologne, Germany
- Institute of Biochemistry, Department for Chemistry, University of Cologne, Cologne, Germany
| | - Ralph Panstruga
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Worringerweg 1, 52056, Aachen, Germany.
| |
Collapse
|
4
|
Amrehn E, Spring O. Ultrastructural Alterations in Cells of Sunflower Linear Glandular Trichomes during Maturation. PLANTS 2021; 10:plants10081515. [PMID: 34451559 PMCID: PMC8398616 DOI: 10.3390/plants10081515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/19/2021] [Accepted: 07/21/2021] [Indexed: 11/29/2022]
Abstract
Sunflower and related taxa are known to possess a characteristic type of multicellular uniseriate trichome which produces sesquiterpenes and flavonoids of yet unknown function for this plant. Contrary to the metabolic profile, the cytological development and ultrastructural rearrangements during the biosynthetic activity of the trichome have not been studied in detail so far. Light, fluorescence and transmission electron microscopy were employed to investigate the functional structure of different trichome cells and their subcellular compartmentation in the pre-secretory, secretory and post-secretory phase. It was shown that the trichome was composed of four cell types, forming the trichome basis with a basal and a stalk cell, a variable number (mostly from five to eight) of barrel-shaped glandular cells and the tip consisting of a dome-shaped apical cell. Metabolic activity started at the trichome tip sometimes accompanied by the formation of small subcuticular cavities at the apical cell. Subsequently, metabolic activity progressed downwards in the upper glandular cells. Cells involved in the secretory process showed disintegration of the subcellular compartments and lost vitality in parallel to deposition of fluorescent and brownish metabolites. The subcuticular cavities usually collapsed in the early secretory stage, whereas the colored depositions remained in cells of senescent hairs.
Collapse
|
5
|
Muravnik LE, Mosina AA, Zaporozhets NL, Bhattacharya R, Saha S, Ghissing U, Mitra A. Glandular trichomes of the flowers and leaves in Millingtonia hortensis (Bignoniaceae). PLANTA 2021; 253:13. [PMID: 33389109 DOI: 10.1007/s00425-020-03541-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 12/06/2020] [Indexed: 05/08/2023]
Abstract
Three types of the glandular trichomes are developed on the flowers and leaves of Millingtonia hortensis. Morphology, cell ultrastructure and content of the volatile compounds are specific to each trichome type. The aim of this study was to characterize the structural and histochemical features of the glandular trichomes (GTs) of two types localized on the different flower parts and leaves in Millingtonia hortensis, as well as to identify the composition of the internal pool of metabolites. The peltate GTs are most common; they are founded on peduncle, calyx, ovary, and leaves. GTs consist of 12-24-cell disk-shaped head and a single-celled neck. The capitate GTs are located on corolla tube and have four to eight-cell head, single-celled neck and a wide multicellular stalk. A series of histochemical reactions and fluorescent microscopy revealed the various substances in the chemical composition of GTs. Acid polysaccharides are predominately identified in the capitate trichomes of the corolla tube and peltate trichomes of calyx, terpenes present in larger quantity in the trichomes of the corolla tube and ovary, whilst phenolic substances prevail in the trichomes of the calyx and ovary. GTs of each type are characterized by specific ultrastructural traits. Smooth endoplasmic reticulum (SER) and leucoplasts prevail in the peltate trichomes of peduncle, calyx and ovary; Golgi apparatus is the common organelle in the capitate trichomes of the corolla tube and peltate trichomes of calyx; the huge aggregates of the RER cisterns there are in cytoplasm of all leaf trichomes. Synthesized secretion accumulates in the subcuticular cavity of all GTs except the leaf peltate trichomes. In the trichomes of the leaves secretion is stored in the thick upper cell wall with the wide cutinized layer. For the first time content of the internal pool of metabolites from the flowers and leaves was identified by GC-MS. Seventeen compounds, including alcohols, fatty acid derivatives, monoterpenes, sesquiterpenes, and benzenoids were identified. 1-octen 3-ol, 3-carene, methyl salicylate, p-hydroxybenzeneethanol and 1-hydroxy-2,4-di-tertbutyl-benzene were the main compounds of the flower scent. We consider GTs of the reproductive organs in M. hortensis synthesizing acid polysaccharides and volatile compounds as secretory structures attracting of pollinators, whereas the leaf peltate trichomes accumulating predominately non-volatile phenols, protect young vegetative shoots against small herbivorous insects and pathogens.
Collapse
Affiliation(s)
- Lyudmila E Muravnik
- Laboratory of Plant Anatomy and Morphology, Komarov Botanical Institute of Russian Academy of Sciences, Professor Popov Street, 2, 197376, St. Petersburg, Russia.
| | - Anna A Mosina
- Laboratory of Plant Anatomy and Morphology, Komarov Botanical Institute of Russian Academy of Sciences, Professor Popov Street, 2, 197376, St. Petersburg, Russia
| | - Nikita L Zaporozhets
- Laboratory of Plant Anatomy and Morphology, Komarov Botanical Institute of Russian Academy of Sciences, Professor Popov Street, 2, 197376, St. Petersburg, Russia
| | - Raktim Bhattacharya
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, 721 302, India
| | - Sulagna Saha
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, 721 302, India
| | - Upashana Ghissing
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, 721 302, India
| | - Adinpunya Mitra
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, 721 302, India
| |
Collapse
|
6
|
Frey M, Klaiber I, Conrad J, Spring O. CYP71BL9, the missing link in costunolide synthesis of sunflower. PHYTOCHEMISTRY 2020; 177:112430. [PMID: 32516579 DOI: 10.1016/j.phytochem.2020.112430] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 05/27/2020] [Accepted: 05/29/2020] [Indexed: 06/11/2023]
Abstract
Despite intensive research in recent years, the biosynthetic route to costunolide in sunflower so far remained obscured. Additional P450 sequences from public sunflower transcriptomic database were screened to search for candidate enzymes which are able to introduce the 6α-hydroxy-group required for the esterification with the carboxy group of germacarane A acid, the final step in costunolide formation. CYP71BL9, a new P450 enzyme from sunflower was shown to catalyze this hydroxylation, hence being identified as HaCOS. Phylogentically, HaCOS is closer related to HaG8H than to any other known costunolide synthase in Asteraceae.The enzyme was successfully employed to reconstruct the sunflower biosynthesis of costunolide in transformed tobacco. Contrary, in yeast, only minor amounts of sesquiterpene lactone was produced, while 5-hydroxyfarnesylic acid was formed instead. HaCOS in combination with HaG8H produced 8β-hydroxycostunolide (eupatolide) in transformed plants, thus indicating that sunflower possesses two independent modes of eupatolide synthesis via HaCOS and via HaES. The lack of HaCOS expression and of costunolide in trichomes suggests that the enzyme triggers the costunolied synthesis of the inner tissues of sunflower and might be linked to growth regulation processes.
Collapse
Affiliation(s)
- Maximilian Frey
- Institute of Biology, Biochemistry of Plant Secondary Metabolism (190b), University of Hohenheim, Garbenstraße 30, 70593, Stuttgart, Germany.
| | - Iris Klaiber
- Mass Spectrometry Unit, Core Facility Hohenheim, University of Hohenheim, Emil-Wolff-Str. 12, 70599, Stuttgart, Germany
| | - Jürgen Conrad
- Institute of Chemistry, University of Hohenheim, Garbenstraße 30, 70593, Stuttgart, Germany
| | - Otmar Spring
- Institute of Biology, Biochemistry of Plant Secondary Metabolism (190b), University of Hohenheim, Garbenstraße 30, 70593, Stuttgart, Germany
| |
Collapse
|
7
|
Padilla-González GF, Amrehn E, Frey M, Gómez-Zeledón J, Kaa A, Costa FBD, Spring O. Metabolomic and Gene Expression Studies Reveal the Diversity, Distribution and Spatial Regulation of the Specialized Metabolism of Yacón ( Smallanthus sonchifolius, Asteraceae). Int J Mol Sci 2020; 21:ijms21124555. [PMID: 32604977 PMCID: PMC7348818 DOI: 10.3390/ijms21124555] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 06/23/2020] [Accepted: 06/23/2020] [Indexed: 02/02/2023] Open
Abstract
Smallanthus sonchifolius, also known as yacón, is an Andean crop species commercialized for its nutraceutical and medicinal properties. The tuberous roots of yacón accumulate a diverse array of probiotic and bioactive metabolites including fructooligosaccharides and caffeic acid esters. However, the metabolic diversity of yacón remains unexplored, including the site of biosynthesis and accumulation of key metabolite classes. We report herein a multidisciplinary approach involving metabolomics, gene expression and scanning electron microscopy, to provide a comprehensive analysis of the diversity, distribution and spatial regulation of the specialized metabolism in yacón. Our results demonstrate that different metabolic fingerprints and gene expression patterns characterize specific tissues, organs and cultivars of yacón. Manual inspection of mass spectrometry data and molecular networking allowed the tentative identification of 71 metabolites, including undescribed structural analogues of known bioactive compounds. Imaging by scanning electron microscopy revealed the presence of a new type of glandular trichome in yacón bracts, with a distinctive metabolite profile. Furthermore, the high concentration of sesquiterpene lactones in capitate glandular trichomes and the restricted presence of certain flavonoids and caffeic acid esters in underground organs and internal tissues suggests that these metabolites could be involved in protective and ecological functions. This study demonstrates that individual organs and tissues make specific contributions to the highly diverse and specialized metabolome of yacón, which is proving to be a reservoir of previously undescribed molecules of potential significance in human health.
Collapse
Affiliation(s)
- Guillermo F. Padilla-González
- AsterBioChem Research Team, Laboratory of Pharmacognosy, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av do café s/n, 14040-903 Ribeirão Preto, SP, Brazil;
- Jodrell Laboratory, Royal Botanic Gardens, Kew, Kew Green Road, London TW9 3AB, UK
- Correspondence: ; Tel.: +44-20-8332-5375
| | - Evelyn Amrehn
- Department of Biochemistry of Plant Secondary Metabolism, Institute of Biology, University of Hohenheim, Garbenstraße 30, 70599 Stuttgart, BW, Germany; (E.A.); (M.F.); (J.G.-Z.); (A.K.); (O.S.)
| | - Maximilian Frey
- Department of Biochemistry of Plant Secondary Metabolism, Institute of Biology, University of Hohenheim, Garbenstraße 30, 70599 Stuttgart, BW, Germany; (E.A.); (M.F.); (J.G.-Z.); (A.K.); (O.S.)
| | - Javier Gómez-Zeledón
- Department of Biochemistry of Plant Secondary Metabolism, Institute of Biology, University of Hohenheim, Garbenstraße 30, 70599 Stuttgart, BW, Germany; (E.A.); (M.F.); (J.G.-Z.); (A.K.); (O.S.)
| | - Alevtina Kaa
- Department of Biochemistry of Plant Secondary Metabolism, Institute of Biology, University of Hohenheim, Garbenstraße 30, 70599 Stuttgart, BW, Germany; (E.A.); (M.F.); (J.G.-Z.); (A.K.); (O.S.)
| | - Fernando B. Da Costa
- AsterBioChem Research Team, Laboratory of Pharmacognosy, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av do café s/n, 14040-903 Ribeirão Preto, SP, Brazil;
| | - Otmar Spring
- Department of Biochemistry of Plant Secondary Metabolism, Institute of Biology, University of Hohenheim, Garbenstraße 30, 70599 Stuttgart, BW, Germany; (E.A.); (M.F.); (J.G.-Z.); (A.K.); (O.S.)
| |
Collapse
|
8
|
Spring O, Schmauder K, Lackus ND, Schreiner J, Meier C, Wellhausen J, Smith LV, Frey M. Spatial and developmental synthesis of endogenous sesquiterpene lactones supports function in growth regulation of sunflower. PLANTA 2020; 252:2. [PMID: 32504343 PMCID: PMC7275010 DOI: 10.1007/s00425-020-03409-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 05/29/2020] [Indexed: 05/28/2023]
Abstract
Tissue-specific occurrence and formation of endogenous sesquiterpene lactones has been assessed and suggests physiological function as antagonists of auxin-induced plant growth in sunflower. Sunflower, Helianthus annuus, accumulate high concentrations of bioactive sesquiterpene lactones (STL) in glandular trichomes, but in addition, structurally different STL occur in only trace amounts in the inner tissues. The spatial and temporal production of these endogenous STL during early phases of plant development is widely unknown and their physiological function as putative natural growth regulators is yet speculative. By means of HPLC and MS analysis it was shown that costunolide, dehydrocostuslactone, 8-epixanthatin and tomentosin are already present in dry seeds and can be extracted in low amounts from cotyledons, hypocotyls and roots of seedlings during the first days after germination. Semi-quantitative and RT-qPCR experiments with genes of the key enzymes of two independent routes of the endogenous STL biosynthesis confirmed the early and individual expression in these organs and revealed a gradual down regulation during the first 72-96 h after germination. Light irradiation of the plants led to a fast, but transient increase of STL in parts of the hypocotyl which correlated with growth retardation of the stem. One-sided external application of costunolide on hypocotyls conferred reduced growth of the treated side, thus resulting in the curving of the stem towards the side of the application. This indicates the inhibiting effects of STL on plant growth. The putative function of endogenous STL in sunflower as antagonists of auxin in growth processes is discussed.
Collapse
Affiliation(s)
- Otmar Spring
- Institute of Biology, University of Hohenheim, Garbenstraße 30, 70593, Stuttgart, Germany.
| | - Katharina Schmauder
- Institute of Biology, University of Hohenheim, Garbenstraße 30, 70593, Stuttgart, Germany
| | - Nathalie D Lackus
- Institute of Biology, University of Hohenheim, Garbenstraße 30, 70593, Stuttgart, Germany
| | - Jasmin Schreiner
- Institute of Biology, University of Hohenheim, Garbenstraße 30, 70593, Stuttgart, Germany
| | - Carolin Meier
- Institute of Biology, University of Hohenheim, Garbenstraße 30, 70593, Stuttgart, Germany
| | - Jan Wellhausen
- Institute of Biology, University of Hohenheim, Garbenstraße 30, 70593, Stuttgart, Germany
| | - Lisa V Smith
- Institute of Biology, University of Hohenheim, Garbenstraße 30, 70593, Stuttgart, Germany
| | - Maximilian Frey
- Institute of Biology, University of Hohenheim, Garbenstraße 30, 70593, Stuttgart, Germany
| |
Collapse
|
9
|
Metabolomic and gene expression approaches reveal the developmental and environmental regulation of the secondary metabolism of yacón (Smallanthus sonchifolius, Asteraceae). Sci Rep 2019; 9:13178. [PMID: 31511527 PMCID: PMC6739394 DOI: 10.1038/s41598-019-49246-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 08/19/2019] [Indexed: 11/28/2022] Open
Abstract
Acting as chemical defense or signaling compounds, secondary metabolites (SMs) play an essential role in the evolutionary success of many angiosperm plant families. However, the adaptive advantages that SMs confer, and the influence of environmental and developmental factors on SMs expression, remains poorly understood. A study of taxa endemic to the variable Andean climate, using a metabolomics approach, may provide further insight. By analyzing gene expression patterns and metabolic fingerprints, we report herein the developmental and environmental regulation of the secondary metabolism of Smallanthus sonchifolius (yacón), a medicinal Andean plant. Our results demonstrate a clear developmental stage dependent regulation of the secondary metabolism of yacón leaves wherein the metabolic diversity increases with plant age. However, environmental factors seem to regulate biosynthetic pathways, creating differences in the expression of chemical classes, pointing to an association between transcription levels of relevant genes and the relative amounts of more than 40 different metabolites. This study suggests that the secondary metabolism of yacón is regulated by a complex interplay between environmental factors and developmental stage and provides insight into the regulatory factors and adaptive roles of SMs in Andean taxa.
Collapse
|
10
|
Light and Microbial Lifestyle: The Impact of Light Quality on Plant–Microbe Interactions in Horticultural Production Systems—A Review. HORTICULTURAE 2019. [DOI: 10.3390/horticulturae5020041] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Horticultural greenhouse production in circumpolar regions (>60° N latitude), but also at lower latitudes, is dependent on artificial assimilation lighting to improve plant performance and the profitability of ornamental crops, and to secure production of greenhouse vegetables and berries all year round. In order to reduce energy consumption and energy costs, alternative technologies for lighting have been introduced, including light-emitting diodes (LED). This technology is also well-established within urban farming, especially plant factories. Different light technologies influence biotic and abiotic conditions in the plant environment. This review focuses on the impact of light quality on plant–microbe interactions, especially non-phototrophic organisms. Bacterial and fungal pathogens, biocontrol agents, and the phyllobiome are considered. Relevant molecular mechanisms regulating light-quality-related processes in bacteria are described and knowledge gaps are discussed with reference to ecological theories.
Collapse
|
11
|
Frey M, Schmauder K, Pateraki I, Spring O. Biosynthesis of Eupatolide-A Metabolic Route for Sesquiterpene Lactone Formation Involving the P450 Enzyme CYP71DD6. ACS Chem Biol 2018; 13:1536-1543. [PMID: 29758164 DOI: 10.1021/acschembio.8b00126] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Sesquiterpene lactones are a class of natural compounds well-known for their bioactivity and are characteristic for the Asteraceae family. Most sesquiterpene lactones are considered derivatives of germacrene A acid (GAA). GAA can be stereospecifically hydroxylated by the cytochrome P450 enzymes (CYP) Lactuca sativa costunolide synthase CYP71BL2 (LsCOS) and Helianthus annuus GAA 8β-hydroxylase CYP71BL1 (HaG8H) at C6 (in α-orientation) or C8 (in β-orientation), respectively. Spontaneous subsequent lactonization of the resulting 6α-hydroxy-GAA leads to costunolide, whereas 8β-hydroxy-GAA has not yet been reported to cyclize to a sesquiterpene lactone. Sunflower and related species of the Heliantheae tribe contain sesquiterpene lactones mainly derived from inunolide (7,8-cis lactone) and eupatolide (8β-hydroxy-costunolide) precursors. However, the mechanism of 7,8-cis lactonization in general, and the 6,7-trans lactone formation in the sunflower tribe, remain elusive. Here, we show that, in plant cells, heterologous expression of CYP71BL1 leads to the formation of inunolide. Using a phylogenetic analysis of enzymes from the CYP71 family involved in sesquiterpenoid metabolism, we identified the CYP71DD6 gene, which was able to catalyze the 6,7-trans lactonization in sunflowers, using as a substrate 8β-hydroxy-GAA. Consequently, CYP71DD6 resulted in the synthesis of eupatolide, thus called HaES ( Helianthus annuus eupatolide synthase). Thus, our study shows the entry point for the biosynthesis of two distinct types of sesquiterpene lactones in sunflowers: the 6,7-trans lactones derived from eupatolide and the 7,8-cis lactones derived from inunolide. The implications for tissue-specific localization, based on expression studies, are discussed.
Collapse
Affiliation(s)
- Maximilian Frey
- Institute of Botany, University of Hohenheim, Garbenstraße 30, 70599 Stuttgart, Germany
| | - Katharina Schmauder
- Institute of Botany, University of Hohenheim, Garbenstraße 30, 70599 Stuttgart, Germany
| | - Irini Pateraki
- Department of Plant and Environment al Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, Denmark
| | - Otmar Spring
- Institute of Botany, University of Hohenheim, Garbenstraße 30, 70599 Stuttgart, Germany
| |
Collapse
|
12
|
Gao QM, Kane NC, Hulke BS, Reinert S, Pogoda CS, Tittes S, Prasifka JR. Genetic Architecture of Capitate Glandular Trichome Density in Florets of Domesticated Sunflower ( Helianthus annuus L.). FRONTIERS IN PLANT SCIENCE 2018; 8:2227. [PMID: 29375602 PMCID: PMC5767279 DOI: 10.3389/fpls.2017.02227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 12/18/2017] [Indexed: 06/07/2023]
Abstract
Capitate glandular trichomes (CGT), one type of glandular trichomes, are most common in Asteraceae species. CGT can produce various secondary metabolites such as sesquiterpene lactones (STLs) and provide durable resistance to insect pests. In sunflower, CGT-based host resistance is effective to combat the specialist pest, sunflower moth. However, the genetic basis of CGT density is not well understood in sunflower. In this study, we identified two major QTL controlling CGT density in sunflower florets by using a F4 mapping population derived from the cross HA 300 × RHA 464 with a genetic linkage map constructed from genotyping-by-sequencing data and composed of 2121 SNP markers. One major QTL is located on chromosome 5, which explained 11.61% of the observed phenotypic variation, and the second QTL is located on chromosome 6, which explained 14.06% of the observed phenotypic variation. The QTL effects and the association between CGT density and QTL support interval were confirmed in a validation population which included 39 sunflower inbred lines with diverse genetic backgrounds. We also identified two strong candidate genes in the QTL support intervals, and the functions of their orthologs in other plant species suggested their potential roles in regulating capitate glandular trichome density in sunflower. Our results provide valuable information to sunflower breeding community for developing host resistance to sunflower insect pests.
Collapse
Affiliation(s)
- Qing-Ming Gao
- USDA-ARS Red River Valley Agricultural Research Center, Fargo, ND, United States
| | - Nolan C. Kane
- Ecology and Evolutionary Biology Department, University of Colorado, Boulder, CO, United States
| | - Brent S. Hulke
- USDA-ARS Red River Valley Agricultural Research Center, Fargo, ND, United States
| | - Stephan Reinert
- Ecology and Evolutionary Biology Department, University of Colorado, Boulder, CO, United States
| | - Cloe S. Pogoda
- Ecology and Evolutionary Biology Department, University of Colorado, Boulder, CO, United States
| | - Silas Tittes
- Ecology and Evolutionary Biology Department, University of Colorado, Boulder, CO, United States
| | - Jarrad R. Prasifka
- USDA-ARS Red River Valley Agricultural Research Center, Fargo, ND, United States
| |
Collapse
|
13
|
Brentan Silva D, Aschenbrenner AK, Lopes NP, Spring O. Direct Analyses of Secondary Metabolites by Mass Spectrometry Imaging (MSI) from Sunflower (Helianthus annuus L.) Trichomes. Molecules 2017; 22:molecules22050774. [PMID: 28489027 PMCID: PMC6154581 DOI: 10.3390/molecules22050774] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 05/07/2017] [Accepted: 05/08/2017] [Indexed: 01/11/2023] Open
Abstract
Helianthus annuus (sunflower) displays non-glandular trichomes (NGT), capitate glandular trichomes (CGT), and linear glandular trichomes (LGT), which reveal different chemical compositions and locations in different plant tissues. With matrix-assisted laser desorption/ionization (MALDI) and laser desorption/ionization (LDI) mass spectrometry imaging (MSI) techniques, efficient methods were developed to analyze the tissue distribution of secondary metabolites (flavonoids and sesquiterpenes) and proteins inside of trichomes. Herein, we analyzed sesquiterpene lactones, present in CGT, from leaf transversal sections using the matrix 2,5-dihydroxybenzoic acid (DHB) and α-cyano-4-hydroxycinnamic acid (CHCA) (mixture 1:1) with sodium ions added to increase the ionization in positive ion mode. The results observed for sesquiterpenes and polymethoxylated flavones from LGT were similar. However, upon desiccation, LGT changed their shape in the ionization source, complicating analyses by MSI mainly after matrix application. An alternative method could be applied to LGT regions by employing LDI (without matrix) in negative ion mode. The polymethoxylated flavones were easily ionized by LDI, producing images with higher resolution, but the sesquiterpenes were not observed in spectra. Thus, the application and viability of MALDI imaging for the analyses of protein and secondary metabolites inside trichomes were confirmed, highlighting the importance of optimization parameters.
Collapse
Affiliation(s)
- Denise Brentan Silva
- Laboratório de Produtos Naturais e Espectrometria de Massas (LaPNEM), Universidade Federal de Mato Grosso do Sul, Campo Grande 79070-900, MS, Brazil.
- Núcleo de Pesquisas em Produtos Naturais e Sintéticos (NPPNS), Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-020, SP, Brazil.
| | | | - Norberto Peporine Lopes
- Núcleo de Pesquisas em Produtos Naturais e Sintéticos (NPPNS), Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-020, SP, Brazil.
| | - Otmar Spring
- Institute of Botany, University of Hohenheim, Garbenstraße 30, Stuttgart 70593, Germany.
| |
Collapse
|
14
|
Bombo AB, Appezzato-da-Glória B, Aschenbrenner AK, Spring O. Capitate glandular trichomes in Aldama discolor (Heliantheae - Asteraceae): morphology, metabolite profile and sesquiterpene biosynthesis. PLANT BIOLOGY (STUTTGART, GERMANY) 2016; 18:455-462. [PMID: 26642998 DOI: 10.1111/plb.12423] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 11/26/2015] [Indexed: 06/05/2023]
Abstract
The capitate glandular trichome is the most common type described in Asteraceae species. It is known for its ability to produce various plant metabolites of ecological and economic importance, among which sesquiterpene lactones are predominant. In this paper, we applied microscopy, phytochemical and molecular genetics techniques to characterise the capitate glandular trichome in Aldama discolor, a native Brazilian species of Asteraceae, with pharmacological potential. It was found that formation of trichomes on leaf primordia of germinating seeds starts between 24 h and 48 h after radicle growth indicates germination. The start of metabolic activity of trichomes was indicated by separation of the cuticle from the cell wall of secretory cells at the trichome tip after 72 h. This coincided with the accumulation of budlein A, the major sesquiterpene lactone of A. discolor capitate glandular trichomes, in extracts of leaf primordia after 96 h. In the same timeframe of 72-96 h post-germination, gene expression studies showed up-regulation of the putative germacrene A synthase (pGAS2) and putative germacrene A oxidase (pGAO) of A. discolor in the transcriptome of these samples, indicating the start of sesquiterpene lactone biosynthesis. Sequencing of the two genes revealed high similarity to HaGAS and HaGAO from sunflower, which shows that key steps of this pathway are highly conserved. The processes of trichome differentiation, metabolic activity and genetic regulation in A. discolor and in sunflower appear to be typical for other species of the subtribe Helianthinae.
Collapse
Affiliation(s)
- A B Bombo
- Department of Biological Sciences, Luiz de Queiroz College of Agriculture, University of Sao Paulo, Piracicaba, Brazil
| | - B Appezzato-da-Glória
- Department of Biological Sciences, Luiz de Queiroz College of Agriculture, University of Sao Paulo, Piracicaba, Brazil
| | | | - O Spring
- Institute of Botany, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|