1
|
Wilson SK, Pretorius T, Naidoo S. Mechanisms of systemic resistance to pathogen infection in plants and their potential application in forestry. BMC PLANT BIOLOGY 2023; 23:404. [PMID: 37620815 PMCID: PMC10463331 DOI: 10.1186/s12870-023-04391-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/24/2023] [Indexed: 08/26/2023]
Abstract
BACKGROUND The complex systemic responses of tree species to fight pathogen infection necessitate attention due to the potential for yield protection in forestry. RESULTS In this paper, both the localized and systemic responses of model plants, such as Arabidopsis and tobacco, are reviewed. These responses were compared to information available that investigates similar responses in woody plant species and their key differences were highlighted. In addition, tree-specific responses that have been documented were summarised, with the critical responses still relying on certain systemic acquired resistance pathways. Importantly, coniferous species have been shown to utilise phenolic compounds in their immune responses. Here we also highlight the lack of focus on systemic induced susceptibility in trees, which can be important to forest health. CONCLUSIONS This review highlights the possible mechanisms of systemic response to infection in woody plant species, their potential applications, and where research may be best focused in future.
Collapse
Affiliation(s)
- S K Wilson
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, 0028, South Africa
| | - T Pretorius
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, 0028, South Africa
| | - S Naidoo
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, 0028, South Africa.
| |
Collapse
|
2
|
Basavarajappa DS, Kumar RS, Nagaraja SK, Perumal K, Nayaka S. Exogenous application of antagonistic Streptomyces sp. SND-2 triggers defense response in Vigna radiata (L.) R. Wilczek (mung bean) against anthracnose infection. ENVIRONMENTAL RESEARCH 2023; 231:116212. [PMID: 37244496 DOI: 10.1016/j.envres.2023.116212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/15/2023] [Accepted: 05/20/2023] [Indexed: 05/29/2023]
Abstract
Anthracnose is a devastating disease caused by the fungus Colletotrichum lindemuthianum (CL) in Vigna radiata (L.) R. Wilczek (mung bean). In the present study, an eco-friendly approach to control anthracnose infection, growth promotion and enhancement of defense response in mung bean plants using endophytic actinomycetes was performed. Among the 24 actinomycetes isolates from the Cleome rutidosperma plant, the isolate SND-2 exhibited a broad spectrum of antagonistic activity with 63.27% of inhibition against CL in the dual culture method. Further, the isolate SND-2 was identified as Streptomyces sp. strain SND-2 (SND-2) through the 16S rRNA gene sequence. In-vitro screening of plant growth trials confirmed that SND-2 has the potential to produce indole acetic acid, hydrogen cyanide, ammonia, phosphate solubilization, and siderophore. The in-vivo biocontrol study was performed with exogenous application of wettable talcum-based formulation of SND-2 strain to mitigate CL infection in mung bean seedlings. The results displayed maximum seed germination, vigor index, increased growth parameters, and lowest disease severity (43.63 ± 0.73) in formulation treated and pathogen challenged mung bean plants. Further, the application of SND-2 formulation with pathogen witnessed increased cellular defense through the maximum accumulation of lignin, hydrogen peroxide and phenol deposition in mung bean leaves compared with control treatments. Biochemical defense response exhibited upregulation of antioxidant enzymes such as phenylalanine ammonia-lyase, β-1,-3-Glucanase, and peroxidase enzymes activities with increased phenolic (3.64 ± 0.11 mg/g fresh weight) and flavonoid (1.14 ± 0.05 mg/g fresh weight) contents in comparison with other treatments at 0, 4, 12, 24, 36, and 72 h post pathogen inoculation. This study demonstrated that formulation of Streptomyces sp. strain SND-2 is a potential source as a suppressive agent and plant growth promoter in mung bean plants upon C. lindemuthianum infestation and witnesses the elevation in cellular and biochemical defense against anthracnose disease.
Collapse
Affiliation(s)
| | - Raju Suresh Kumar
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.
| | | | - Karthikeyan Perumal
- Department of Chemistry and Biochemistry, The Ohio State University, 151 W. Woodruff Ave, Columbus, OH, 43210, USA.
| | - Sreenivasa Nayaka
- PG Department of Studies in Botany, Karnatak University, Dharwad, 580003, Karnataka, India.
| |
Collapse
|
3
|
Shokrollahi N, Ho CL, Mohd Zainudin NAI, Abdul Wahab MAB, Wong MY. Plant Defense Inducers and Antioxidant Metabolites Produced During Oil Palm-Ganoderma boninense Interaction In Vitro. CHEMISTRY AFRICA 2022. [DOI: 10.1007/s42250-022-00501-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
4
|
Ye S, Yan R, Li X, Lin Y, Yang Z, Ma Y, Ding Z. Biocontrol potential of Pseudomonas rhodesiae GC-7 against the root-knot nematode Meloidogyne graminicola through both antagonistic effects and induced plant resistance. Front Microbiol 2022; 13:1025727. [PMID: 36386722 PMCID: PMC9651087 DOI: 10.3389/fmicb.2022.1025727] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 09/23/2022] [Indexed: 11/22/2022] Open
Abstract
Plant-parasitic nematodes (PPNs) cause serious damage to agricultural production worldwide. Currently, because of a lack of effective and environmental-friendly chemical nematicides, the use of microbial nematicides has been proposed as an eco-friendly management strategy to control PPNs. A nematicidal bacterium GC-7 was originally isolated from the rice rhizosphere, and was identified as Pseudomonas rhodesiae. Treatment with the fermentation supernatant of GC-7 in vitro showed a highly lethal effect on second-stage juveniles of Meloidogyne graminicola, with the mortality rate increasing to 95.82% at 24 h and egg hatching significantly inhibited, with a hatch inhibition rate of 60.65% at 96 h. The bacterium significantly reduced the level of damage caused by M. graminicola infestations to rice (Oryza sativa) in greenhouse and field experiments. Under greenhouse conditions, the GC-7 culture efficiently reduced the gall index and nematode population in rice roots and soils, as well as inhibited nematode development compared to the control. Under field conditions, application of the GC-7 consistently showed a high biocontrol efficacy against M. graminicola (with a control efficiency of 58.85%) and promoted plant growth. In addition, the inoculation of GC-7 in M. graminicola-infested rice plant fields significantly suppressed final nematode populations in soil under natural conditions. Furthermore, activities of plant defense-related enzymes, peroxidase, polyphenol oxidase, and phenylalanine ammonia-lyase were remarkably increased in plant roots treated with GC-7 compared with roots that were challenge to M. graminicola. Moreover, quantitative real-time PCR analysis showed that GC-7 significantly enhanced the expression of defense genes (PR1a, WRKY45, JaMYB, AOS2, ERF1, and ACS1) related to salicylic acid, jasmonic acid, and ethylene signaling pathways in rice roots after inoculation with GC-7 at different levels. The results indicated that GC-7 could be an effective biological component in the integrated management of M. graminicola infecting rice.
Collapse
Affiliation(s)
- Shan Ye
- College of Plant Protection, Hunan Agricultural University, Changsha, Hunan, China
- Hunan Provincial Engineering & Technology Research Center for Biopesticide and Formulation Processing, Changsha, Hunan, China
| | - Rui Yan
- College of Plant Protection, Hunan Agricultural University, Changsha, Hunan, China
| | - Xinwen Li
- Agriculture and Rural Department of Hunan Province, Plant Protection and Inspection Station, Changsha, Hunan, China
| | - Yufeng Lin
- Agriculture and Rural Department of Hunan Province, Plant Protection and Inspection Station, Changsha, Hunan, China
| | - Zhuhong Yang
- College of Plant Protection, Hunan Agricultural University, Changsha, Hunan, China
- Hunan Provincial Engineering & Technology Research Center for Biopesticide and Formulation Processing, Changsha, Hunan, China
| | - Yihang Ma
- Department of Chemical Metrology and Reference Materials, Hunan Institute of Metrology and Test, Changsha, Hunan, China
| | - Zhong Ding
- College of Plant Protection, Hunan Agricultural University, Changsha, Hunan, China
- Hunan Provincial Engineering & Technology Research Center for Biopesticide and Formulation Processing, Changsha, Hunan, China
- *Correspondence: Zhong Ding,
| |
Collapse
|
5
|
Karthika S, Remya M, Varghese S, Dhanraj ND, Sali S, Rebello S, Jose SM, Jisha MS. Bacillus tequilensis PKDN31 and Bacillus licheniformis PKDL10 -As double headed swords to combat Fusarium oxysporum f. sp. lycopersici induced tomato wilt. Microb Pathog 2022; 172:105784. [PMID: 36122853 DOI: 10.1016/j.micpath.2022.105784] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 09/12/2022] [Accepted: 09/12/2022] [Indexed: 10/31/2022]
Abstract
Wilt disease, caused by Fusarium oxysporum. f. sp. lycopersici, is a global threat to tomato production that needs to be addressed seriously. The current research envisages the use of two self-compatible Bacillus strains, Bacillus tequilensis PKDN31 and Bacillus licheniformis PKDL10, in a combinatorial approach. The spent supernatant of liquid cultures from strains PKDN31 and PKDL10 showed in vitro antifungal activity against Fusarium sp. attaining an inhibition percentage of 95.33% and 96.54%, respectively. The bacterial isolates lytic activity against Fusarium oxysporum was evaluated by scanning electron microscopic analysis and lytic enzyme production of amylase, lipase, protease and β-1,3 glucanase. Furthermore, PKDN31 and PKDL10 produced siderophores and had root colonizing ability that enhanced the biocontrol efficiency. Combined in vivo inoculation of Bacillus tequilensis PKDN31 and Bacillus licheniformis PKDL10 on tomato seeds revealed that the strains could induce systemic resistance in tomato against Fusarium oxysporum. f. sp. lycopersici by increasing defence enzymes such as β-1,3 glucanase, polyphenol oxidase, peroxidase, phenylalanine ammonia-lyase, chitinase, and total phenol accumulations. Pot culture experiments also proved the biocontrol efficacy of the above dual culture supplementation as this treatment displayed a better growth as well as defense against Fusarium challenge compared to the controls. The obtained results suggest that rhizobacterial isolates could be employed as systemic resistance inducers and biocontrol agents in tomato plants to protect against Fusarium wilt disease.
Collapse
Affiliation(s)
- S Karthika
- School of Biosciences, Mahatma Gandhi University, Kottayam, Kerala, 686560, India
| | - M Remya
- School of Biosciences, Mahatma Gandhi University, Kottayam, Kerala, 686560, India
| | - Sherin Varghese
- School of Biosciences, Mahatma Gandhi University, Kottayam, Kerala, 686560, India
| | - N D Dhanraj
- School of Biosciences, Mahatma Gandhi University, Kottayam, Kerala, 686560, India
| | - Sangeeta Sali
- School of Biosciences, Mahatma Gandhi University, Kottayam, Kerala, 686560, India
| | - Sharrel Rebello
- National Institute of Plant Science Technology, Mahatma Gandhi University, Kottayam, Kerala, 686560, India
| | | | - M S Jisha
- School of Biosciences, Mahatma Gandhi University, Kottayam, Kerala, 686560, India; National Institute of Plant Science Technology, Mahatma Gandhi University, Kottayam, Kerala, 686560, India; School of Food Science and Technology, Mahatma Gandhi University, Kottayam, Kerala, 686560, India.
| |
Collapse
|
6
|
Zeyad MT, Tiwari P, Ansari WA, Kumar SC, Kumar M, Chakdar H, Srivastava AK, Singh UB, Saxena AK. Bio-priming with a consortium of Streptomyces araujoniae strains modulates defense response in chickpea against Fusarium wilt. Front Microbiol 2022; 13:998546. [PMID: 36160196 PMCID: PMC9493686 DOI: 10.3389/fmicb.2022.998546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 08/12/2022] [Indexed: 11/13/2022] Open
Abstract
Wilt caused by Fusarium oxysporum f. sp. ciceris (Foc) is one of the major diseases of chickpea affecting the potential yield significantly. Productivity and biotic stress resilience are both improved by the association and interaction of Streptomyces spp. with crop plants. In the present study, we evaluated two Streptomyces araujoniae strains (TN11 and TN19) for controlling the wilt of chickpea individually and as a consortium. The response of Foc challenged chickpea to inoculation with S. araujoniae TN11 and TN19 individually and as a consortium was recorded in terms of changes in physio-biochemical and expression of genes coding superoxide dismutase (SOD), peroxidase, and catalase. Priming with a consortium of TN11 and TN19 reduced the disease severity by 50–58% when challenged with Foc. Consortium primed-challenged plants recorded lower shoot dry weight to fresh weight ratio and root dry weight to fresh weight ratio as compared to challenged non-primed plants. The pathogen-challenged consortium primed plants recorded the highest accumulation of proline and electrolyte leakage. Similarly, total chlorophyll and carotenoids were recorded highest in the consortium treatment. Expression of genes coding SOD, peroxidase, and catalase was up-regulated which corroborated with higher activities of SOD, peroxidase, and catalase in consortium primed-challenged plants as compared to the challenged non-primed plants. Ethyl acetate extracts of TN11 and TN19 inhibited the growth of fungal pathogens viz., Fusarium oxysporum f. sp. ciceris. Macrophomina phaseolina, F. udum, and Sclerotinia sclerotiarum by 54–73%. LC–MS analyses of the extracts showed the presence of a variety of antifungal compounds like erucamide and valinomycin in TN11 and valinomycin and dinactin in TN19. These findings suggest that the consortium of two strains of S. araujoniae (TN11 and TN19) can modulate defense response in chickpea against wilt and can be explored as a biocontrol strategy.
Collapse
|
7
|
Xiao C, Xu C, Zhang J, Jiang W, Zhang X, Yang C, Xu J, Zhang Y, Zhou T. Soil Microbial Communities Affect the Growth and Secondary Metabolite Accumulation in Bletilla striata (Thunb.) Rchb. f. Front Microbiol 2022; 13:916418. [PMID: 35733964 PMCID: PMC9207479 DOI: 10.3389/fmicb.2022.916418] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 05/10/2022] [Indexed: 12/12/2022] Open
Abstract
Bletilla striata (Thunb.) Rchb.f. is a perennial herb belonging to the Orchidaceae family. Its tubers are used in traditional Chinese medicine to treat gastric ulcers, inflammation, silicosis tuberculosis, and pneumogastric hemorrhage. It has been reported that different soil types can affect the growth of B. striata and the accumulation of secondary metabolites in its tubers, but the biological mechanisms underlying these effects remain unclear. In this study, we compared agronomic traits and the accumulation of secondary metabolites (extractum, polysaccharide, total phenol, militarine) in B. striata grown in sandy loam or sandy clay soil. In addition, we compared physicochemical properties and microbial communities between the two soil types. In pot experiments, we tested how irradiating soil or transplanting microbiota from clay or loam into soil affected B. striata growth and accumulation of secondary metabolites. The results showed that sandy loam and sandy clay soils differed significantly in their physicochemical properties as well as in the structure and composition of their microbial communities. Sandy loam soil had higher pH, SOM, SOC, T-Ca, T-N, T-Mg, T-Mn, T-Zn, A-Ca, A-Mn, and A-Cu than sandy clay soil, but significantly lower T-P, T-K, T-Fe, and A-P content. Sandy loam soil showed 7.32% less bacterial diversity based on the Shannon index, 19.59% less based on the Ace index, and 24.55% less based on the Chao index. The first two components of the PCoA explained 74.43% of the variation in the bacterial community (PC1 = 64.92%, PC2 = 9.51%). Similarly, the first two components of the PCoA explained 58.48% of the variation in the fungal community (PC1 = 43.67%, PC2 = 14.81%). The microbiome associated with sandy clay soil can promote the accumulation of militarine in B. striata tubers, but it inhibits the growth of B. striata. The accumulation of secondary metabolites such as militarine in B. striata was significantly higher in sandy clay than in sandy loam soil. Conversely, B. striata grew better in sandy loam soil. The microbiome associated with sandy loam soil can promote the growth of B. striata, but it reduces the accumulation of militarine in B. striata tubers. Pot experiment results further confirmed that the accumulation of secondary metabolites such as militarine was higher in soil transplanted with loam microbiota than in soil transplanted with clay microbiota. These results may help guide efforts to improve B. striata yield and its accumulation of specific secondary metabolites.
Collapse
Affiliation(s)
- Chenghong Xiao
- Resource Institute for Chinese and Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Chunyun Xu
- Resource Institute for Chinese and Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Jinqiang Zhang
- Resource Institute for Chinese and Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Weike Jiang
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Xinqing Zhang
- Resource Institute for Chinese and Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Changgui Yang
- Resource Institute for Chinese and Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Jiao Xu
- Resource Institute for Chinese and Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Yongping Zhang
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Tao Zhou
- Resource Institute for Chinese and Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang, China
- *Correspondence: Tao Zhou,
| |
Collapse
|
8
|
Biocontrol Streptomyces Induces Resistance to Bacterial Wilt by Increasing Defense-Related Enzyme Activity in Solanum melongena L. Curr Microbiol 2022; 79:146. [PMID: 35344085 DOI: 10.1007/s00284-022-02832-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 03/08/2022] [Indexed: 11/27/2022]
Abstract
Streptomyces strains were isolated from rhizosphere soil and evaluated for in vitro plant growth and antagonistic potential against Ralstonia solanacearum. Based on their in vitro screening, seven Streptomyces were evaluated for plant growth promotion (PGP) and biocontrol efficacy by in-planta and pot culture study. In the in-planta study, Streptomyces-treated eggplant seeds showed better germination percentage, plant growth, and disease occurrence against R. solanacearum than the control treatment. Hence, all seven Streptomyces cultures were developed as a bioformulation by farmyard manure and used for pot culture study. The highest plant growth, weight, and total chlorophyll content were observed in UP1A-1-treated eggplant followed by UP1A-4, UT4A-49, and UT6A-57. Similarly, the maximum biocontrol efficacy was observed in UP1A-1-treated eggplants against bacterial wilt. The biocontrol potential of Streptomyces is also confirmed through metabolic responses by assessing the activities of the defense-related enzymes peroxidase (POX), polyphenol oxidase (PPO), and phenylalanine ammonia-lyase (PAL) and as well as the levels of total phenol. Treatment with UP1A-1/ UT4A-49 and challenge with R. solanacearum led to maximum changes in the activities of POX, PPO, and PAL and the levels of total phenol in the eggplants at different time intervals. Alterations in enzymes of UP1A-1 treatment were related to early defense responses in eggplant. Therefore, the treatment with UP1A-1 significantly delayed the establishment of bacterial wilt in eggplant. Altogether, the present study suggested that the treatment of Streptomyces maritimus UP1A-1 fortified farmyard manure has improved the plant growth and stronger disease control against R. solanacearum on eggplant.
Collapse
|
9
|
Anti-Biofilm Activity and Biocontrol Potential of Streptomyces Cultures Against Ralstonia solanacearum on Tomato Plants. Indian J Microbiol 2022; 62:32-39. [PMID: 35068601 PMCID: PMC8758874 DOI: 10.1007/s12088-021-00963-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 07/20/2021] [Indexed: 10/20/2022] Open
Abstract
Biological control of phytopathogen is a promising approach when compared to the use of chemical agents. In the present study, seven Streptomyces cultures showing promising anti biofilm activity against Ralstonia solanacearum was mixed individually with farmyard manure. All the Streptomyces fortified farmyard manure (SFYM) were screened for plant growth promotion and control of bacterial wilt caused by R. solanacearum on tomato. Further, the ability of SFYM on stimulating the production of defense-related enzymes in R. solanacearum-inoculated tomato plants was investigated. When compared to the control tomato plants, the SFYM-treated plants had longer shoot and root length along with higher fresh and dry weight. The maximum level of chlorophyll was observed in the plants treated with strain UP1A-1 (2.21 ± 0.18 mg g-1). Strain UP1A-1 also showed maximum of 96.8 ± 1.4% biocontrol efficacy in tomato plants challenged with R. solanacearum. In addition, the UP1A-1 treated tomato plants showed maximum accumulation of total phenolics (3.02 ± 0.09 mg g-1) after 6 days of pathogen inoculation (DPI). Similarly, tomato plants treated with UP1A-1 showed highest level of peroxides, polyphenol oxidase and phenylalanine ammonia lyase during 1-9 DPI. Findings of present study revealed that the Streptomyces culture UP1A-1 fortified farm yard manure could be applied as an eco-friendly alternative to synthetic agents for controlling bacterial wilt in tomato plants.
Collapse
|
10
|
Zhang J, Sun X. Recent advances in polyphenol oxidase-mediated plant stress responses. PHYTOCHEMISTRY 2021; 181:112588. [PMID: 33232863 DOI: 10.1016/j.phytochem.2020.112588] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 11/06/2020] [Accepted: 11/07/2020] [Indexed: 05/29/2023]
Abstract
Plant polyphenol oxidases (PPOs) are ubiquitous copper metalloenzymes with a biochemistry that has been known for more than a century. By the 1990s, biologists began to recognize the importance of PPOs in plant response to the infestation of herbivores and pathogens; ideas concerning a defensive role for PPOs arose to address observed evidence, and several testable hypotheses were suggested. Two pivotal discoveries in tomato (Lycopersicon esculentum Miller) plants, an inverse correlation between PPO levels and insect growth and PPO induction by defence signals, have driven many studies of PPO defence functions in the context of abiotic and biotic stresses. During the past three decades, extensive molecular research in transgenic and non-transgenic systems has partly revealed the sophisticated mechanisms underlying PPO defence against herbivores and pathogens. These understandings, rather than theoretical predictions, have driven the development of new hypotheses and advanced PPO-related studies. Here, we review progress in PPO family features, expression regulation and the defensive role of PPOs in plants. We propose assumptions of an extended range of co- and post-transcriptional processes to the regulation of unexplored PPO expression. In addition, the identification of endogenous PPO substrates and downstream targets of PPO action will be useful for elucidating PPO defensive roles. The potential effects of PPO-mediated oxidative defences on herbivore performance ultimately needs to be further investigated. Therefore, expanding multidisciplinary approaches to unexplored dimensions of PPO defence function should be a future priority.
Collapse
Affiliation(s)
- Jin Zhang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, Zhejiang, China; Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, 310008, Zhejiang, China
| | - Xiaoling Sun
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, Zhejiang, China; Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, 310008, Zhejiang, China.
| |
Collapse
|
11
|
Horstmann JL, Dias MP, Ortolan F, Medina-Silva R, Astarita LV, Santarém ER. Streptomyces sp. CLV45 from Fabaceae rhizosphere benefits growth of soybean plants. Braz J Microbiol 2020; 51:1861-1871. [PMID: 32529561 PMCID: PMC7688731 DOI: 10.1007/s42770-020-00301-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 05/16/2020] [Indexed: 01/21/2023] Open
Abstract
Plant growth-promoting bacteria such as Streptomyces are an attractive alternative for increasing the sustainability of agricultural systems. In this study, Streptomyces isolates obtained from rhizosphere soil of plants in the family Fabaceae were characterized for their plant growth-promoting traits, including the production of siderophores, 1-aminocyclopropane-1-carboxylate (ACC) deaminase, indole-3-acetic acid (IAA), and phenazines. Soybean seeds were bacterized with selected isolates to test growth promotion. All isolates produced IAA, and the isolate CLV45 was the most efficient, reaching 398.53 mg of IAA per gram of cells. CLV41, CLV45, and CLV46 showed high activity for ACC deaminase whereas CLV42, CLV44, and CLV46 were efficient in siderophore production. Pyocyanin was detected in all isolates; CLV41, CLV43, and CLV45 produced phenazine-carboxylic acid as well. Selected for IAA and ACC deaminase production combined with production of siderophores and phenazines, CLV42, CLV44, and CLV45 were tested for their growth promotion potential. Seed bacterization with CLV45 resulted in plants with increased shoot growth (36.63%) and dry mass (17.97%) compared to control plants. Results suggest that moderate or high levels of auxin and ACC deaminase production by the isolate CLV45 positively affected the growth of soybean plants, making it a strong candidate for further studies on biofertilizer formulation.
Collapse
Affiliation(s)
- Juliana Lopes Horstmann
- Escola de Ciências da Saúde e da Vida, Laboratório de Biotecnologia Vegetal, Pontifícia Universidade Católica do Rio Grande do Sul, Av. Ipiranga 6681, Porto Alegre, Rio Grande do Sul, 90619-900, Brazil
| | - Maila Pacheco Dias
- Escola de Ciências da Saúde e da Vida, Laboratório de Biotecnologia Vegetal, Pontifícia Universidade Católica do Rio Grande do Sul, Av. Ipiranga 6681, Porto Alegre, Rio Grande do Sul, 90619-900, Brazil
| | - Francieli Ortolan
- Escola de Ciências da Saúde e da Vida, Laboratório de Biotecnologia Vegetal, Pontifícia Universidade Católica do Rio Grande do Sul, Av. Ipiranga 6681, Porto Alegre, Rio Grande do Sul, 90619-900, Brazil
| | - Renata Medina-Silva
- Escola de Ciências da Saúde e da Vida, Laboratório de Imunologia e Microbiologia, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Leandro Vieira Astarita
- Escola de Ciências da Saúde e da Vida, Laboratório de Biotecnologia Vegetal, Pontifícia Universidade Católica do Rio Grande do Sul, Av. Ipiranga 6681, Porto Alegre, Rio Grande do Sul, 90619-900, Brazil
| | - Eliane Romanato Santarém
- Escola de Ciências da Saúde e da Vida, Laboratório de Biotecnologia Vegetal, Pontifícia Universidade Católica do Rio Grande do Sul, Av. Ipiranga 6681, Porto Alegre, Rio Grande do Sul, 90619-900, Brazil.
| |
Collapse
|
12
|
El-Shatoury SA, Ameen F, Moussa H, Abdul Wahid O, Dewedar A, AlNadhari S. Biocontrol of chocolate spot disease ( Botrytis cinerea) in faba bean using endophytic actinomycetes Streptomyces: a field study to compare application techniques. PeerJ 2020; 8:e8582. [PMID: 32195043 PMCID: PMC7067178 DOI: 10.7717/peerj.8582] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 01/16/2020] [Indexed: 12/14/2022] Open
Abstract
Sustainable agriculture is needing economic applications for disease control. One possibility is offered by local medical plants. Endophytes of medical plants, such as actinomycetes Streptomyces sp. have previously shown antagonistic activities against fungal phytopathogens. In the present field experiment, we aimed to verify the efficiency of endophytic Streptomyces against one of the common pathogens, Botrytis cinerea, causing chocolate spot disease for faba bean (Vicia fabae L.). We tested two strains of Streptomyces (MG788011, MG788012) and three techniques to apply the biocontrol agent: (1) coating the seeds with spores, (2) spraying mycelia and (3) spraying the crude metabolites over the plants. The technique using the crude metabolites was the most efficient to prevent the disease symptoms. Both of the endophytic strains diminished the disease symptoms and improved the plant growth. The study offers a potential biological control technique to prevent chocolate spot disease and, at the same time, increase the yields of faba bean in sustainable agriculture.
Collapse
Affiliation(s)
- Sahar A El-Shatoury
- Botany Department, Faculty of Sciences, Suez Canal University, Ismailia, Egypt
| | - Fuad Ameen
- Department of Botany & Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia.,Department of Marine Biology, Al-Hodeidah University, Al-Hodeidah, Yemen
| | - Heba Moussa
- Botany Department, Faculty of Sciences, Suez Canal University, Ismailia, Egypt
| | - Omar Abdul Wahid
- Botany Department, Faculty of Sciences, Suez Canal University, Ismailia, Egypt
| | - Ahmed Dewedar
- Botany Department, Faculty of Sciences, Suez Canal University, Ismailia, Egypt
| | - Saleh AlNadhari
- Department of Plant Protection, College of Agriculture, King Saud University, Riyadh, Saudi Arabia.,Department of Plant Protection, College of Agriculture & Veterinary Medicine Farms, Yemen, Ibb University, Ibb, Yemen
| |
Collapse
|
13
|
Abbasi S, Safaie N, Sadeghi A, Shamsbakhsh M. Streptomyces Strains Induce Resistance to Fusarium oxysporum f. sp. lycopersici Race 3 in Tomato Through Different Molecular Mechanisms. Front Microbiol 2019; 10:1505. [PMID: 31333615 PMCID: PMC6616268 DOI: 10.3389/fmicb.2019.01505] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 06/17/2019] [Indexed: 01/25/2023] Open
Abstract
Plant growth promoting rhizobacteria (PGPR) are potential natural alternatives to chemical fungicides in greenhouse production via inducing plant immune system against biotic stresses. In this research, 126 Streptomyces isolates were recovered from rhizosphere soils of 13 different commercial vegetable greenhouses in Iran. Streptomyces isolates were screened for in vitro Plant growth promoting (PGP) traits and ability to antagonize Fusarium oxysporum f. sp. lycopersici race 3 (FOL), the causal agent of Fusarium wilt of tomato (FWT). Six isolates with the highest antagonistic activity and at least three PGP traits were selected and compared with chemical fungicide Carbendazim® in a greenhouse experiment. All bacterial treatments mitigated FWT disease symptoms like chlorosis, stunting and wilting at the same level or better than Carbendazim®. Strains IC10 and Y28 increased shoot length and shoot fresh and dry weight compared to not inoculated control plants. Phenotypic characterization and 16S rRNA gene sequencing showed, strains IC10 and Y28 were closely related to S. enissocaesilis and S. rochei, respectively. The ability of the superior biocontrol strains to induce antioxidant enzymes activity and systemic resistance (ISR) was investigated. Increased activity of catalase (CAT) in plant treated with both strains as well as an increase in peroxidase (POX) activity in plants treated with Y28 pointed to a strain specific-induced systemic resistance (ss-ISR) in tomato against FOL. The differential induced expression of WRKY70 and ERF1 (two transcription factors involved in plant defense) and LOX and TPX by the analyzed Streptomyces strains, especially after inoculation with FOL, suggests that ss-ISR is triggered at the molecular level.
Collapse
Affiliation(s)
- Sakineh Abbasi
- Department of Plant Pathology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Naser Safaie
- Department of Plant Pathology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Akram Sadeghi
- Department of Microbial Biotechnology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Masoud Shamsbakhsh
- Department of Plant Pathology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
14
|
Paz ICP, Santin RDCM, Guimarães AM, Rosa OPPD, Quecine MC, Silva MDCPE, Azevedo JL, Matsumura ATS. Biocontrol of Botrytis cinerea and Calonectria gracilis by eucalypts growth promoters Bacillus spp. Microb Pathog 2018; 121:106-109. [DOI: 10.1016/j.micpath.2018.05.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 05/16/2018] [Accepted: 05/16/2018] [Indexed: 11/24/2022]
|
15
|
Dias MP, Bastos MS, Xavier VB, Cassel E, Astarita LV, Santarém ER. Plant growth and resistance promoted by Streptomyces spp. in tomato. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 118:479-493. [PMID: 28756346 DOI: 10.1016/j.plaphy.2017.07.017] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/16/2017] [Accepted: 07/19/2017] [Indexed: 05/02/2023]
Abstract
Plant Growth Promoting Rhizobacteria (PGPR) represent an alternative to improve plant growth and yield as well as to act as agents of biocontrol. This study characterized isolates of Streptomyces spp. (Stm) as PGPR, determined the antagonism of these isolates against Pectobacterium carotovorum subsp. brasiliensis (Pcb), evaluated the ability of Stm on promoting growth and modulating the defense-related metabolism of tomato plants, and the potential of Stm isolates on reducing soft rot disease in this species. The VOC profile of Stm was also verified. Promotion of plant growth was assessed indirectly through VOC emission and by direct interaction with Stm isolates in the roots. Evaluation of soft rot disease was performed in vitro on plants treated with Stm and challenged with Pcb. Enzymes related to plant defense were then analyzed in plants treated with three selected isolates of Stm, and PM1 was chosen for further Pcb-challenging experiment. Streptomyces spp. isolates displayed characteristics of PGPR. PM3 was the isolate with efficient antagonism against Pcb by dual-culture. Most of the isolates promoted growth of root and shoot of tomato plants by VOC, and PM5 was the isolate that most promoted growth by direct interaction with Stm. Soft rot disease and mortality of plants were significantly reduced when plants were treated with StmPM1. Modulation of secondary metabolism was observed with Stm treatment, and fast response of polyphenoloxidases was detected in plants pretreated with StmPM1 and challenged with Pcb. Peroxidase was significantly activated three days after infection with Pcb in plants pretreated with StmPM1. Results suggest that Streptomyces sp. PM1 and PM5 have the potential to act as PGPR.
Collapse
Affiliation(s)
- Maila P Dias
- Laboratório de Biotecnologia Vegetal, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Av. Ipiranga 6681, Porto Alegre, RS 90619-900, Brazil
| | - Matheus S Bastos
- Laboratório de Biotecnologia Vegetal, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Av. Ipiranga 6681, Porto Alegre, RS 90619-900, Brazil
| | - Vanessa B Xavier
- Laboratório de Operações Unitárias, Faculdade de Engenharia, Pontifícia Universidade Católica do Rio Grande do Sul, Av. Ipiranga 6681, Porto Alegre, RS 90619-900, Brazil
| | - Eduardo Cassel
- Laboratório de Operações Unitárias, Faculdade de Engenharia, Pontifícia Universidade Católica do Rio Grande do Sul, Av. Ipiranga 6681, Porto Alegre, RS 90619-900, Brazil
| | - Leandro V Astarita
- Laboratório de Biotecnologia Vegetal, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Av. Ipiranga 6681, Porto Alegre, RS 90619-900, Brazil
| | - Eliane R Santarém
- Laboratório de Biotecnologia Vegetal, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Av. Ipiranga 6681, Porto Alegre, RS 90619-900, Brazil.
| |
Collapse
|
16
|
Plant growth-promoting actinobacteria: a new strategy for enhancing sustainable production and protection of grain legumes. 3 Biotech 2017; 7:102. [PMID: 28560641 DOI: 10.1007/s13205-017-0736-3] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 04/19/2017] [Indexed: 10/19/2022] Open
Abstract
Grain legumes are a cost-effective alternative for the animal protein in improving the diets of the poor in South-East Asia and Africa. Legumes, through symbiotic nitrogen fixation, meet a major part of their own N demand and partially benefit the following crops of the system by enriching soil. In realization of this sustainability advantage and to promote pulse production, United Nations had declared 2016 as the "International Year of pulses". Grain legumes are frequently subjected to both abiotic and biotic stresses resulting in severe yield losses. Global yields of legumes have been stagnant for the past five decades in spite of adopting various conventional and molecular breeding approaches. Furthermore, the increasing costs and negative effects of pesticides and fertilizers for crop production necessitate the use of biological options of crop production and protection. The use of plant growth-promoting (PGP) bacteria for improving soil and plant health has become one of the attractive strategies for developing sustainable agricultural systems due to their eco-friendliness, low production cost and minimizing consumption of non-renewable resources. This review emphasizes on how the PGP actinobacteria and their metabolites can be used effectively in enhancing the yield and controlling the pests and pathogens of grain legumes.
Collapse
|
17
|
Chen X, Pizzatti C, Bonaldi M, Saracchi M, Erlacher A, Kunova A, Berg G, Cortesi P. Biological Control of Lettuce Drop and Host Plant Colonization by Rhizospheric and Endophytic Streptomycetes. Front Microbiol 2016; 7:714. [PMID: 27242735 PMCID: PMC4874062 DOI: 10.3389/fmicb.2016.00714] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 04/29/2016] [Indexed: 12/17/2022] Open
Abstract
Lettuce drop, caused by the soil borne pathogen Sclerotinia sclerotiorum, is one of the most common and serious diseases of lettuce worldwide. Increased concerns about the side effects of chemical pesticides have resulted in greater interest in developing biocontrol strategies against S. sclerotiorum. However, relatively little is known about the mechanisms of Streptomyces spp. as biological control agents against S. sclerotiorum on lettuce. Two Streptomyces isolates, S. exfoliatus FT05W and S. cyaneus ZEA17I, inhibit mycelial growth of Sclerotinia sclerotiorum by more than 75% in vitro. We evaluated their biocontrol activity against S. sclerotiorum in vivo, and compared them to Streptomyces lydicus WYEC 108, isolated from Actinovate®. When Streptomyces spp. (10(6) CFU/mL) were applied to S. sclerotiorum inoculated substrate in a growth chamber 1 week prior lettuce sowing, they significantly reduced the risk of lettuce drop disease, compared to the inoculated control. Interestingly, under field conditions, S. exfoliatus FT05W and S. cyaneus ZEA17I protected lettuce from drop by 40 and 10% respectively, whereas S. lydicus WYEC 108 did not show any protection. We further labeled S. exfoliatus FT05W and S. cyaneus ZEA17I with the enhanced GFP (EGFP) marker to investigate their rhizosphere competence and ability to colonize lettuce roots using confocal laser scanning microscopy (CLSM). The abundant colonization of young lettuce seedlings by both strains demonstrated Streptomyces' capability to interact with the host from early stages of seed germination and root development. Moreover, the two strains were detected also on 2-week-old roots, indicating their potential of long-term interactions with lettuce. Additionally, scanning electron microscopy (SEM) observations showed EGFP-S. exfoliatus FT05W endophytic colonization of lettuce root cortex tissues. Finally, we determined its viability and persistence in the rhizosphere and endorhiza up to 3 weeks by quantifying its concentration in these compartments. Based on these results we conclude that S. exfoliatus FT05W has high potential to be exploited in agriculture for managing soil borne diseases barely controlled by available plant protection products.
Collapse
Affiliation(s)
- Xiaoyulong Chen
- Department of Food, Environmental and Nutritional Sciences, University of MilanMilan, Italy
| | - Cristina Pizzatti
- Department of Food, Environmental and Nutritional Sciences, University of MilanMilan, Italy
| | - Maria Bonaldi
- Department of Food, Environmental and Nutritional Sciences, University of MilanMilan, Italy
| | - Marco Saracchi
- Department of Food, Environmental and Nutritional Sciences, University of MilanMilan, Italy
| | - Armin Erlacher
- Institute of Environmental Biotechnology, Graz University of TechnologyGraz, Austria
| | - Andrea Kunova
- Department of Food, Environmental and Nutritional Sciences, University of MilanMilan, Italy
| | - Gabriele Berg
- Institute of Environmental Biotechnology, Graz University of TechnologyGraz, Austria
| | - Paolo Cortesi
- Department of Food, Environmental and Nutritional Sciences, University of MilanMilan, Italy
| |
Collapse
|