1
|
Liu Y, Bai J, Yuan S, Gao S, Liu Z, Li Y, Zhang F, Zhao C, Zhang L. Characterization and expression analysis of chalcone synthase gene family members suggested their roles in the male sterility of a wheat temperature-sensitive genic male sterile (TGMS) line. Gene 2023; 888:147740. [PMID: 37661030 DOI: 10.1016/j.gene.2023.147740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/15/2023] [Accepted: 08/23/2023] [Indexed: 09/05/2023]
Abstract
Chalcone synthase (CHS), also known as the plants-specific type III polyketide synthases (PKSs), catalyzes the first key step in the biosynthesis of plant flavonoids. Flavonoids are one of the most important secondary metabolites which participate in flower pigmentation and pollen fertility. Recent reports have demonstrated the role of the CHS family in plant pollen exine formation. This study focused on the potential roles of CHS in the pollen exine formation of wheat. In the present study, a genome-wide investigation of the CHS family was carried out, and 87 CHS genes were identified in wheat. TaCHS3, TaCHS10, and TaCHS13 are wheat orthologs of Arabidopsis LESS ADHESIVE POLLEN (LAP5); TaCHS58, TaCHS64, and TaCHS67 are wheat orthologs of AtLAP6. TaCHS3, TaCHS10, and TaCHS67 showed anther-specific patterns. The expression of TaCHS3, TaCHS10, and TaCHS67 was positively co-expressed with sporopollenin biosynthetic genes, including TaCYP703A2, TaCYP704B1, TaDRL1, TaTKPR2, and TaMS2. Coincidently, the expression of TaCHS3, TaCHS10, and TaCHS67, together with those sporopollenin biosynthetic genes, were repressed at the tetrads and uninucleate stages in the temperature-sensitive genic male-sterile (TGMS) line BS366 under sterile conditions. Wheat anther-specific CHS genes might participate in the exine formation of BS366 through co-expressing with sporopollenin biosynthetic genes, which will undoubtedly provide knowledge of the roles of CHS in wheat pollen development.
Collapse
Affiliation(s)
- Yongjie Liu
- Institute of Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; Molecular Genetic Beijing Key Laboratory of Hybrid Wheat, Beijing 100097, China
| | - Jianfang Bai
- Institute of Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; Molecular Genetic Beijing Key Laboratory of Hybrid Wheat, Beijing 100097, China
| | - Shaohua Yuan
- Institute of Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; Molecular Genetic Beijing Key Laboratory of Hybrid Wheat, Beijing 100097, China
| | - Shiqing Gao
- Institute of Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; Molecular Genetic Beijing Key Laboratory of Hybrid Wheat, Beijing 100097, China
| | - Zihan Liu
- Institute of Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; Molecular Genetic Beijing Key Laboratory of Hybrid Wheat, Beijing 100097, China
| | - Yanmei Li
- Institute of Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; Molecular Genetic Beijing Key Laboratory of Hybrid Wheat, Beijing 100097, China
| | - Fengting Zhang
- Institute of Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; Molecular Genetic Beijing Key Laboratory of Hybrid Wheat, Beijing 100097, China
| | - Changping Zhao
- Institute of Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; Molecular Genetic Beijing Key Laboratory of Hybrid Wheat, Beijing 100097, China.
| | - Liping Zhang
- Institute of Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; Molecular Genetic Beijing Key Laboratory of Hybrid Wheat, Beijing 100097, China.
| |
Collapse
|
2
|
He L, Fan Y, Zhang Z, Wei X, Yu J. Identifying Genes Associated with Female Flower Development of Phellodendron amurense Rupr. Using a Transcriptomics Approach. Genes (Basel) 2023; 14:661. [PMID: 36980934 PMCID: PMC10048520 DOI: 10.3390/genes14030661] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 03/09/2023] Open
Abstract
Phellodendron amurense Rupr., a species of Rutaceae, is a nationally protected and valuable medicinal plant. It is generally considered to be dioecious. With the discovery of monoecious P. amurense, the phenomenon that its sex development is regulated by epigenetics has been revealed, but the way epigenetics affects the sex differentiation of P. amurense is still unclear. In this study, we investigated the effect of DNA methylation on the sexual development of P. amurense. The young inflorescences of male plants were treated with the demethylation agent 5-azaC, and the induced female flowers were obtained. The induced female flowers' morphological functions and transcriptome levels were close to those of normally developed plants. Genes associated with the development of female flowers were studied by comparing the differences in transcriptome levels between the male and female flowers. Referring to sex-related genes reported in other plants, 188 candidate genes related to the development of female flowers were obtained, including sex-regulating genes, genes related to the formation and development of sexual organs, genes related to biochemical pathways, and hormone-related genes. RPP0W, PAL3, MCM2, MCM6, SUP, PIN1, AINTEGUMENTA, AINTEGUMENTA-LIKE6, AGL11, SEUSS, SHI-RELATED SEQUENCE 5, and ESR2 were preliminarily considered the key genes for female flower development. This study has demonstrated that epigenetics was involved in the sex regulation of P. amurense, with DNA methylation as one of its regulatory modes. Moreover, some candidate genes related to the sexual differentiation of P. amurense were obtained with analysis. These results are of great significance for further exploring the mechanism of sex differentiation of P. amurense and studying of sex differentiation of plants.
Collapse
Affiliation(s)
| | | | - Zhao Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | | | | |
Collapse
|
3
|
Zaidi MA, O'Leary SJB, Gagnon C, Chabot D, Wu S, Hubbard K, Tran F, Sprott D, Hassan D, Vucurevich T, Sheedy C, Laroche A, Gleddie S, Robert LS. A triticale tapetal non-specific lipid transfer protein (nsLTP) is translocated to the pollen cell wall. PLANT CELL REPORTS 2020; 39:1185-1197. [PMID: 32638075 DOI: 10.1007/s00299-020-02556-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 06/05/2020] [Indexed: 05/28/2023]
Abstract
A Triticeae type III non-specific lipid transfer protein (nsLTP) was shown for the first time to be translocated from the anther tapetum to the pollen cell wall. Two anther-expressed non-specific lipid transfer proteins (nsLTPs) were identified in triticale (× Triticosecale Wittmack). LTPc3a and LTPc3b contain a putative signal peptide sequence and eight cysteine residues in a C-Xn-C-Xn-CC-Xn-CXC-Xn-C-Xn-C pattern. These proteins belong to the type III class of nsLTPs which are expressed exclusively in the inflorescence of angiosperms. The level of LTPc3 transcript in the anther was highest at the tetrad and uninucleate microspore stages, and absent in mature pollen. In situ hybridization showed that LTPc3 was expressed in the tapetal layer of the developing triticale anther. The expression of the LTPc3 protein peaked at the uninucleate microspore stage, but was also found to be associated with the mature pollen. Accordingly, an LTPc3a::GFP translational fusion expressed in transgenic Brachypodium distachyon first showed activity in the tapetum, then in the anther locule, and later on the mature pollen grain. Altogether, these results represent the first detailed characterization of a Triticeae anther-expressed type III nsLTP with possible roles in pollen cell wall formation.
Collapse
Affiliation(s)
- Mohsin Abbas Zaidi
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, ON, K1A 0C6, Canada
- Charlottetown Research and Development Centre, Agriculture and Agri-Food Canada, 440 University Avenue, Charlottetown, PE, C1A 4N6, Canada
| | - Stephen J B O'Leary
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, ON, K1A 0C6, Canada
- Aquatic and Crop Resource Development Research Centre, National Research Council, of Canada, 1411 Oxford Street, Halifax, NS, B3H 3Z1, Canada
| | - Christine Gagnon
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, ON, K1A 0C6, Canada
| | - Denise Chabot
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, ON, K1A 0C6, Canada
| | - Shaobo Wu
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, ON, K1A 0C6, Canada
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, 26 Huacai Road, Chengdu, 610052, Sichuan, China
| | - Keith Hubbard
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, ON, K1A 0C6, Canada
| | - Frances Tran
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, ON, K1A 0C6, Canada
- Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, 6000 C and E Trail, Lacombe, AB, T4L 1W1, Canada
| | - Dave Sprott
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, ON, K1A 0C6, Canada
| | - Dhuha Hassan
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, ON, K1A 0C6, Canada
| | - Tara Vucurevich
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, PO Box 3000, Lethbridge, AB, T1J 4B1, Canada
| | - Claudia Sheedy
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, PO Box 3000, Lethbridge, AB, T1J 4B1, Canada
| | - André Laroche
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, PO Box 3000, Lethbridge, AB, T1J 4B1, Canada
| | - Steve Gleddie
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, ON, K1A 0C6, Canada
| | - Laurian S Robert
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, ON, K1A 0C6, Canada.
| |
Collapse
|
4
|
Xue M, Long Y, Zhao Z, Huang G, Huang K, Zhang T, Jiang Y, Yuan Q, Pei X. Isolation and Characterization of a Green-Tissue Promoter from Common Wild Rice ( Oryza rufipogon Griff.). Int J Mol Sci 2018; 19:ijms19072009. [PMID: 29996483 PMCID: PMC6073244 DOI: 10.3390/ijms19072009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 06/28/2018] [Accepted: 07/05/2018] [Indexed: 01/10/2023] Open
Abstract
Promoters play a very important role in the initiation and regulation of gene transcription. Green-tissue promoter is of great significance to the development of genetically modified crops. Based on RNA-seq data and RT-PCR expression analysis, this study screened a gene, OrGSE (GREEN SPECIAL EXPRESS), which is expressed specifically in green tissues. The study also isolated the promoter of the OrGSE gene (OrGSEp), and predicted many cis-acting elements, such as the CAAT-Box and TATA-Box, and light-responding elements, including circadian, G-BOX and GT1 CONSENSUS. Histochemical analysis and quantification of GUS activity in transgenic Arabidopsis thaliana plants expressing GUS under the control of OrGSEp revealed that this promoter is not only green tissue-specific, but also light-inducible. The ability of a series of 5’-deletion fragments of OrGSEp to drive GUS expression in Arabidopsis was also evaluated. We found that the promoter region from −54 to −114 is critical for the promoter function, and the region from −374 to −114 may contain core cis-elements involved in light response. In transgenic rice expressing GUS under the control of OrGSEp, visualization and quantification of GUS activity showed that GUS was preferentially expressed in green tissues and not in endosperm. OrGSEp is a useful regulatory element for breeding pest-resistant crops.
Collapse
Affiliation(s)
- Mande Xue
- MOA Key Laboratory on Safety Assessment (Molecular) of Agri-GMO, Institute of Biotechnology, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Yan Long
- MOA Key Laboratory on Safety Assessment (Molecular) of Agri-GMO, Institute of Biotechnology, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Zhiqiang Zhao
- College of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China.
| | - Gege Huang
- College of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China.
| | - Ke Huang
- College of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China.
| | - Tianbao Zhang
- MOA Key Laboratory on Safety Assessment (Molecular) of Agri-GMO, Institute of Biotechnology, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Ying Jiang
- Experimental Center Basic Medical Teaching, Capital Medical University, Beijing 100069, China.
| | - Qianhua Yuan
- College of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China.
| | - Xinwu Pei
- MOA Key Laboratory on Safety Assessment (Molecular) of Agri-GMO, Institute of Biotechnology, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|