1
|
Melis A, Hidalgo Martinez DA, Betterle N. Perspectives of cyanobacterial cell factories. PHOTOSYNTHESIS RESEARCH 2024; 162:459-471. [PMID: 37966575 PMCID: PMC11615099 DOI: 10.1007/s11120-023-01056-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 10/13/2023] [Indexed: 11/16/2023]
Abstract
Cyanobacteria are prokaryotic photosynthetic microorganisms that can generate, in addition to biomass, useful chemicals and proteins/enzymes, essentially from sunlight, carbon dioxide, and water. Selected aspects of cyanobacterial production (isoprenoids and high-value proteins) and scale-up methods suitable for product generation and downstream processing are addressed in this review. The work focuses on the challenge and promise of specialty chemicals and proteins production, with isoprenoid products and biopharma proteins as study cases, and the challenges encountered in the expression of recombinant proteins/enzymes, which underline the essence of synthetic biology with these microorganisms. Progress and the current state-of-the-art in these targeted topics are emphasized.
Collapse
Affiliation(s)
- Anastasios Melis
- Department of Plant and Microbial Biology, University of California, MC-3102, Berkeley, CA, 94720-3102, USA.
| | - Diego Alberto Hidalgo Martinez
- Department of Biology, Healthcare and the Environment, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Nico Betterle
- SoLELab, Department of Biotechnology, University of Verona, 37134, Verona, Italy
| |
Collapse
|
2
|
Yadav I, Rautela A, Gangwar A, Wagadre L, Rawat S, Kumar S. Enhancement of isoprene production in engineered Synechococcus elongatus UTEX 2973 by metabolic pathway inhibition and machine learning-based optimization strategy. BIORESOURCE TECHNOLOGY 2023; 387:129677. [PMID: 37579861 DOI: 10.1016/j.biortech.2023.129677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 08/16/2023]
Abstract
An engineered Synechococcus elongatus UTEX 2973-IspS.IDI is used to enhance isoprene production through geranyl diphosphate synthase (CrtE) inhibition and process parameters (light intensity, NaHCO3 and growth temperature) optimization approach. A cumulative isoprene production of 1.21 mg/gDCW was achieved with productivity of 12.6 μg/gDCW/h in culture supplemented with 20 μg/mL alendronate. This inhibition strategy improvises the cumulative isoprene production 5.76-fold in presence of alendronate. The maximum cumulative production of isoprene is observed to be 5.22 and 6.20 mg/gDCW (54.4 and 64.6 μg/gDCW/h) at statistical and artificial neural network genetic algorithm (ANN-GA) optimized conditions, respectively. The overall increase of isoprene production is found to be 29.52-fold using an integrated approach of inhibition and ANN-GA optimization in comparison to unoptimized cultures without alendronate. This study reveals that alendronate use as a potential inhibitor and machine learning based optimization is a better approach in comparison to statistical optimization to enhance the isoprene production.
Collapse
Affiliation(s)
- Indrajeet Yadav
- School of Biochemical Engineering, IIT (BHU) Varanasi, Varanasi, Uttar Pradesh 221005, India
| | - Akhil Rautela
- School of Biochemical Engineering, IIT (BHU) Varanasi, Varanasi, Uttar Pradesh 221005, India
| | - Agendra Gangwar
- School of Biochemical Engineering, IIT (BHU) Varanasi, Varanasi, Uttar Pradesh 221005, India
| | - Lokesh Wagadre
- School of Biochemical Engineering, IIT (BHU) Varanasi, Varanasi, Uttar Pradesh 221005, India
| | - Shweta Rawat
- School of Biochemical Engineering, IIT (BHU) Varanasi, Varanasi, Uttar Pradesh 221005, India
| | - Sanjay Kumar
- School of Biochemical Engineering, IIT (BHU) Varanasi, Varanasi, Uttar Pradesh 221005, India.
| |
Collapse
|
3
|
Fracchia-Durán AG, Ramos-Zambrano E, Márquez-Rocha FJ, Martínez-Ayala AL. Bioprocess conditions and regulation factors to optimize squalene production in thraustochytrids. World J Microbiol Biotechnol 2023; 39:251. [PMID: 37442840 DOI: 10.1007/s11274-023-03689-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023]
Abstract
Squalene is a widely distributed natural triterpene, as it is a key precursor in the biosynthesis of all sterols. It is a compound of high commercial value worldwide because it has nutritional, medicinal, pharmaceutical, and cosmetic applications, due to its different biological properties. The main source of extraction has been shark liver oil, which is currently unviable on a larger scale due to the impacts of overexploitation. Secondary sources are mainly vegetable oils, although a limited one, as they allow low productive yields. Due to the diversity of applications that squalene presents and its growing demand, there is an increasing interest in identifying sustainable sources of extraction. Wild species of thraustochytrids, which are heterotrophic protists, have been identified to have the highest squalene content compared to bacteria, yeasts, microalgae, and vegetable sources. Several studies have been carried out to identify the bioprocess conditions and regulation factors, such as the use of eustressors that promote an increase in the production of this triterpene; however, studies focused on optimizing their productive yields are still in its infancy. This review includes the current trends that also comprises the advances in genetic regulations in these microorganisms, with a view to identify the culture conditions that have been favorable in increasing the production of squalene, and the influences that both bioprocess conditions and applied regulation factors partake at a metabolic level.
Collapse
Affiliation(s)
- Ana Guadalupe Fracchia-Durán
- Department of Biotechnology, Instituto Politécnico Nacional, CEPROBI-IPN, Carretera Yautepec-Jojutla, Km 6, Calle Ceprobi 8, Col. San Isidro, Yautepec, 62731, Morelos, Mexico
| | - Emilia Ramos-Zambrano
- Department of Biotechnology, Instituto Politécnico Nacional, CEPROBI-IPN, Carretera Yautepec-Jojutla, Km 6, Calle Ceprobi 8, Col. San Isidro, Yautepec, 62731, Morelos, Mexico
| | - Facundo Joaquín Márquez-Rocha
- Instituto Politécnico Nacional, Centro Mexicano para la Producción más Limpia, Unidad Tabasco, 86691, Cunduacán, Tabasco, Mexico
| | - Alma Leticia Martínez-Ayala
- Department of Biotechnology, Instituto Politécnico Nacional, CEPROBI-IPN, Carretera Yautepec-Jojutla, Km 6, Calle Ceprobi 8, Col. San Isidro, Yautepec, 62731, Morelos, Mexico.
| |
Collapse
|
4
|
Recent progress in the synthesis of advanced biofuel and bioproducts. Curr Opin Biotechnol 2023; 80:102913. [PMID: 36854202 DOI: 10.1016/j.copbio.2023.102913] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/20/2023] [Accepted: 01/30/2023] [Indexed: 02/27/2023]
Abstract
Energy is one of the most complex fields of study and an issue that influences nearly every aspect of modern life. Over the past century, combustion of fossil fuels, particularly in the transportation sector, has been the dominant form of energy release. Refining of petroleum and natural gas into liquid transportation fuels is also the centerpiece of the modern chemical industry used to produce materials, solvents, and other consumer goods. In the face of global climate change, the world is searching for alternative, sustainable means of producing energy carriers and chemical building blocks. The use of biofuels in engines predates modern refinery optimization and today represents a small but significant fraction of liquid transportation fuels burnt each year. Similarly, white biotechnology has been used to produce many natural products through fermentation. The evolution of recombinant DNA technology into modern synthetic biology has expanded the scope of biofuels and bioproducts that can be made by biocatalysts. This opinion examines the current trends in this research space, highlighting the substantial growth in computational tools and the growing influence of renewable electricity in the design of metabolic engineering strategies. In short, advanced biofuel and bioproduct synthesis remains a vibrant and critically important field of study whose focus is shifting away from the conversion of lignocellulosic biomass toward a broader consideration of how to reduce carbon dioxide to fuels and chemical products.
Collapse
|
5
|
Blanc-Garin V, Chenebault C, Diaz-Santos E, Vincent M, Sassi JF, Cassier-Chauvat C, Chauvat F. Exploring the potential of the model cyanobacterium Synechocystis PCC 6803 for the photosynthetic production of various high-value terpenes. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:110. [PMID: 36242067 PMCID: PMC9564069 DOI: 10.1186/s13068-022-02211-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 10/06/2022] [Indexed: 11/06/2022]
Abstract
Background The robust model cyanobacterium Synechocystis PCC 6803 is increasingly explored for its potential to use solar energy, water and atmospheric CO2 for the carbon-neutral production of terpenes, the high-value chemicals that can be used for the production of drugs, flavors, fragrances and biofuels. However, as terpenes are chemically diverse, it is extremely difficult to predict whether Synechocystis is a suitable chassis for the photosynthetic production of various terpenes or only a few of them. Results We have performed the first-time engineering and comparative analysis of the best-studied cyanobacterium Synechocystis PCC 6803 for the photosynthetic production of five chemically diverse high-value terpenes: two monoterpenes (C10H16) limonene (cyclic molecule) and pinene (bicyclic), and three sesquiterpenes (C15H24) bisabolene (cyclic), farnesene (linear) and santalene (cyclic). All terpene producers appeared to grow well and to be genetically stable, as shown by the absence of changes in their production levels during the 5–9-month periods of their sub-cultivation under photoautotrophic conditions). We also found that Synechocystis PCC 6803 can efficiently and stably produce farnesene and santalene, which had never been produced before by this model organism or any other cyanobacteria, respectively. Similar production levels were observed for cells growing on nitrate (the standard nitrogen source for cyanobacteria) or urea (cheaper than nitrate). Furthermore, higher levels of farnesene were produced by cloning the heterologous farnesene synthase gene in a RSF1010-derived replicating plasmid as compared to the well-used slr0168 neutral cloning site of the chromosome. Conclusions Altogether, the present results indicate that Synechocystis PCC 6803 is better suited to produce sesquiterpenes (particularly farnesene, the most highly produced terpene of this study) than monoterpenes (especially pinene). Supplementary Information The online version contains supplementary material available at 10.1186/s13068-022-02211-0.
Collapse
Affiliation(s)
- Victoire Blanc-Garin
- grid.457334.20000 0001 0667 2738Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif‐sur‐Yvette, France
| | - Célia Chenebault
- grid.457334.20000 0001 0667 2738Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif‐sur‐Yvette, France
| | - Encarnación Diaz-Santos
- grid.457334.20000 0001 0667 2738Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif‐sur‐Yvette, France
| | - Marine Vincent
- grid.457334.20000 0001 0667 2738Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif‐sur‐Yvette, France
| | - Jean-François Sassi
- Commissariat À L’énergie Atomique Et Aux Énergies Alternatives (CEA), Centre de Cadarache, 13108 St Paul Lez Durance, France
| | - Corinne Cassier-Chauvat
- grid.457334.20000 0001 0667 2738Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif‐sur‐Yvette, France
| | - Franck Chauvat
- grid.457334.20000 0001 0667 2738Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif‐sur‐Yvette, France
| |
Collapse
|
6
|
Puluhulawa LE, Joni IM, Mohammed AFA, Arima H, Wathoni N. The Use of Megamolecular Polysaccharide Sacran in Food and Biomedical Applications. Molecules 2021; 26:molecules26113362. [PMID: 34199586 PMCID: PMC8199723 DOI: 10.3390/molecules26113362] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 05/28/2021] [Accepted: 05/31/2021] [Indexed: 11/16/2022] Open
Abstract
Natural polymer is a frequently used polymer in various food applications and pharmaceutical formulations due to its benefits and its biocompatibility compared to synthetic polymers. One of the natural polymer groups (i.e., polysaccharide) does not only function as an additive in pharmaceutical preparations, but also as an active ingredient with pharmacological effects. In addition, several natural polymers offer potential distinct applications in gene delivery and genetic engineering. However, some of these polymers have drawbacks, such as their lack of water retention and elasticity. Sacran, one of the high-molecular-weight natural polysaccharides (megamolecular polysaccharides) derived from Aphanothece sacrum (A. sacrum), has good water retention and elasticity. Historically, sacran has been used as a dietary food. Moreover, sacran can be applied in biomedical fields as an active material, excipient, and genetic engineering material. This article discusses the characteristics, extraction, isolation procedures, and the use of sacran in food and biomedical applications.
Collapse
Affiliation(s)
- Lisa Efriani Puluhulawa
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjajaran, Sumedang 45363, Indonesia;
| | - I Made Joni
- Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Padjajaran, Sumedang 45363, Indonesia;
- Functional Nano Powder University Center of Excellence (FiNder U CoE) Padjadajaran Universitas Padjajaran, Sumedang 45363, Indonesia
| | | | | | - Nasrul Wathoni
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjajaran, Sumedang 45363, Indonesia;
- Correspondence: ; Tel.: +62-22-842-888888
| |
Collapse
|
7
|
Durall C, Kukil K, Hawkes JA, Albergati A, Lindblad P, Lindberg P. Production of succinate by engineered strains of Synechocystis PCC 6803 overexpressing phosphoenolpyruvate carboxylase and a glyoxylate shunt. Microb Cell Fact 2021; 20:39. [PMID: 33557832 PMCID: PMC7871529 DOI: 10.1186/s12934-021-01529-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/25/2021] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Cyanobacteria are promising hosts for the production of various industrially important compounds such as succinate. This study focuses on introduction of the glyoxylate shunt, which is naturally present in only a few cyanobacteria, into Synechocystis PCC 6803. In order to test its impact on cell metabolism, engineered strains were evaluated for succinate accumulation under conditions of light, darkness and anoxic darkness. Each condition was complemented by treatments with 2-thenoyltrifluoroacetone, an inhibitor of succinate dehydrogenase enzyme, and acetate, both in nitrogen replete and deplete medium. RESULTS We were able to introduce genes encoding the glyoxylate shunt, aceA and aceB, encoding isocitrate lyase and malate synthase respectively, into a strain of Synechocystis PCC 6803 engineered to overexpress phosphoenolpyruvate carboxylase. Our results show that complete expression of the glyoxylate shunt results in higher extracellular succinate accumulation compared to the wild type control strain after incubation of cells in darkness and anoxic darkness in the presence of nitrate. Addition of the inhibitor 2-thenoyltrifluoroacetone increased succinate titers in all the conditions tested when nitrate was available. Addition of acetate in the presence of the inhibitor further increased the succinate accumulation, resulting in high levels when phosphoenolpyruvate carboxylase was overexpressed, compared to control strain. However, the highest succinate titer was obtained after dark incubation of an engineered strain with a partial glyoxylate shunt overexpressing isocitrate lyase in addition to phosphoenolpyruvate carboxylase, with only 2-thenoyltrifluoroacetone supplementation to the medium. CONCLUSIONS Heterologous expression of the glyoxylate shunt with its central link to the tricarboxylic acid cycle (TCA) for acetate assimilation provides insight on the coordination of the carbon metabolism in the cell. Phosphoenolpyruvate carboxylase plays an important role in directing carbon flux towards the TCA cycle.
Collapse
Affiliation(s)
- Claudia Durall
- Microbial Chemistry, Department of Chemistry-Ångström, Uppsala University, Box 523, 751 20, Uppsala, Sweden
| | - Kateryna Kukil
- Microbial Chemistry, Department of Chemistry-Ångström, Uppsala University, Box 523, 751 20, Uppsala, Sweden
| | - Jeffrey A Hawkes
- Analytical Chemistry, Department of Chemistry-BMC, Uppsala University, Box 599, 751 20, Uppsala, Sweden
| | - Alessia Albergati
- Microbial Chemistry, Department of Chemistry-Ångström, Uppsala University, Box 523, 751 20, Uppsala, Sweden
| | - Peter Lindblad
- Microbial Chemistry, Department of Chemistry-Ångström, Uppsala University, Box 523, 751 20, Uppsala, Sweden
| | - Pia Lindberg
- Microbial Chemistry, Department of Chemistry-Ångström, Uppsala University, Box 523, 751 20, Uppsala, Sweden.
| |
Collapse
|
8
|
Lee HJ, Choi JI, Woo HM. Biocontainment of Engineered Synechococcus elongatus PCC 7942 for Photosynthetic Production of α-Farnesene from CO 2. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:698-703. [PMID: 33411536 DOI: 10.1021/acs.jafc.0c07020] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Biocontainment systems have been developed to mitigate the concerns regarding biosafety and environmental risk because of the possible escape of genetically modified organisms into the environment following large-scale outdoor cultivation. Here, we present a biocontainment system entailing genetically modified Synechococcus elongatus PCC 7942, also engineered for α-farnesene production using a de-evolutionary strategy. In this approach, the gene cluster encoding the β-carboxysome and the associated carbon concentrating mechanism (CCM) were deleted in the α-farnesene-producing cyanobacteria, resulting in no cell growth and no α-farnesene production at ambient CO2 concentrations (100% air bubbling). However, cell growth and α-farnesene production were detected in the CCM-deficient strains at high CO2 concentrations (5% CO2 [v/v], 10% CO2 [v/v]), albeit at levels lower than those of the parental control. To overcome this limitation, the overexpression of carbonic anhydrase and bicarbonate transporter genes in the CCM-deficient strains restored cell growth and the production level of α-farnesene (5.0 ± 0.6 mg/L) to that of the parental control. The production of α-farnesene in the later strains strictly depended on CO2 concentration in the photobioreactor and did not rely on a chemical induction process. Thus, next generation bio-solar cell factories could be promoted with the suggested biocontainment system.
Collapse
Affiliation(s)
- Hyun Jeong Lee
- Department of Food Science and Biotechnology, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
- BioFoundry Research Center, Institute of Biotechnology and Bioengineering, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Jong-Il Choi
- Department of Biotechnology and Bioengineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| | - Han Min Woo
- Department of Food Science and Biotechnology, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
- BioFoundry Research Center, Institute of Biotechnology and Bioengineering, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| |
Collapse
|
9
|
Metabolic Engineering and Synthetic Biology of Cyanobacteria for Carbon Capture and Utilization. BIOTECHNOL BIOPROC E 2020. [DOI: 10.1007/s12257-019-0447-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
10
|
Pattharaprachayakul N, Lee M, Incharoensakdi A, Woo HM. Current understanding of the cyanobacterial CRISPR-Cas systems and development of the synthetic CRISPR-Cas systems for cyanobacteria. Enzyme Microb Technol 2020; 140:109619. [PMID: 32912679 DOI: 10.1016/j.enzmictec.2020.109619] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 05/14/2020] [Accepted: 06/05/2020] [Indexed: 11/20/2022]
Abstract
Cyanobacteria are photosynthetic microorganisms that are capable of converting CO2 to value-added chemicals. Engineering of cyanobacteria with synthetic biology tools, including the CRISPR-Cas system, has allowed an opportunity for biological CO2 utilization. Here, we described natural CRISPR-Cas systems for understanding cyanobacterial genomics and synthetic CRISPR-Cas systems for metabolic engineering applications. The natural CRISPR-Cas systems in cyanobacteria have been identified as Class 1, with type I and III, and some Class 2, with type V, as an adaptive immune system against viral invasion. As synthetic tools, CRISPR-Cas9 and -Cas12a have been successfully established in cyanobacteria to delete a target gene without a selection marker. Deactivated Cas9 and Cas12a have also been used to repress genes for metabolic engineering. In addition, a perspective on how advanced CRISPR-Cas systems and a pool of the guide RNAs can be advantageous for precise genome engineering and understanding of unknown functions was discussed for advanced engineering of cyanobacteria.
Collapse
Affiliation(s)
- Napisa Pattharaprachayakul
- Department of Food Science and Biotechnology, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon, 16419, Republic of Korea; Laboratory of Cyanobacterial Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok, 10330 Thailand; Program in Biotechnology, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok, 10330, Thailand
| | - Mieun Lee
- Department of Food Science and Biotechnology, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon, 16419, Republic of Korea
| | - Aran Incharoensakdi
- Laboratory of Cyanobacterial Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok, 10330 Thailand
| | - Han Min Woo
- Department of Food Science and Biotechnology, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon, 16419, Republic of Korea; BioFoundry Research Center, Institute of Biotechnology and Bioengineering, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon, 16419, Republic of Korea.
| |
Collapse
|
11
|
Pattharaprachayakul N, Lee HJ, Incharoensakdi A, Woo HM. Evolutionary Engineering of Cyanobacteria to Enhance the Production of α-Farnesene from CO 2. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:13658-13664. [PMID: 31755253 DOI: 10.1021/acs.jafc.9b06254] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Photosynthetic cyanobacteria can fix CO2 and utilize it as the sole carbon source for cell growth and production of biochemicals. Here, we metabolically engineered Synechococcus elongatus PCC 7942 for an enhanced production of α-farnesene by optimizing the ribosome-binding site (RBS) of the codon-optimized farnesene synthase gene. The production of α-farnesene was found to be enhanced in strains with a low translation initiation rate, resulting in α-farnesene production (0.57 mg/(L day)). Using the RBS variants and random mutations, we performed fluorescence-based analysis of cells grown in 96-well culture plates to screen the α-farnesene-producing strains but could not improve the titers of the RBS-optimized strains. However, evolutionary engineering of the RBS-optimized strains resulted in a twofold increase in α-farnesene production (1.2 mg/(L day)) compared to the previous study. Therefore, combining metabolic and evolutionary engineering might be helpful for enhancing the cellular fitness of cyanobacteria for the production of target chemicals.
Collapse
Affiliation(s)
- Napisa Pattharaprachayakul
- Department of Food Science and Biotechnology , Sungkyunkwan University (SKKU) , 2066 Seobu-ro , Jangan-gu, Suwon 16419 , Republic of Korea
- Laboratory of Cyanobacterial Biotechnology, Department of Biochemistry, Faculty of Science , Chulalongkorn University , 254 Phayathai Road , Pathumwan, Bangkok 10330 , Thailand
| | - Hyun Jeong Lee
- Department of Food Science and Biotechnology , Sungkyunkwan University (SKKU) , 2066 Seobu-ro , Jangan-gu, Suwon 16419 , Republic of Korea
| | - Aran Incharoensakdi
- Laboratory of Cyanobacterial Biotechnology, Department of Biochemistry, Faculty of Science , Chulalongkorn University , 254 Phayathai Road , Pathumwan, Bangkok 10330 , Thailand
| | - Han Min Woo
- Department of Food Science and Biotechnology , Sungkyunkwan University (SKKU) , 2066 Seobu-ro , Jangan-gu, Suwon 16419 , Republic of Korea
| |
Collapse
|
12
|
Castaño-Cerezo S, Kulyk-Barbier H, Millard P, Portais JC, Heux S, Truan G, Bellvert F. Functional analysis of isoprenoid precursors biosynthesis by quantitative metabolomics and isotopologue profiling. Metabolomics 2019; 15:115. [PMID: 31435826 PMCID: PMC6704079 DOI: 10.1007/s11306-019-1580-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 08/13/2019] [Indexed: 01/27/2023]
Abstract
INTRODUCTION Isoprenoids are amongst the most abundant and diverse biological molecules and are involved in a broad range of biological functions. Functional understanding of their biosynthesis is thus key in many fundamental and applicative fields, including systems biology, medicine and biotechnology. However, available methods do not yet allow accurate quantification and tracing of stable isotopes incorporation for all the isoprenoids precursors. OBJECTIVES We developed and validated a complete methodology for quantitative metabolomics and isotopologue profiling of isoprenoid precursors in the yeast Saccharomyces cerevisiae. METHODS This workflow covers all the experimental and computational steps from sample collection and preparation to data acquisition and processing. It also includes a novel quantification method based on liquid chromatography coupled to high-resolution mass spectrometry. Method validation followed the Metabolomics Standards Initiative guidelines. RESULTS This workflow ensures accurate absolute quantification (RSD < 20%) of all mevalonate and prenyl pyrophosphates intermediates with a high sensitivity over a large linear range (from 0.1 to 50 pmol). In addition, we demonstrate that this workflow brings crucial information to design more efficient phytoene producers. Results indicate stable turnover rates of prenyl pyrophosphate intermediates in the constructed strains and provide quantitative information on the change of the biosynthetic flux of phytoene precursors. CONCLUSION This methodology fills one of the last technical gaps for functional studies of isoprenoids biosynthesis and should be applicable to other eukaryotic and prokaryotic (micro)organisms after adaptation of some organism-dependent steps. This methodology also opens the way to 13C-metabolic flux analysis of isoprenoid biosynthesis.
Collapse
Affiliation(s)
| | - Hanna Kulyk-Barbier
- LISBP, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
- MetaToul-MetaboHUB, National Infrastructure of Metabolomics and Fluxomics, Toulouse, France
| | - Pierre Millard
- LISBP, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
| | - Jean-Charles Portais
- LISBP, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
- MetaToul-MetaboHUB, National Infrastructure of Metabolomics and Fluxomics, Toulouse, France
| | - Stéphanie Heux
- LISBP, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
| | - Gilles Truan
- LISBP, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
| | - Floriant Bellvert
- LISBP, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France.
- MetaToul-MetaboHUB, National Infrastructure of Metabolomics and Fluxomics, Toulouse, France.
| |
Collapse
|
13
|
Betterle N, Melis A. Photosynthetic generation of heterologous terpenoids in cyanobacteria. Biotechnol Bioeng 2019; 116:2041-2051. [DOI: 10.1002/bit.26988] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 03/01/2019] [Accepted: 04/04/2019] [Indexed: 12/24/2022]
Affiliation(s)
- Nico Betterle
- Department of Plant and Microbial BiologyUniversity of CaliforniaBerkeley California
| | - Anastasios Melis
- Department of Plant and Microbial BiologyUniversity of CaliforniaBerkeley California
| |
Collapse
|
14
|
Russo DA, Zedler JAZ, Wittmann DN, Möllers B, Singh RK, Batth TS, van Oort B, Olsen JV, Bjerrum MJ, Jensen PE. Expression and secretion of a lytic polysaccharide monooxygenase by a fast-growing cyanobacterium. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:74. [PMID: 30976324 PMCID: PMC6442416 DOI: 10.1186/s13068-019-1416-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 03/21/2019] [Indexed: 05/03/2023]
Abstract
BACKGROUND Cyanobacteria have the potential to become next-generation cell factories due to their ability to use CO2, light and inorganic nutrients to produce a range of biomolecules of commercial interest. Synechococcus elongatus UTEX 2973, in particular, is a fast-growing, genetically tractable, cyanobacterium that has garnered attention as a potential biotechnological chassis. To establish this unique strain as a host for heterologous protein production, we aimed to demonstrate expression and secretion of the industrially relevant TfAA10A, a lytic polysaccharide monooxygenase from the Gram-positive bacterium Thermobifida fusca. RESULTS Two variations of TfAA10A were successfully expressed in S. elongatus UTEX 2973: One containing the native N-terminal, Sec-targeted, signal peptide and a second with a Tat-targeted signal peptide from the Escherichia coli trimethylamine-N-oxide reductase (TorA). Although the TorA signal peptide correctly targeted the protein to the plasma membrane, the majority of the TorA-TfAA10A was found unprocessed in the plasma membrane with a small fraction of the mature protein ultimately translocated to the periplasm. The native Sec signal peptide allowed for efficient secretion of TfAA10A into the medium with virtually no protein being found in the cytosol, plasma membrane or periplasm. TfAA10A was demonstrated to be correctly cleaved and active on the model substrate phosphoric acid swollen cellulose. Additionally, expression and secretion only had a minor impact on cell growth. The secretion yield was estimated at 779 ± 40 µg L-1 based on densitometric analysis. To our knowledge, this is the highest secretion yield ever registered in cyanobacteria. CONCLUSIONS We have shown for the first time high-titer expression and secretion of an industrially relevant and catalytically active enzyme in S. elongatus UTEX 2973. This proof-of-concept study will be valuable for the development of novel and sustainable applications in the fields of bioremediation and biocatalysis.
Collapse
Affiliation(s)
- D. A. Russo
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - J. A. Z. Zedler
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - D. N. Wittmann
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - B. Möllers
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Frederiksberg C, Denmark
| | - R. K. Singh
- Department of Chemistry, University of Copenhagen, Copenhagen, Denmark
| | - T. S. Batth
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - B. van Oort
- Biophysics of Photosynthesis, Department of Physics and Astronomy, Faculty of Sciences, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - J. V. Olsen
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - M. J. Bjerrum
- Department of Chemistry, University of Copenhagen, Copenhagen, Denmark
| | - P. E. Jensen
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
| |
Collapse
|
15
|
Russo DA, Zedler JAZ, Jensen PE. A force awakens: exploiting solar energy beyond photosynthesis. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:1703-1710. [PMID: 30773590 PMCID: PMC6436153 DOI: 10.1093/jxb/erz054] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 02/05/2019] [Indexed: 05/12/2023]
Abstract
In recent years, efforts to exploit sunlight, a free and abundant energy source, have sped up dramatically. Oxygenic photosynthetic organisms, such as higher plants, algae, and cyanobacteria, can convert solar energy into chemical energy very efficiently using water as an electron donor. By providing organic building blocks for life in this way, photosynthesis is undoubtedly one of the most important processes on Earth. The aim of light-driven catalysis is to harness solar energy, in the form of reducing power, to drive enzymatic reactions requiring electrons for their catalytic cycle. Light-driven enzymes have been shown to have a large number of biotechnological applications, ranging from the production of high-value secondary metabolites to the development of green chemistry processes. Here, we highlight recent key developments in the field of light-driven catalysis using biological components. We will also discuss strategies to design and optimize light-driven systems in order to develop the next generation of sustainable solutions in biotechnology.
Collapse
Affiliation(s)
- David A Russo
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Julie A Z Zedler
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Poul Erik Jensen
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
| |
Collapse
|
16
|
Vavitsas K, Fabris M, Vickers CE. Terpenoid Metabolic Engineering in Photosynthetic Microorganisms. Genes (Basel) 2018; 9:E520. [PMID: 30360565 PMCID: PMC6266707 DOI: 10.3390/genes9110520] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 10/17/2018] [Accepted: 10/17/2018] [Indexed: 12/13/2022] Open
Abstract
Terpenoids are a group of natural products that have a variety of roles, both essential and non-essential, in metabolism and in biotic and abiotic interactions, as well as commercial applications such as pharmaceuticals, food additives, and chemical feedstocks. Economic viability for commercial applications is commonly not achievable by using natural source organisms or chemical synthesis. Engineered bio-production in suitable heterologous hosts is often required to achieve commercial viability. However, our poor understanding of regulatory mechanisms and other biochemical processes makes obtaining efficient conversion yields from feedstocks challenging. Moreover, production from carbon dioxide via photosynthesis would significantly increase the environmental and potentially the economic credentials of these processes by disintermediating biomass feedstocks. In this paper, we briefly review terpenoid metabolism, outline some recent advances in terpenoid metabolic engineering, and discuss why photosynthetic unicellular organisms-such as algae and cyanobacteria-might be preferred production platforms for the expression of some of the more challenging terpenoid pathways.
Collapse
Affiliation(s)
- Konstantinos Vavitsas
- Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia.
- CSIRO Synthetic Biology Future Science Platform, GPO Box 2583, Brisbane, QLD 4001, Australia.
| | - Michele Fabris
- Climate Change Cluster, University of Technology Sydney, 15 Broadway, Ultimo, NSW 2007, Australia.
- CSIRO Synthetic Biology Future Science Platform, GPO Box 2583, Brisbane, QLD 4001, Australia.
| | - Claudia E Vickers
- Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia.
- CSIRO Synthetic Biology Future Science Platform, GPO Box 2583, Brisbane, QLD 4001, Australia.
| |
Collapse
|