1
|
Song Q, Han S, Hu S, Xu Y, Zuo K. The Verticillium dahliae Effector VdPHB1 Promotes Pathogenicity in Cotton and Interacts with the Immune Protein GhMC4. PLANT & CELL PHYSIOLOGY 2024; 65:1173-1183. [PMID: 38619117 DOI: 10.1093/pcp/pcae043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 04/09/2024] [Accepted: 04/14/2024] [Indexed: 04/16/2024]
Abstract
Verticillium dahliae is a kind of pathogenic fungus that brings about wilt disease and great losses in cotton. The molecular mechanism of the effectors in V. dahliae regulating cotton immunity remains largely unknown. Here, we identified an effector of V. dahliae, VdPHB1, whose gene expression is highly induced by infection. The VdPHB1 protein is localized to the intercellular space of cotton plants. Knock-out of the VdPHB1 gene in V. dahliae had no effect on pathogen growth, but decreased the virulence in cotton. VdPHB1 ectopically expressed Arabidopsis plants were growth-inhibited and significantly susceptible to V. dahliae. Further, VdPHB1 interacted with the type II metacaspase GhMC4. GhMC4 gene-silenced cotton plants were more sensitive to V. dahliae with reduced expression of pathogen defense-related and programmed cell death genes. The accumulation of GhMC4 protein was concurrently repressed when VdPHB1 protein was expressed during infection. In summary, these results have revealed a novel molecular mechanism of virulence regulation that the secreted effector VdPHB1 represses the activity of cysteine protease for helping V. dahliae infection in cotton.
Collapse
Affiliation(s)
- Qingwei Song
- Single Cell Research Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Song Han
- Single Cell Research Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shi Hu
- Single Cell Research Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yiyang Xu
- Single Cell Research Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Kaijing Zuo
- Single Cell Research Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
2
|
Wang J, Xu G, Ning Y, Wang X, Wang GL. Mitochondrial functions in plant immunity. TRENDS IN PLANT SCIENCE 2022; 27:1063-1076. [PMID: 35659746 DOI: 10.1016/j.tplants.2022.04.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 03/21/2022] [Accepted: 04/25/2022] [Indexed: 06/15/2023]
Abstract
Mitochondria are energy factories of cells and are important for intracellular interactions with other organelles. Emerging evidence indicates that mitochondria play essential roles in the response to pathogen infection. During infection, pathogens deliver numerous enzymes and effectors into host cells, and some of these effectors target mitochondria, altering mitochondrial morphology, metabolism, and functions. To defend against pathogen attack, mitochondria are actively involved in changing intracellular metabolism, hormone-mediated signaling, and signal transduction, producing reactive oxygen species and reactive nitrogen species and triggering programmed cell death. Additionally, mitochondria coordinate with other organelles to integrate and amplify diverse immune signals. In this review, we summarize recent advances in understanding how mitochondria function in plant immunity and how pathogens target mitochondria for host defense suppression.
Collapse
Affiliation(s)
- Jiyang Wang
- Department of Plant Pathology, Ohio State University, Columbus, OH 43210, USA; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Guojuan Xu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Yuese Ning
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xuli Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Guo-Liang Wang
- Department of Plant Pathology, Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
3
|
Mohd Afandi NS, Habib MAH, Ismail MN. Recent insights on gene expression studies on Hevea Brasiliensis fatal leaf fall diseases. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:471-484. [PMID: 35400887 PMCID: PMC8943083 DOI: 10.1007/s12298-022-01145-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
Hevea brasiliensis is one of the most important agricultural commodities globally, heavily cultivated in Southeast Asia. Fatal leaf fall diseases cause aggressive leaf defoliation, linked to lower latex yield and death of crops before maturity. Due to the significant consequences of the disease to H. brasiliensis, the recent gene expression studies from four fall leaf diseases of H. brasiliensis were gathered; South American leaf blight, powdery mildew, Corynespora cassiicola and Phytophthora leaf fall disease. The differential analysis observed the pattern of commonly expressed genes upon fungi triggers using RT-PCR, DDRT-PCR, Real-time qRT-PCR and RNA-Seq. We have observed that RNA-Seq is the best tool to seek novel genes. Among the identified genes with defence-against fungi were pathogenesis-related genes such as β-1,3-glucanase and chitinase, the reactive oxygen species, and the phytoalexin biosynthesis. This manuscript also provided functional elaboration on the responsive genes and predicted possible biosynthetic pathways to identify and characterise novel genes in the future. At the end of the manuscript, the PCR methods and proteomic approaches were presented for future molecular and biochemical studies in the related diseases to H. brasiliensis.
Collapse
Affiliation(s)
- Nur Syafiqah Mohd Afandi
- Analytical Biochemistry Research Centre, Universiti Sains Malaysia, 11900 Bayan Lepas, Penang, Malaysia
| | - Mohd Afiq Hazlami Habib
- Analytical Biochemistry Research Centre, Universiti Sains Malaysia, 11900 Bayan Lepas, Penang, Malaysia
| | - Mohd Nazri Ismail
- Analytical Biochemistry Research Centre, Universiti Sains Malaysia, 11900 Bayan Lepas, Penang, Malaysia
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 USM Penang, Malaysia
| |
Collapse
|
4
|
Karre S, Kim SB, Kim BS, Khangura RS, Sermons SM, Dilkes B, Johal G, Balint-Kurti P. Maize Plants Chimeric for an Autoactive Resistance Gene Display a Cell-Autonomous Hypersensitive Response but Non-Cell Autonomous Defense Signaling. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:606-616. [PMID: 33507801 DOI: 10.1094/mpmi-04-20-0091-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The maize gene Rp1-D21 is a mutant form of the gene Rp1-D that confers resistance to common rust. Rp1-D21 triggers a spontaneous defense response that occurs in the absence of the pathogen and includes a programed cell death called the hypersensitive response (HR). Eleven plants heterozygous for Rp1-D21, in four different genetic backgrounds, were identified that had chimeric leaves with lesioned sectors showing HR abutting green nonlesioned sectors lacking HR. The Rp1-D21 sequence derived from each of the lesioned portions of leaves was unaltered from the expected sequence whereas the Rp1-D21 sequences from nine of the nonlesioned sectors displayed various mutations, and we were unable to amplify Rp1-D21 from the other two nonlesioned sectors. In every case, the borders between the sectors were sharp, with no transition zone, suggesting that HR and chlorosis associated with Rp1-D21 activity was cell autonomous. Expression of defense response marker genes was assessed in the lesioned and nonlesioned sectors as well as in near-isogenic plants lacking and carrying Rp1-D21. Defense gene expression was somewhat elevated in nonlesioned sectors abutting sectors carrying Rp1-D21 compared with near-isogenic plants lacking Rp1-D21. This suggests that, whereas the HR itself was cell autonomous, other aspects of the defense response initiated by Rp1-D21 were not.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Shailesh Karre
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695-7613, U.S.A
| | - Saet-Byul Kim
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695-7613, U.S.A
| | - Bong-Suk Kim
- Botany and Plant Pathology, Purdue University, West Lafayette, IN, U.S.A
| | - Rajdeep S Khangura
- Department of Biochemistry, Purdue University, West Lafayette, IN, U.S.A
| | - Shannon M Sermons
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695-7613, U.S.A
- Plant Science Research Unit, United States Department of Agriculture-Agricultural Research Service, North Carolina State University, Raleigh, NC 27695-7613, U.S.A
| | - Brian Dilkes
- Department of Biochemistry, Purdue University, West Lafayette, IN, U.S.A
| | - Guri Johal
- Botany and Plant Pathology, Purdue University, West Lafayette, IN, U.S.A
| | - Peter Balint-Kurti
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695-7613, U.S.A
- Plant Science Research Unit, United States Department of Agriculture-Agricultural Research Service, North Carolina State University, Raleigh, NC 27695-7613, U.S.A
| |
Collapse
|
5
|
Karre S, Kim S, Samira R, Balint‐Kurti P. The maize ZmMIEL1 E3 ligase and ZmMYB83 transcription factor proteins interact and regulate the hypersensitive defence response. MOLECULAR PLANT PATHOLOGY 2021; 22:694-709. [PMID: 33825303 PMCID: PMC8126188 DOI: 10.1111/mpp.13057] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/24/2021] [Accepted: 03/08/2021] [Indexed: 05/10/2023]
Abstract
The plant hypersensitive response (HR), a rapid cell death at the point of pathogenesis, is mediated by nucleotide-binding site, leucine-rich repeat (NLR) resistance proteins (R-proteins) that recognize the presence of specific pathogen-derived proteins. Rp1-D21 is an autoactive maize NLR R-protein that triggers HR spontaneously. We previously mapped loci associated with variation in the strength of HR induced by Rp1-D21. Here we identify the E3 ligase ZmMIEL1 as the causal gene at a chromosome 10 modifier locus. Transient ZmMIEL1 expression in Nicotiana benthamiana reduced HR induced by Rp1-D21, while suppression of ZmMIEL1 expression in maize carrying Rp1-D21 increased HR. ZmMIEL1 also suppressed HR induced by another autoactive NLR, the Arabidopsis R-protein RPM1D505V, in N. benthamiana. We demonstrated that ZmMIEL1 is a functional E3 ligase and that the effect of ZmMIEL1 was dependent on the proteasome but also that levels of Rp1-D21 and RPM1D505V were not reduced when coexpressed with ZmMIEL1 in the N. benthamiana system. By comparison to a similar system in Arabidopsis, we identify ZmMYB83 as a potential target of ZmMIEL1. Suppression of ZmMYB83 expression in maize lines carrying Rp1-D21 suppressed HR. Suppression of ZmMIEL1 expression caused an increase in ZmMYB83 transcript and protein levels in N. benthamiana and maize. Using coimmunoprecipitation and bimolecular fluorescence complementation assays, we demonstrated that ZmMIEL1 and ZmMYB83 physically interacted. Additionally, ZmMYB83 and ZmMIEL1 regulated the expression of a set of maize very long chain fatty acid (VLCFA) biosynthetic genes that may be involved in regulating HR.
Collapse
Affiliation(s)
- Shailesh Karre
- Department of Entomology and Plant PathologyNC State UniversityRaleighNorth CarolinaUSA
| | - Saet‐Byul Kim
- Department of Entomology and Plant PathologyNC State UniversityRaleighNorth CarolinaUSA
| | - Rozalynne Samira
- Department of Entomology and Plant PathologyNC State UniversityRaleighNorth CarolinaUSA
- Fiber and Biopolymer Research InstituteDepartment of Plant and Soil ScienceTexas Tech UniversityLubbockTexasUSA
| | - Peter Balint‐Kurti
- Department of Entomology and Plant PathologyNC State UniversityRaleighNorth CarolinaUSA
- Plant Science Research Unit USDA‐ARSRaleighNorth CarolinaUSA
| |
Collapse
|
6
|
Murphree C, Kim S, Karre S, Samira R, Balint‐Kurti P. Use of virus-induced gene silencing to characterize genes involved in modulating hypersensitive cell death in maize. MOLECULAR PLANT PATHOLOGY 2020; 21:1662-1676. [PMID: 33037769 PMCID: PMC7694674 DOI: 10.1111/mpp.12999] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/28/2020] [Accepted: 09/04/2020] [Indexed: 05/22/2023]
Abstract
Plant disease resistance proteins (R-proteins) detect specific pathogen-derived molecules, triggering a defence response often including a rapid localized cell death at the point of pathogen penetration called the hypersensitive response (HR). The maize Rp1-D21 gene encodes a protein that triggers a spontaneous HR causing spots on leaves in the absence of any pathogen. Previously, we used fine mapping and functional analysis in a Nicotiana benthamiana transient expression system to identify and characterize a number of genes associated with variation in Rp1-D21-induced HR. Here we describe a system for characterizing genes mediating HR, using virus-induced gene silencing (VIGS) in a maize line carrying Rp1-D21. We assess the roles of 12 candidate genes. Three of these genes, SGT1, RAR1, and HSP90, are required for HR induced by a number of R-proteins across several plant-pathogen systems. We confirmed that maize HSP90 was required for full Rp1-D21-induced HR. However, suppression of SGT1 expression unexpectedly increased the severity of Rp1-D21-induced HR while suppression of RAR1 expression had no measurable effect. We confirmed the effects on HR of two genes we had previously validated in the N. benthamiana system, hydroxycinnamoyltransferase and caffeoyl CoA O-methyltransferase. We further showed the suppression the expression of two previously uncharacterized, candidate genes, IQ calmodulin binding protein (IQM3) and vacuolar protein sorting protein 37, suppressed Rp1-D21-induced HR. This approach is an efficient way to characterize the roles of genes modulating the hypersensitive defence response and other dominant lesion phenotypes in maize.
Collapse
Affiliation(s)
- Colin Murphree
- Department of Entomology and Plant PathologyNC State UniversityRaleighNorth CarolinaUSA
| | - Saet‐Byul Kim
- Department of Entomology and Plant PathologyNC State UniversityRaleighNorth CarolinaUSA
| | - Shailesh Karre
- Department of Entomology and Plant PathologyNC State UniversityRaleighNorth CarolinaUSA
| | - Rozalynne Samira
- Department of Entomology and Plant PathologyNC State UniversityRaleighNorth CarolinaUSA
- Fiber and Biopolymer Research Institute (FBRI)Department of Plant and Soil ScienceTexas Tech UniversityTexasUSA
| | - Peter Balint‐Kurti
- Department of Entomology and Plant PathologyNC State UniversityRaleighNorth CarolinaUSA
- Plant Science Research UnitUSDA‐ARSRaleighNorth CarolinaUSA
| |
Collapse
|
7
|
Balint‐Kurti P. The plant hypersensitive response: concepts, control and consequences. MOLECULAR PLANT PATHOLOGY 2019; 20:1163-1178. [PMID: 31305008 PMCID: PMC6640183 DOI: 10.1111/mpp.12821] [Citation(s) in RCA: 242] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The hypersensitive defence response is found in all higher plants and is characterized by a rapid cell death at the point of pathogen ingress. It is usually associated with pathogen resistance, though, in specific situations, it may have other consequences such as pathogen susceptibility, growth retardation and, over evolutionary timescales, speciation. Due to the potentially severe costs of inappropriate activation, plants employ multiple mechanisms to suppress inappropriate activation of HR and to constrain it after activation. The ubiquity of this response among higher plants despite its costs suggests that it is an extremely effective component of the plant immune system.
Collapse
Affiliation(s)
- Peter Balint‐Kurti
- Plant Science Research UnitUSDA‐ARSRaleighNCUSA
- Department of Entomology and Plant PathologyNC State UniversityRaleighNC27695‐7613USA
| |
Collapse
|
8
|
He Y, Karre S, Johal GS, Christensen SA, Balint-Kurti P. A maize polygalacturonase functions as a suppressor of programmed cell death in plants. BMC PLANT BIOLOGY 2019; 19:310. [PMID: 31307401 PMCID: PMC6628502 DOI: 10.1186/s12870-019-1897-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 06/19/2019] [Indexed: 05/03/2023]
Abstract
BACKGROUND The hypersensitive defense response (HR) in plants is a fast, localized necrotic response around the point of pathogen ingress. HR is usually triggered by a pathogen recognition event mediated by a nucleotide-binding site, leucine-rich repeat (NLR) protein. The autoactive maize NLR gene Rp1-D21 confers a spontaneous HR response in the absence of pathogen recognition. Previous work identified a set of loci associated with variation in the strength of Rp1-D21-induced HR. A polygalacturonase gene homolog, here termed ZmPGH1, was identified as a possible causal gene at one of these loci on chromosome 7. RESULTS Expression of ZmPGH1 inhibited the HR-inducing activity of both Rp1-D21 and that of another autoactive NLR, RPM1(D505V), in a Nicotiana benthamiana transient expression assay system. Overexpression of ZmPGH1 in a transposon insertion line of maize was associated with suppression of chemically-induced programmed cell death and with suppression of HR induced by Rp1-D21 in maize plants grown in the field. CONCLUSIONS ZmPGH1 functions as a suppressor of programmed cell death induced by at least two autoactive NLR proteins and by two chemical inducers. These findings deepen our understanding of the control of the HR in plants.
Collapse
Affiliation(s)
- Yijian He
- Dept. of Entomology and Plant Pathology, NC State University, Raleigh, NC 27695-7616 USA
| | - Shailesh Karre
- Dept. of Entomology and Plant Pathology, NC State University, Raleigh, NC 27695-7616 USA
| | - Gurmukh S. Johal
- Botany and Plant Pathology, Purdue University, West Lafayette, USA
| | - Shawn A. Christensen
- Chemistry Research Unit, Center for Medical, Agricultural, and Veterinary Entomology, Department of Agriculture–Agricultural Research Service (USDA–ARS), Gainesville, FL 32608 USA
| | - Peter Balint-Kurti
- Dept. of Entomology and Plant Pathology, NC State University, Raleigh, NC 27695-7616 USA
- Plant Science Research Unit, USDA-ARS, NC State University, Raleigh, NC 27695-7616 USA
| |
Collapse
|