1
|
Guo P, Chong L, Jiao Z, Xu R, Niu Q, Zhu Y. Salt stress activates the CDK8-AHL10-SUVH2/9 module to dynamically regulate salt tolerance in Arabidopsis. Nat Commun 2025; 16:2454. [PMID: 40074748 PMCID: PMC11903955 DOI: 10.1038/s41467-025-57806-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 03/04/2025] [Indexed: 03/14/2025] Open
Abstract
Salt stress has devastating effects on agriculture, yet the key regulators modulating the transcriptional dynamics of salt-responsive genes remain largely elusive in plants. Here, we discover that salt stress substantially induces the kinase activity of Mediator cyclin-dependent kinase 8 (CDK8), which is essential for its positive role in regulating salt tolerance. CDK8 is identified to phosphorylate AT-hook motif nuclear-localized protein 10 (AHL10) at serine 314, leading to its degradation under salt stress. Consistently, AHL10 is found to negatively regulate salt tolerance. Transcriptome analysis further indicates that CDK8 regulates over 20% of salt-responsive genes, half of which are co-regulated by AHL10. Moreover, AHL10 is revealed to recruit SU(VAR)3-9 homologs (SUVH2/9) to AT-rich DNA sequences in the nuclear matrix-attachment regions (MARs) of salt-responsive gene promoters, facilitating H3K9me2 deposition and repressing salt-responsive genes. Our study thereby has identified the CDK8-AHL10-SUVH2/9 module as a key molecular switch controlling transcriptional dynamics in response to salt stress.
Collapse
Affiliation(s)
- Pengcheng Guo
- The Zhongzhou Laboratory for Integrative Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Leelyn Chong
- The Zhongzhou Laboratory for Integrative Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Zhixin Jiao
- The Zhongzhou Laboratory for Integrative Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Rui Xu
- The Zhongzhou Laboratory for Integrative Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Qingfeng Niu
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Yingfang Zhu
- The Zhongzhou Laboratory for Integrative Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China.
- Sanya Institute of Henan University, Sanya, Hainan, 572025, China.
| |
Collapse
|
2
|
Cai X, Li D, Liu C, Chen J, Wei X, Hu S, Lu L, Chen S, Yao Q, Xie S, Xu X, Liu R, Qin Y, Zheng P. Identification and characterization of GRAS genes in passion fruit (Passiflora edulis Sims) revealed their roles in development regulation and stress response. PLANT CELL REPORTS 2025; 44:46. [PMID: 39885065 DOI: 10.1007/s00299-025-03432-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 01/10/2025] [Indexed: 02/01/2025]
Abstract
KEY MESSAGE Twenty-nine GRAS genes were identified in passion fruit, the N-terminal regions and 3D (three-dimensional) structures were closely related with their tissue-specific expression patterns. Candidate PeGRASs for enhancing stress resistance were identified. Passion fruit (Passiflora edulis Sims) is a tropical fruit crop with significant edible and ornamental value, but its growth and development are highly sensitive to environmental conditions. The plant-specific GRAS gene family plays critical roles in regulating growth, development, and stress responses. Here, we performed the first comprehensive analysis of the GRAS gene family in passion fruit. A total of 29 GRAS genes were identified and named PeGRAS1 to PeGRAS29 based on their chromosomal locations. Phylogenetic analysis using GRAS proteins from passion fruit, Arabidopsis, and rice revealed that PeGRAS proteins could be classified into 10 subfamilies. Compared to Arabidopsis, passion fruit lacked members from the LAS subfamily but gained one GRAS member (PeGRAS9) clustered with the rice-specific Os4 subfamily. Structural analysis performed in silico revealed that most PeGRAS members were intron less and exhibited conserved motif patterns near the C-terminus, while the N-terminal regions varied in sequence length and composition. Members within certain subfamilies including DLT, PAT1, and LISCL with similar unstructured N-terminal regions and 3D structures, exhibited similar tissue-specific expression patterns. While PeGRAS members with difference in these structural features, even within the same subfamily (e.g., DELLA), displayed distinct expression patterns. These findings highlighted that the N-terminal regions of GRAS proteins may be critical for their specific functions. Moreover, many PeGRAS members, particularly those from the PAT1 subfamily, were widely involved in stress responses, with PeGRAS19 and PeGRAS26 likely playing roles in cold tolerance, and PeGRAS25 and PeGRAS28 in drought resistance. This study provides a foundation for further functional research on PeGRASs and offers potential candidates for molecular breeding aimed at enhancing stress tolerance in passion fruit.
Collapse
Affiliation(s)
- Xinkai Cai
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, College of Life Sciences, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Denglin Li
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, College of Life Sciences, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Chaojia Liu
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, College of Life Sciences, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jiayi Chen
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, College of Life Sciences, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiuqing Wei
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350013, Fujian, China
| | - Sitong Hu
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, College of Life Sciences, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Lin Lu
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, College of Life Sciences, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shengzhen Chen
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, College of Life Sciences, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Qinglong Yao
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, College of Life Sciences, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shiyu Xie
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, College of Life Sciences, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiaowen Xu
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, College of Life Sciences, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Ruoyu Liu
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, College of Life Sciences, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yuan Qin
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, College of Life Sciences, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Ping Zheng
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, College of Life Sciences, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
3
|
Ming R, Fang T, Ling W, Geng J, Qu J, Zhang Y, Chen J, Yao S, Li L, Huang D, Liu JH. The GRAS transcription factor PtrPAT1 of Poncirus trifoliata functions in cold tolerance and modulates glycine betaine content by regulating the BADH-like gene. HORTICULTURE RESEARCH 2025; 12:uhae296. [PMID: 39882174 PMCID: PMC11775594 DOI: 10.1093/hr/uhae296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 09/22/2024] [Indexed: 01/31/2025]
Abstract
GRAS, termed after gibberellic acid insensitive (GAI), RGA (repressor of GA1), and SCR (scarecrow), is a plant-specific transcription factor crucial for plant development and stress response. However, understanding of the functions played by the GRAS members and their target genes in citrus is limited. In this study, we identified a cold stress-responsive GRAS gene from Poncirus trifoliata, designated as PtrPAT1, by yeast one-hybrid library screening using the promoter of PtrBADH-l, a betaine aldehyde dehydrogenase (BADH)-like gene. PtrPAT1, belonging to the PAT1 subfamily, was localized in the nucleus and plasma membrane, exhibited transactivation activity and showed a remarkable upregulation under cold stress. Overexpression of PtrPAT1 elevated BADH activity, increased glycine betaine (GB) accumulation, and conferred enhanced cold tolerance in transgenic tobacco plants compared with wild type, while downregulation in trifoliate orange by virus-induced gene silencing (VIGS) resulted in opposite trends. Furthermore, the activities of two antioxidant enzymes, including peroxidase (POD) and superoxide dismutase (SOD), were significantly increased in the overexpression plants, but remarkably decreased in the VIGS line, consistent with accumulation patterns of the reactive oxygen species (ROSs). PtrPAT1 was demonstrated to interact with and activate the PtrBADH-l promoter through the putative PAT1-binding motif with the core sequence of TTTCATGT, indicating that PtrBADH-l is a target gene of PtrPAT1. Taken together, these results demonstrate that PtrPAT1 positively affects cold tolerance through the regulation of GB biosynthesis by modulating PtrBADH-l expression.
Collapse
Affiliation(s)
- Ruhong Ming
- College of Pharmacy, Engineering Research Center of Innovative Traditional Chinese, Zhuang and Yao Materia Medica, Ministry of Education, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Tian Fang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Wei Ling
- College of Pharmacy, Engineering Research Center of Innovative Traditional Chinese, Zhuang and Yao Materia Medica, Ministry of Education, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Jingjing Geng
- College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| | - Jing Qu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Yu Zhang
- Hubei Key Laboratory of Germplasm Innovation and Utilization of Fruit Trees, Research Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan 430064, Hubei, China
| | - Jianhua Chen
- College of Pharmacy, Engineering Research Center of Innovative Traditional Chinese, Zhuang and Yao Materia Medica, Ministry of Education, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Shaochang Yao
- College of Pharmacy, Engineering Research Center of Innovative Traditional Chinese, Zhuang and Yao Materia Medica, Ministry of Education, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Liangbo Li
- College of Pharmacy, Engineering Research Center of Innovative Traditional Chinese, Zhuang and Yao Materia Medica, Ministry of Education, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Ding Huang
- College of Pharmacy, Engineering Research Center of Innovative Traditional Chinese, Zhuang and Yao Materia Medica, Ministry of Education, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Ji-Hong Liu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
4
|
Ma A, Wang TJ, Wang H, Guo P, Peng X, Wang X, Zhou G, Liu W, Zhou D, Wang J, Xu ZY. The GRAS transcription factor OsGRAS2 negatively impacts salt tolerance in rice. PLANT CELL REPORTS 2024; 44:17. [PMID: 39738626 DOI: 10.1007/s00299-024-03413-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 12/20/2024] [Indexed: 01/02/2025]
Abstract
KEY MESSAGE Transcription factor OsGRAS2 regulates salt stress tolerance and yield in rice. Plant-specific GRAS transcription factors are involved in many different aspects of plant growth and development, as well as in biotic and abiotic stress responses, although whether and how they participate in salt stress tolerance in rice (Oryza sativa) remains unclear. A screen of a previously generated set of activation-tagged lines revealed that Activation Tagging Line 63 (AC63) displayed a salt stress-sensitive phenotype. Subsequent thermal asymmetric interlace polymerase chain reaction (TAIL-PCR) showed that AC63 was due to overexpression of OsGRAS2. Ectopic overexpression of OsGRAS2 caused increased salt stress sensitivity, while osgras2 loss-of-function lines displayed salt stress-resistant phenotypes. Further, we observed that OsGRAS2 impacts Na+ and K+ ion homeostasis in the shoots. Mutation of OsGRAS2 increased salt tolerance without yield penalty. Phylogenetic tree analysis indicated that OsGRAS2 belonged to the LISCL subfamily of GRAS transcription factors and had high amino acid similarity to OsGRAS23. Both OsGRAS2 and OsGRAS23 underwent homomeric and heteromeric interactions, indicating that they formed homo- and hetero-dimers. Moreover, OsGRAS2 and OsGRAS23 showed transcriptional activation activity that was mostly governed by motif1, which was located at the N-terminal region. Further, we found OsGRAS2 binds to the OsWRKY53 promoter to increase its expression, thereby negatively impacting the OsHKT1;5 expression. This study demonstrates a novel insight into how LISCL subfamily GRAS transcription factors impact salt stress tolerance in rice.
Collapse
Affiliation(s)
- Ao Ma
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Tian-Jing Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Haoran Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Peng Guo
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Xiaoyuan Peng
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Xiaohang Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Ganghua Zhou
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Wenxin Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Dongxiao Zhou
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Jie Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China.
| | - Zheng-Yi Xu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China.
| |
Collapse
|
5
|
Guan Y, Wang K, Zhao J, Miao X, Li X, Song P, Hu H, Zhang S, Li C. Genome-wide identification of TaeGRASs responsive to biotic stresses and functional analysis of TaeSCL6 in wheat resistance to powdery mildew. BMC Genomics 2024; 25:1149. [PMID: 39604842 PMCID: PMC11603631 DOI: 10.1186/s12864-024-11041-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 11/13/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Powdery mildew is a devastating fungal disease that poses a significant threat to wheat yield and quality worldwide. Identifying resistance genes is highly advantageous for the molecular breeding of resistant cultivars. GRAS proteins are important transcription factors that regulate plant development and stress responses. Nonetheless, their roles in wheat-pathogen interactions remain poorly understood. RESULTS In this study, we used bioinformatics tools to identify and analyze wheat GRAS family genes responsive to biotic stresses and elucidated the function of TaeSCL6 within this family. A total of 179 GRAS genes in wheat were unevenly distributed on 7 chromosomes, and classified into 12 subfamilies based on phylogenetic relationship analysis. Gene duplication analysis revealed 13 pairs of tandem repeats and 142 pairs of segmental duplications, which may account for the rapid expansion of the wheat GRAS family. Expression pattern analysis revealed that 75% of the expressed TaeGRAS genes are responsive to biotic stresses. Few studies have focused on the roles of HAM subfamily genes. Consequently, we concentrated our analysis on the members of the HAM subfamily. Fourteen motifs were identified in the HAM family proteins from both Triticeae species and Arabidopsis, indicating that these motifs were highly conserved during evolution. Promoter analysis indicated that the promoters of HAM genes contain several cis-regulatory elements associated with hormone response, stress response, light response, and growth and development. Both qRT-PCR and RNA-seq data analyses demonstrated that TaeSCL6 responds to Blumeria graminis infection. Therefore, we investigated the role of TaeSCL6 in regulating wheat resistance via RNA interference and barley stripe mosaic virus induced gene silencing. Wheat plants with silenced TaeSCL6 exhibited increased susceptibility to powdery mildew. CONCLUSIONS In summary, this study not only validates the positive role of TaeSCL6 in wheat resistance to powdery mildew, but also provides candidate gene resources for future breeding of disease-resistance wheat cultivars.
Collapse
Affiliation(s)
- Yuanyuan Guan
- School of Life Sciences, Henan Engineering Research Center of Crop Genome Editing, Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, Henan Institute of Science and Technology, Xinxiang, China
| | - Kaige Wang
- School of Life Sciences, Henan Engineering Research Center of Crop Genome Editing, Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, Henan Institute of Science and Technology, Xinxiang, China
| | - Junjie Zhao
- School of Life Sciences, Henan Engineering Research Center of Crop Genome Editing, Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, Henan Institute of Science and Technology, Xinxiang, China
| | - Xiangyang Miao
- School of Agriculture, Henan Engineering Research Center of Crop Genome Editing, Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, Henan Institute of Science and Technology, Xinxiang, China
| | - Xiangyang Li
- Budweiser (Henan) Beer Co., Ltd, Xinxiang, China
| | - Puwen Song
- School of Agriculture, Henan Engineering Research Center of Crop Genome Editing, Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, Henan Institute of Science and Technology, Xinxiang, China
| | - Haiyan Hu
- School of Agriculture, Henan Engineering Research Center of Crop Genome Editing, Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, Henan Institute of Science and Technology, Xinxiang, China
| | - Shengli Zhang
- School of Life Sciences, Henan Engineering Research Center of Crop Genome Editing, Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, Henan Institute of Science and Technology, Xinxiang, China.
| | - Chengwei Li
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China.
| |
Collapse
|
6
|
Fan Y, Wan X, Zhang X, Zhang J, Zheng C, Yang Q, Yang L, Li X, Feng L, Zou L, Xiang D. GRAS gene family in rye (Secale cereale L.): genome-wide identification, phylogeny, evolutionary expansion and expression analyses. BMC PLANT BIOLOGY 2024; 24:46. [PMID: 38216860 PMCID: PMC10787399 DOI: 10.1186/s12870-023-04674-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 12/08/2023] [Indexed: 01/14/2024]
Abstract
BACKGROUND The GRAS transcription factor family plays a crucial role in various biological processes in different plants, such as tissue development, fruit maturation, and environmental stress. However, the GRAS family in rye has not been systematically analyzed yet. RESULTS In this study, 67 GRAS genes in S. cereale were identified and named based on the chromosomal location. The gene structures, conserved motifs, cis-acting elements, gene replications, and expression patterns were further analyzed. These 67 ScGRAS members are divided into 13 subfamilies. All members include the LHR I, VHIID, LHR II, PFYRE, and SAW domains, and some nonpolar hydrophobic amino acid residues may undergo cross-substitution in the VHIID region. Interested, tandem duplications may have a more important contribution, which distinguishes them from other monocotyledonous plants. To further investigate the evolutionary relationship of the GRAS family, we constructed six comparative genomic maps of homologous genes between rye and different representative monocotyledonous and dicotyledonous plants. The response characteristics of 19 ScGRAS members from different subfamilies to different tissues, grains at filling stages, and different abiotic stresses of rye were systematically analyzed. Paclobutrazol, a triazole-based plant growth regulator, controls plant tissue and grain development by inhibiting gibberellic acid (GA) biosynthesis through the regulation of DELLA proteins. Exogenous spraying of paclobutrazol significantly reduced the plant height but was beneficial for increasing the weight of 1000 grains of rye. Treatment with paclobutrazol, significantly reduced gibberellin levels in grain in the filling period, caused significant alteration in the expression of the DELLA subfamily gene members. Furthermore, our findings with respect to genes, ScGRAS46 and ScGRAS60, suggest that these two family members could be further used for functional characterization studies in basic research and in breeding programmes for crop improvement. CONCLUSIONS We identified 67 ScGRAS genes in rye and further analysed the evolution and expression patterns of the encoded proteins. This study will be helpful for further analysing the functional characteristics of ScGRAS genes.
Collapse
Affiliation(s)
- Yu Fan
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, College of Food and Biological engineering, Chengdu University, Longquanyi District, Chengdu, 610106, Sichuan Province, P.R. China
| | - Xianqi Wan
- Sichuan Academy of Agricultural Machinery Science, Chengdu, 610011, P.R. China
| | - Xin Zhang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, College of Food and Biological engineering, Chengdu University, Longquanyi District, Chengdu, 610106, Sichuan Province, P.R. China
| | - Jieyu Zhang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, College of Food and Biological engineering, Chengdu University, Longquanyi District, Chengdu, 610106, Sichuan Province, P.R. China
| | - Chunyu Zheng
- College of Food Science and Engineering, Xinjiang Institute of Technology, Aksu, 843100, P.R. China
| | - Qiaohui Yang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, College of Food and Biological engineering, Chengdu University, Longquanyi District, Chengdu, 610106, Sichuan Province, P.R. China
| | - Li Yang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, College of Food and Biological engineering, Chengdu University, Longquanyi District, Chengdu, 610106, Sichuan Province, P.R. China
| | - Xiaolong Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, College of Food and Biological engineering, Chengdu University, Longquanyi District, Chengdu, 610106, Sichuan Province, P.R. China
| | - Liang Feng
- Chengdu Institute of Food Inspection, Chengdu, 610000, P.R. China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, College of Food and Biological engineering, Chengdu University, Longquanyi District, Chengdu, 610106, Sichuan Province, P.R. China.
| | - Dabing Xiang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, College of Food and Biological engineering, Chengdu University, Longquanyi District, Chengdu, 610106, Sichuan Province, P.R. China.
| |
Collapse
|
7
|
Neves C, Ribeiro B, Amaro R, Expósito J, Grimplet J, Fortes AM. Network of GRAS transcription factors in plant development, fruit ripening and stress responses. HORTICULTURE RESEARCH 2023; 10:uhad220. [PMID: 38077496 PMCID: PMC10699852 DOI: 10.1093/hr/uhad220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 10/20/2023] [Indexed: 06/23/2024]
Abstract
The plant-specific family of GRAS transcription factors has been wide implicated in the regulation of transcriptional reprogramming associated with a diversity of biological functions ranging from plant development processes to stress responses. Functional analyses of GRAS transcription factors supported by in silico structural and comparative analyses are emerging and clarifying the regulatory networks associated with their biological roles. In this review, a detailed analysis of GRAS proteins' structure and biochemical features as revealed by recent discoveries indicated how these characteristics may impact subcellular location, molecular mechanisms, and function. Nomenclature issues associated with GRAS classification into different subfamilies in diverse plant species even in the presence of robust genomic resources are discussed, in particular how it affects assumptions of biological function. Insights into the mechanisms driving evolution of this gene family and how genetic and epigenetic regulation of GRAS contributes to subfunctionalization are provided. Finally, this review debates challenges and future perspectives on the application of this complex but promising gene family for crop improvement to cope with challenges of environmental transition.
Collapse
Affiliation(s)
- Catarina Neves
- BioISI–Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Campo Grande, 1749-016 Lisboa, Portugal
| | - Beatriz Ribeiro
- BioISI–Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Campo Grande, 1749-016 Lisboa, Portugal
| | - Rute Amaro
- BioISI–Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Campo Grande, 1749-016 Lisboa, Portugal
| | - Jesús Expósito
- BioISI–Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Campo Grande, 1749-016 Lisboa, Portugal
| | - Jérôme Grimplet
- Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Departamento de Ciencia Vegetal, Gobierno de Aragón, Avda. Montañana 930, 50059 Zaragoza, Spain
- Instituto Agroalimentario de Aragón—IA2 (CITA-Universidad de Zaragoza), Calle Miguel Servet 177, 50013 Zaragoza, Spain
| | - Ana Margarida Fortes
- BioISI–Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Campo Grande, 1749-016 Lisboa, Portugal
| |
Collapse
|
8
|
Mishra S, Chaudhary R, Pandey B, Singh G, Sharma P. Genome-wide identification and expression analysis of the GRAS gene family under abiotic stresses in wheat (Triticum aestivum L.). Sci Rep 2023; 13:18705. [PMID: 37907517 PMCID: PMC10618205 DOI: 10.1038/s41598-023-45051-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 10/15/2023] [Indexed: 11/02/2023] Open
Abstract
The GRAS transcription factors are multifunctional proteins involved in various biological processes, encompassing plant growth, metabolism, and responses to both abiotic and biotic stresses. Wheat is an important cereal crop cultivated worldwide. However, no systematic study of the GRAS gene family and their functions under heat, drought, and salt stress tolerance and molecular dynamics modeling in wheat has been reported. In the present study, we identified the GRAS gene in Triticum aestivum through systematically performing gene structure analysis, chromosomal location, conserved motif, phylogenetic relationship, and expression patterns. A total of 177 GRAS genes were identified within the wheat genome. Based on phylogenetic analysis, these genes were categorically placed into 14 distinct subfamilies. Detailed analysis of the genetic architecture revealed that the majority of TaGRAS genes had no intronic regions. The expansion of the wheat GRAS gene family was proven to be influenced by both segmental and tandem duplication events. The study of collinearity events between TaGRAS and analogous orthologs from other plant species provided valuable insights into the evolution of the GRAS gene family in wheat. It is noteworthy that the promoter regions of TaGRAS genes consistently displayed an array of cis-acting elements that are associated with stress responses and hormone regulation. Additionally, we discovered 14 miRNAs that target key genes involved in three stress-responsive pathways in our study. Moreover, an assessment of RNA-seq data and qRT-PCR results revealed a significant increase in the expression of TaGRAS genes during abiotic stress. These findings highlight the crucial role of TaGRAS genes in mediating responses to different environmental stresses. Our research delved into the molecular dynamics and structural aspects of GRAS domain-DNA interactions, marking the first instance of such information being generated. Overall, the current findings contribute to our understanding of the organization of the GRAS genes in the wheat genome. Furthermore, we identified TaGRAS27 as a candidate gene for functional research, and to improve abiotic stress tolerance in the wheat by molecular breeding.
Collapse
Affiliation(s)
- Shefali Mishra
- Deenbandhu Chhotu Ram University of Science and Technology, Murthal, India
- ICAR-Indian Institute of Wheat and Barley Research, Agrasain Marg, PO BOX-158, Karnal, Haryana, India
| | - Reeti Chaudhary
- Deenbandhu Chhotu Ram University of Science and Technology, Murthal, India
| | - Bharti Pandey
- ICAR-National Dairy Research Institute, Karnal, India
| | - Gyanendra Singh
- ICAR-Indian Institute of Wheat and Barley Research, Agrasain Marg, PO BOX-158, Karnal, Haryana, India
| | - Pradeep Sharma
- ICAR-Indian Institute of Wheat and Barley Research, Agrasain Marg, PO BOX-158, Karnal, Haryana, India.
| |
Collapse
|
9
|
Weng Y, Chen X, Hao Z, Lu L, Wu X, Zhang J, Wu J, Shi J, Chen J. Genome-wide analysis of the GRAS gene family in Liriodendron chinense reveals the putative function in abiotic stress and plant development. FRONTIERS IN PLANT SCIENCE 2023; 14:1211853. [PMID: 37810392 PMCID: PMC10551155 DOI: 10.3389/fpls.2023.1211853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 08/22/2023] [Indexed: 10/10/2023]
Abstract
Introduction GRAS genes encode plant-specific transcription factors that play essential roles in plant growth and development. However, the members and the function of the GRAS gene family have not been reported in Liriodendron chinense. L. chinense, a tree species in the Magnolia family that produces excellent timber for daily life and industry. In addition, it is a good relict species for plant evolution research. Methods Therefore, we conducted a genome-wide study of the LcGRAS gene family and identified 49 LcGRAS genes in L. chinense. Results We found that LcGRAS could be divided into 13 sub-groups, among which there is a unique branch named HAM-t. We carried out RNA sequencing analysis of the somatic embryos from L. chinense and found that LcGRAS genes are mainly expressed after heart-stage embryo development, suggesting that LcGRAS may have a function during somatic embryogenesis. We also investigated whether GRAS genes are responsive to stress by carrying out RNA sequencing (RNA-seq) analysis, and we found that the genes in the PAT subfamily were activated upon stress treatment, suggesting that these genes may help plants survive stressful environments. We found that PIF was downregulated and COR was upregulated after the transient overexpression of PATs, suggesting that PAT may be upstream regulators of cold stress. Discussion Collectively, LcGRAS genes are conserved and play essential roles in plant development and adaptation to abiotic stress.
Collapse
Affiliation(s)
- Yuhao Weng
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing, China
| | - Xinying Chen
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing, China
| | - Zhaodong Hao
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing, China
| | - Lu Lu
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing, China
| | - Xinru Wu
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing, China
| | - Jiaji Zhang
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing, China
| | - Jingxiang Wu
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing, China
| | - Jisen Shi
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing, China
| | - Jinhui Chen
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
10
|
Genome-Wide Identification and Expression Pattern of the GRAS Gene Family in Pitaya ( Selenicereus undatus L.). BIOLOGY 2022; 12:biology12010011. [PMID: 36671704 PMCID: PMC9854919 DOI: 10.3390/biology12010011] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
The GRAS gene family is one of the most important families of transcriptional factors that have diverse functions in plant growth and developmental processes including axillary meristem patterning, signal-transduction, cell maintenance, phytohormone and light signaling. Despite their importance, the function of GRAS genes in pitaya fruit (Selenicereus undatus L.) remains unknown. Here, 45 members of the HuGRAS gene family were identified in the pitaya genome, which was distributed on 11 chromosomes. All 45 members of HuGRAS were grouped into nine subfamilies using phylogenetic analysis with six other species: maize, rice, soybeans, tomatoes, Medicago truncatula and Arabidopsis. Among the 45 genes, 12 genes were selected from RNA-Seq data due to their higher expression in different plant tissues of pitaya. In order to verify the RNA-Seq data, these 12 HuGRAS genes were subjected for qRT-PCR validation. Nine HuGRAS genes exhibited higher relative expression in different tissues of the plant. These nine genes which were categorized into six subfamilies inlcuding DELLA (HuGRAS-1), SCL-3 (HuGRAS-7), PAT1 (HuGRAS-34, HuGRAS-35, HuGRAS-41), HAM (HuGRAS-37), SCR (HuGRAS-12) and LISCL (HuGRAS-18, HuGRAS-25) might regulate growth and development in the pitaya plant. The results of the present study provide valuable information to improve tropical pitaya through a molecular and conventional breeding program.
Collapse
|
11
|
Li C, Wang K, Chen S, Zhang X, Zhang X, Fan L, Dong J, Xu L, Wang Y, Li Y, Liu L. Genome-wide identification of RsGRAS gene family reveals positive role of RsSHRc gene in chilling stress response in radish (Raphanus sativus L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 192:285-297. [PMID: 36283201 DOI: 10.1016/j.plaphy.2022.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/06/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Radish (Raphanus sativus L.) is an important worldwide root vegetable crop. Little information of the GRAS gene family was available in radish. Herein, a total of 51 GRAS family members were firstly identified from radish genome, and unevenly located onto nine radish chromosomes. Expression analysis of RsGRAS genes in taproot displayed that RsSCL15a and RsSHRc were highly expressed in the radish cambium, and its expression level was increased with the taproot thickening. Comparative transcriptome analysis revealed that the expression patterns of RsGRAS genes varied upon exposure to different abiotic stresses including heavy metals, salt and heat. The expression level of six RsGRAS genes including RsSHRc was increased under chilling stress in two radish genotypes with different cold tolerance. Further analysis indicated that RsGRAS genes could respond to cold stress rapidly and the expression of RsSHRc was up-regulated at different development stages (cortex splitting and thickening stages) under long-term cold treatment. Transient expression of RsSHRc gene in radish showed that RsSHRc possessed the reliable function of eliminating reactive oxygen species (ROS), inhibiting the formation of malondialdehyde (MDA) and promoting to accumulate proline under cold stress. Together, these findings provided insights into the function of RsGRAS genes in taproot development and chilling stress response in radish.
Collapse
Affiliation(s)
- Cui Li
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, PR China.
| | - Kai Wang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, PR China.
| | - Sen Chen
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, PR China.
| | - Xiaoli Zhang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, PR China.
| | - Xinyu Zhang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, PR China.
| | - Lianxue Fan
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, PR China.
| | - Junhui Dong
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, PR China.
| | - Liang Xu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, PR China.
| | - Yan Wang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, PR China.
| | - Ying Li
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, PR China.
| | - Liwang Liu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, PR China; College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009, PR China.
| |
Collapse
|
12
|
Jaiswal V, Kakkar M, Kumari P, Zinta G, Gahlaut V, Kumar S. Multifaceted Roles of GRAS Transcription Factors in Growth and Stress Responses in Plants. iScience 2022; 25:105026. [PMID: 36117995 PMCID: PMC9474926 DOI: 10.1016/j.isci.2022.105026] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Affiliation(s)
- Vandana Jaiswal
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Mrinalini Kakkar
- Department of Plant Molecular Biology, University of Delhi, South Campus, New Delhi 110021, India
| | - Priya Kumari
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Gaurav Zinta
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
- Corresponding author
| | - Vijay Gahlaut
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
- Department of Plant Molecular Biology, University of Delhi, South Campus, New Delhi 110021, India
- Corresponding author
| | - Sanjay Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| |
Collapse
|
13
|
Zhang C, Liu S, Liu D, Guo F, Yang Y, Dong T, Zhang Y, Ma C, Tang Z, Li F, Meng X, Zhu M. Genome-wide survey and expression analysis of GRAS transcription factor family in sweetpotato provides insights into their potential roles in stress response. BMC PLANT BIOLOGY 2022; 22:232. [PMID: 35524176 PMCID: PMC9074257 DOI: 10.1186/s12870-022-03618-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 04/27/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND The plant-specific GRAS transcription factors play pivotal roles in various adverse environmental conditions. Numerous GRAS genes have been explored and characterized in different plants, however, comprehensive survey on GRASs in sweetpotato is lagging. RESULTS In this study, 72 putative sweetpotato IbGRAS genes with uneven distribution were isolated on 15 chromosomes and classified into 12 subfamilies supported by gene structures and motif compositions. Moreover, both tandem duplication and segmental duplication events played critical roles in the expansion of sweetpotato GRAS genes, and the collinearity between IbGRAS genes and the related orthologs from nine other plants further depicted evolutionary insights into GRAS gene family. RNA-seq analysis under salt stress and qRT-PCR detection of 12 selected IbGRAS genes demonstrated their significant and varying inductions under multiple abiotic stresses (salt, drought, heat and cold) and hormone treatments (ABA, ACC and JA). Consistently, the promoter regions of IbGRAS genes harbored a series of stress- and hormone-associated cis-acting elements. Among them, IbGRAS71, the potential candidate for breeding tolerant plants, was characterized as having transactivation activity in yeasts, while IbGRAS-2/-4/-9 did not. Moreover, a complex interaction relationship between IbGRASs was observed through the interaction network analysis and yeast two-hybrid assays. CONCLUSIONS Our results laid a foundation for further functional identifications of IbGRAS genes, and multiple members may serve as potential regulators for molecular breeding of tolerant sweetpotato.
Collapse
Affiliation(s)
- Chengbin Zhang
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, Jiangsu Province, China
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, Jiangsu Province, China
| | - Siyuan Liu
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, Jiangsu Province, China
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, Jiangsu Province, China
| | - Delong Liu
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, Jiangsu Province, China
| | - Fen Guo
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, Jiangsu Province, China
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, Jiangsu Province, China
| | - Yiyu Yang
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, Jiangsu Province, China
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, Jiangsu Province, China
| | - Tingting Dong
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, Jiangsu Province, China
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, Jiangsu Province, China
| | - Yi Zhang
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, Jiangsu Province, China
| | - Chen Ma
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, Jiangsu Province, China
| | - Zixuan Tang
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, Jiangsu Province, China
| | - Feifan Li
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, Jiangsu Province, China
| | - Xiaoqing Meng
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, Jiangsu Province, China.
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, Jiangsu Province, China.
| | - Mingku Zhu
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, Jiangsu Province, China.
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, Jiangsu Province, China.
| |
Collapse
|
14
|
Genome-Wide Characterization of High-Affinity Nitrate Transporter 2 (NRT2) Gene Family in Brassica napus. Int J Mol Sci 2022; 23:ijms23094965. [PMID: 35563356 PMCID: PMC9104966 DOI: 10.3390/ijms23094965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 04/25/2022] [Accepted: 04/28/2022] [Indexed: 12/04/2022] Open
Abstract
Nitrate transporter 2 (NRT2) plays an essential role in Nitrogen (N) uptake, transport, utilization, and stress resistance. In this study, the NRT2 gene family in two sequenced Brassica napus ecotypes were identified, including 31 genes in ‘Zhongshuang11’ (BnaZSNRT2s) and 19 in ‘Darmor-bzh’ (BnaDarNRT2s). The candidate genes were divided into three groups (Group I−III) based on phylogenetic analyses, supported by a conserved intron-exon structure in each group. Collinearity analysis revealed that the large expansion of BnaZSNRT2s attributed to allopolyploidization of ancestors Brassica rapa and Brassica oleracea, and small-scale duplication events in B. napus. Transcription factor (TF) binding site prediction, cis-element analysis, and microRNA prediction suggested that the expressions of BnaZSNRT2s are regulated by multiple factors, and the regulatory pattern is relatively conserved in each group and is tightly connected between groups. Expression assay showed the diverse and differentiated spatial-temporal expression profiles of BnaZSNRT2s in Group I, but conserved patterns were observed in Group II/III; and the low nitrogen (LN) stress up-regulated expression profiles were presented in Group I−III, based on RNA-seq data. RT-qPCR analyses confirmed that BnaZSNRT2.5A-1 and BnaZSNRT2.5C-1 in Group II were highly up-regulated under LN stress in B. napus roots. Our results offer valid information and candidates for further functional BnaZSNRT2s studies.
Collapse
|
15
|
Khan Y, Xiong Z, Zhang H, Liu S, Yaseen T, Hui T. Expression and roles of GRAS gene family in plant growth, signal transduction, biotic and abiotic stress resistance and symbiosis formation-a review. PLANT BIOLOGY (STUTTGART, GERMANY) 2022; 24:404-416. [PMID: 34854195 DOI: 10.1111/plb.13364] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/15/2021] [Indexed: 06/13/2023]
Abstract
The GRAS (derived from GAI, RGA and SCR) gene family consists of plant-specific genes, works as a transcriptional regulator and plays a key part in the regulation of plant growth and development. The past decade has witnessed significant progress in understanding and advances on GRAS transcription factors in various plants. A notable concern is to what extent the mechanisms found in plants, particularly crops, are shared by other species, and what other characteristics are dependent on GRAS transcription factor (TFS)-mediated gene expression. GRAS are involved in many processes that are intimately linked to plant growth regulation. However, GRAS also perform additional roles against environmental stresses, allowing plants to function more efficiently. GRAS increase plant growth and development by improving several physiological processes, such as phytohormone, biosynthetic and signalling pathways. Furthermore, the GRAS gene family plays an important role in response to abiotic stresses, e.g. photooxidative stress. Moreover, evidence shows the involvement of GRAS in arbuscule development during plant-mycorrhiza associations. In this review, the diverse roles of GRAS in plant systems are highlighted that could be useful in enhancing crop productivity through genetic modification, especially of crops. This is the first review to report the role and function of the GRAS gene family in plant systems. Furthermore, a large number of studies are reviewed, and several limitations and research gaps identified that must be addressed in future studies.
Collapse
Affiliation(s)
- Y Khan
- Key Laboratory of Plant Nutrition and Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resource and Environment, Northwest A&F University, Yangling, Shaanxi, China
| | - Z Xiong
- Key Laboratory of Plant Nutrition and Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resource and Environment, Northwest A&F University, Yangling, Shaanxi, China
| | - H Zhang
- Key Laboratory of Plant Nutrition and Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resource and Environment, Northwest A&F University, Yangling, Shaanxi, China
| | - S Liu
- Key Laboratory of Plant Nutrition and Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resource and Environment, Northwest A&F University, Yangling, Shaanxi, China
| | - T Yaseen
- Department of Botany, Bacha Khan University, Charsadda, Khyber Pakhtunkhwa, Pakistan
| | - T Hui
- Key Laboratory of Plant Nutrition and Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resource and Environment, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
16
|
Genome-wide identification and expression analysis of the GRAS gene family in response to drought stress in chickpea ( Cicer arietinum L.). 3 Biotech 2022; 12:64. [PMID: 35186661 PMCID: PMC8828820 DOI: 10.1007/s13205-021-03104-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 12/28/2021] [Indexed: 11/01/2022] Open
Abstract
The GRAS (gibberellic acid insensitive, repressor of GAI and scarecrow) transcription factors (TFs) regulate diverse biological processes involved in plant growth and development. These TFs are also known to regulate gene expression in response to various abiotic stress factors like cold, drought, etc. In chickpea one of the most devastating abiotic stress factors is terminal drought. The GRAS TF family has not been characterized in chickpea (Cicer arietinum L.) until now. In this study, we report 46 GRAS TF genes (CaGRAS genes) in the chickpea genome. The CaGRAS proteins were categorized into nine subfamilies based on their phylogenetic relationship with known GRAS members of Arabidopsis and soybean. The PAT subfamily was the largest consisting of ten CaGRAS members whereas the LAS subfamily was the smallest with only one member. Gene duplication analysis revealed that segmental duplication was the primary reason for the expansion of this gene family within the chickpea genome. The gene expression levels of CaGRAS genes were analysed using two different chickpea varieties contrasting for drought tolerance trait, i.e., ICC 4958 (drought tolerant) and ICC 1882 (drought sensitive). On exposure to drought stress, the two chickpea genotypes, exhibited differential drought response, which was quantified and estimated in terms of differences in leaf relative water content (RWC). The well-watered or control plants of the drought tolerant variety were able to maintain a higher leaf RWC by the end of the drought stress period, whereas the control plants of the drought sensitive variety continued to show a decline in leaf RWC. The two genotypes also differed in their root morphologies, under well-watered and drought stress conditions. The gene expression analysis revealed a potential role of PAT, SCR, SCL3 and SHR GRAS members in the regulation of differential response to drought, in the root tissues, for both the genotypes. CaGRAS 12 (SCR) was identified as a drought-responsive GRAS TF gene, which could serve as a potential candidate gene for utilization in developing chickpea varieties with improved drought tolerance. This study demonstrates the drought-responsive expression of CaGRAS genes in chickpea and also describes the morpho-physiological response of chickpea plants to drought stress conditions. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-03104-z.
Collapse
|
17
|
Ranjan A, Sinha R, Singla-Pareek SL, Pareek A, Singh AK. Shaping the root system architecture in plants for adaptation to drought stress. PHYSIOLOGIA PLANTARUM 2022; 174:e13651. [PMID: 35174506 DOI: 10.1111/ppl.13651] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/05/2022] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
Root system architecture plays an important role in plant adaptation to drought stress. The root system architecture (RSA) consists of several structural features, which includes number and length of main and lateral roots along with the density and length of root hairs. These features exhibit plasticity under water-limited environments and could be critical to developing crops with efficient root systems for adaptation under drought. Recent advances in the omics approaches have significantly improved our understanding of the regulatory mechanisms of RSA remodeling under drought and the identification of genes and other regulatory elements. Plant response to drought stress at physiological, morphological, biochemical, and molecular levels in root cells is regulated by various phytohormones and their crosstalk. Stress-induced reactive oxygen species play a significant role in regulating root growth and development under drought stress. Several transcription factors responsible for the regulation of RSA under drought have proven to be beneficial for developing drought tolerant crops. Molecular breeding programs for developing drought-tolerant crops have been greatly benefitted by the availability of quantitative trait loci (QTLs) associated with the RSA regulation. In the present review, we have discussed the role of various QTLs, signaling components, transcription factors, microRNAs and crosstalk among various phytohormones in shaping RSA and present future research directions to better understand various factors involved in RSA remodeling for adaptation to drought stress. We believe that the information provided herein may be helpful in devising strategies to develop crops with better RSA for efficient uptake and utilization of water and nutrients under drought conditions.
Collapse
Affiliation(s)
- Alok Ranjan
- School of Genetic Engineering, ICAR-Indian Institute of Agricultural Biotechnology, Ranchi, India
| | - Ragini Sinha
- School of Genetic Engineering, ICAR-Indian Institute of Agricultural Biotechnology, Ranchi, India
| | - Sneh L Singla-Pareek
- Plant Stress Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
- National Agri-Food Biotechnology Institute, Mohali, Punjab, India
| | - Anil Kumar Singh
- School of Genetic Engineering, ICAR-Indian Institute of Agricultural Biotechnology, Ranchi, India
- ICAR-National Institute for Plant Biotechnology, LBS Centre, New Delhi, India
| |
Collapse
|
18
|
Laskar P, Bhattacharya S, Chaudhuri A, Kundu A. Exploring the GRAS gene family in common bean (Phaseolus vulgaris L.): characterization, evolutionary relationships, and expression analyses in response to abiotic stresses. PLANTA 2021; 254:84. [PMID: 34561734 DOI: 10.1007/s00425-021-03725-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 09/05/2021] [Indexed: 06/13/2023]
Abstract
Genome-wide identification reveals 55 PvuGRAS genes belonging to 16 subfamilies and their gene structures and evolutionary relationships were characterized. Expression analyses highlight their prominence in plant growth, development and abiotic stress responses. GRAS proteins comprise a plant-specific transcription factor family involved in multiple growth regulatory pathways and environmental cues including abiotic/biotic stresses. Despite its crucial importance, characterization of this gene family is still elusive in common bean. A systematic genome-wide scan identified 55 PvuGRAS genes unevenly anchored to the 11 common bean chromosomes. Segmental duplication appeared to be the key driving force behind expansion of this gene family that underwent purifying selection during evolution. Computational investigation unraveled their intronless organization and identified similar motif composition within the same subfamily. Phylogenetic analyses clustered the PvuGRAS proteins into 16 phylogenetic clades and established extensive orthologous relationships with Arabidopsis and rice. Analysis of the upstream promoter region uncovered cis-elements responsive to growth, development, and abiotic stresses that may account for their differential expression. The identified SSRs could serve as putative molecular markers facilitating future breeding programs. 37 PvuGRAS transcripts were post-transcriptionally regulated by different miRNA families, miR171 being the major player preferentially targeting members of the HAM subfamily. Global expression profile based on RNA-seq data indicates a clade specific expression pattern in various tissues and developmental stages. Additionally, nine PvuGRAS genes were chosen for further qPCR analyses under drought, salt, and cold stress suggesting their involvement in acclimation to environmental stimuli. Combined, the present results significantly contribute to the current understanding of the complexity and biological function of the PvuGRAS gene family. The resources generated will provide a solid foundation in future endeavors for genetic improvement in common bean.
Collapse
Affiliation(s)
- Parbej Laskar
- Plant Genomics and Bioinformatics Laboratory, P.G. Department of Botany, Ramakrishna Mission Vivekananda Centenary College (Autonomous), Rahara, Kolkata, 700118, India
| | - Saswati Bhattacharya
- Department of Botany, Dr. A.P.J. Abdul Kalam Government College, New Town, Rajarhat, India
| | - Atreyee Chaudhuri
- Aquatic Bioresource Research Laboratory, Department of Zoology , University of Calcutta, Kolkata, India
| | - Anirban Kundu
- Plant Genomics and Bioinformatics Laboratory, P.G. Department of Botany, Ramakrishna Mission Vivekananda Centenary College (Autonomous), Rahara, Kolkata, 700118, India.
| |
Collapse
|
19
|
Wang X, Li G, Sun Y, Qin Z, Feng P. Genome-wide analysis and characterization of GRAS family in switchgrass. Bioengineered 2021; 12:6096-6114. [PMID: 34477486 PMCID: PMC8806906 DOI: 10.1080/21655979.2021.1972606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Panicum virgatum, a model plant of cellulosic ethanol conversion, not only has high large biomass and strong adaptability to soil, but also grows well in marginal soil and has the advantage of improving saline-alkali soil. GRAS transcription factor gene family play important roles in individual environment adaption, and these vital functions has been proved in several plants, however, the research of GRAS in the development of switchgrass (Panicum virgatum) were limited. A comprehensive study was investigated to explore the relationship between GRAS gene family and resistance. According to the phylogenetic analysis, a total of 144 GRAS genes were identified and renamed which were classified into eight subfamilies. Chromosome distribution, tandem and segmental repeats analysis indicated that gene duplication events contributed a lot to the expansion of GRAS genes in the switchgrass genome. Sixty-six GRAS genes in switchgrass were identified as having orthologous genes with rice through gene duplication analysis. Most of these GRAS genes contained zero or one intron, and closely related genes in evolution shared similar motif composition. Interaction networks were analyzed including DELLA and ten interaction proteins that were primarily involved in gibberellin acid mediated signaling. Notably, online analysis indicated that the promoter regions of the identified PvGRAS genes contained many cis-elements including light responsive elements, suggesting that PvGRAS might involve in light signal cross-talking. This work provides key insights into resistance and bioavailability in switchgrass and would be helpful to further study the function of GRAS and GRAS-mediated signal transduction pathways.
Collapse
Affiliation(s)
- Xiaoqin Wang
- Department of Anesthesiology, Changzhi Medical College, Changzhi, Shanxi, China
| | - Guixia Li
- Department of Basic Medicine, Changzhi Medical College, Changzhi, Shanxi, China
| | - Yajing Sun
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Jilin University, Changchun, Jilin, China
| | - Zhongyu Qin
- Department of Basic Medicine, Changzhi Medical College, Changzhi, Shanxi, China
| | - Pengcheng Feng
- Department of Basic Medicine, Changzhi Medical College, Changzhi, Shanxi, China
| |
Collapse
|
20
|
Fan Y, Yan J, Lai D, Yang H, Xue G, He A, Guo T, Chen L, Cheng XB, Xiang DB, Ruan J, Cheng J. Genome-wide identification, expression analysis, and functional study of the GRAS transcription factor family and its response to abiotic stress in sorghum [Sorghum bicolor (L.) Moench]. BMC Genomics 2021; 22:509. [PMID: 34229611 PMCID: PMC8259154 DOI: 10.1186/s12864-021-07848-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/24/2021] [Indexed: 11/10/2022] Open
Abstract
Background GRAS, an important family of transcription factors, have played pivotal roles in regulating numerous intriguing biological processes in plant development and abiotic stress responses. Since the sequencing of the sorghum genome, a plethora of genetic studies were mainly focused on the genomic information. The indepth identification or genome-wide analysis of GRAS family genes, especially in Sorghum bicolor, have rarely been studied. Results A total of 81 SbGRAS genes were identified based on the S. bicolor genome. They were named SbGRAS01 to SbGRAS81 and grouped into 13 subfamilies (LISCL, DLT, OS19, SCL4/7, PAT1, SHR, SCL3, HAM-1, SCR, DELLA, HAM-2, LAS and OS4). SbGRAS genes are not evenly distributed on the chromosomes. According to the results of the gene and motif composition, SbGRAS members located in the same group contained analogous intron/exon and motif organizations. We found that the contribution of tandem repeats to the increase in sorghum GRAS members was slightly greater than that of fragment repeats. By quantitative (q) RT-PCR, the expression of 13 SbGRAS members in different plant tissues and in plants exposed to six abiotic stresses at the seedling stage were quantified. We further investigated the relationship between DELLA genes, GAs and grain development in S. bicolor. The paclobutrazol treatment significantly increased grain weight, and affected the expression levels of all DELLA subfamily genes. SbGRAS03 is the most sensitive to paclobutrazol treatment, but also has a high response to abiotic stresses. Conclusions Collectively, SbGRAs play an important role in plant development and response to abiotic stress. This systematic analysis lays the foundation for further study of the functional characteristics of GRAS genes of S. bicolor. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07848-z.
Collapse
Affiliation(s)
- Yu Fan
- College of Agriculture, Guizhou University, Huaxi District, 550025, Guiyang, People's Republic of China
| | - Jun Yan
- School of Food and Biological engineering, Chengdu University, 610106, Chengdu, People's Republic of China
| | - Dili Lai
- College of Agriculture, Guizhou University, Huaxi District, 550025, Guiyang, People's Republic of China
| | - Hao Yang
- College of Agriculture, Guizhou University, Huaxi District, 550025, Guiyang, People's Republic of China
| | - Guoxing Xue
- College of Agriculture, Guizhou University, Huaxi District, 550025, Guiyang, People's Republic of China
| | - Ailing He
- College of Agriculture, Guizhou University, Huaxi District, 550025, Guiyang, People's Republic of China
| | - Tianrong Guo
- Chengdu Institute of Food Inspection, 610030, Chengdu, People's Republic of China
| | - Long Chen
- Department of Nursing, Sichuan Tianyi College, 618200, Mianzhu, People's Republic of China
| | - Xiao-Bin Cheng
- Department of Environmental and Life Sciences, Sichuan MinZu College, 626001, Kangding, People's Republic of China
| | - Da-Bing Xiang
- School of Food and Biological engineering, Chengdu University, 610106, Chengdu, People's Republic of China
| | - Jingjun Ruan
- College of Agriculture, Guizhou University, Huaxi District, 550025, Guiyang, People's Republic of China
| | - Jianping Cheng
- College of Agriculture, Guizhou University, Huaxi District, 550025, Guiyang, People's Republic of China.
| |
Collapse
|
21
|
Molecular Cloning, Transcriptional Profiling, Subcellular Localization, and miRNA-Binding Site Analysis of Six SCL9 Genes in Poplar. PLANTS 2021; 10:plants10071338. [PMID: 34208997 PMCID: PMC8309000 DOI: 10.3390/plants10071338] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 06/25/2021] [Accepted: 06/27/2021] [Indexed: 11/16/2022]
Abstract
The SCL9 subfamily is a key member of the GRAS family that regulates plant development and stress responses. Nevertheless, the functional role of these genes in the growth and development of poplar still unclear. Here, we reported the six SCL9 genes, which were found to be differentially expressed during poplar adventitious root formation. The full-length sequences of PeSCL9 genes of ‘Nanlin895’ poplar (Populus deltoids × Populus euramericana) were cloned by the RACE technique All PeSCL9 genes lacked introns. RT-qPCR revealed that PeSCL9 genes displayed a dynamic expression pattern in the adventitious root of poplar, according to RT-qPCR data. A series of comprehensive genes characteristics analysis were carried out for six genes by bioinformation. Meanwhile, transient expression analysis of the Populus protoplasts showed that all the PeSCL9 proteins were localized in the nucleus. In addition, the degradome and sRNA of ‘Nanlin895’ poplar in combination were used to predict miRNAs that regulate PeSCL9. It was found that miR396a and miR396c may affect PeSCL9 expression via cleavage, which was further verified by a transient expression experiment in Populus protoplasts. Overall, the development of poplar adventitious root and other tissues was closely related to these six SCL9 genes, and they serve as a starting point for further research into the mechanisms regulating poplar growth and development.
Collapse
|
22
|
Lv G, Zheng X, Duan Y, Wen Y, Zeng B, Ai M, He B. The GRAS gene family in watermelons: identification, characterization and expression analysis of different tissues and root-knot nematode infestations. PeerJ 2021; 9:e11526. [PMID: 34123598 PMCID: PMC8164414 DOI: 10.7717/peerj.11526] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 05/06/2021] [Indexed: 01/22/2023] Open
Abstract
The family of GRAS plant-specific transcription factor plays diverse roles in numerous biological processes. Despite the identification and characterization of GRAS genes family in dozens of plant species, until now, GRAS members in watermelon (Citrullus lanatus) have not been investigated comprehensively. In this study, using bioinformatic analysis, we identified 37 GRAS genes in the watermelon genome (ClGRAS). These genes are classified into 10 distinct subfamilies based on previous research, and unevenly distributed on 11 chromosomes. Furthermore, a complete analysis was conducted to characterize conserved motifs and gene structures, which revealed the members within same subfamily that have analogous conserved gene structure and motif composition. Additionally, the expression pattern of ClGRAS genes was characterized in fruit flesh and rind tissues during watermelon fruit development and under red light (RL) as well as root knot nematode infestation. Finally, for verification of the availability of public transcriptome data, we also evaluated the expression levels of randomly selected four ClGRAS genes under RL and nematode infection by using qRT-PCR. The qRT-PCR results indicated that several ClGRAS genes were differentially expressed, implying their vital role in RL induction of watermelon resistance against root-knot nematodes. The results obtained in this study could be useful in improving the quality of watermelon.
Collapse
Affiliation(s)
- Gongbo Lv
- College of Life Sciences, Jiangxi Science & Technology Normal University, Jiangxi Key Laboratory of Bioprocess Engineering and Co-Innovation Center for In-Vitro Diagnostic Reagents and Devices of Jiangxi Province, Nanchang, Jiangxi, China
| | - Xing Zheng
- College of Life Sciences, Jiangxi Science & Technology Normal University, Jiangxi Key Laboratory of Bioprocess Engineering and Co-Innovation Center for In-Vitro Diagnostic Reagents and Devices of Jiangxi Province, Nanchang, Jiangxi, China
| | - Yitian Duan
- Renmin University of China, School of Information, Beijing, China
| | - Yunyong Wen
- College of Life Sciences, Jiangxi Science & Technology Normal University, Jiangxi Key Laboratory of Bioprocess Engineering and Co-Innovation Center for In-Vitro Diagnostic Reagents and Devices of Jiangxi Province, Nanchang, Jiangxi, China
| | - Bin Zeng
- College of Life Sciences, Jiangxi Science & Technology Normal University, Jiangxi Key Laboratory of Bioprocess Engineering and Co-Innovation Center for In-Vitro Diagnostic Reagents and Devices of Jiangxi Province, Nanchang, Jiangxi, China.,Shenzhen Technology University, College of Pharmacy, Shenzhen, Guangdong, China
| | - Mingqiang Ai
- College of Life Sciences, Jiangxi Science & Technology Normal University, Jiangxi Key Laboratory of Bioprocess Engineering and Co-Innovation Center for In-Vitro Diagnostic Reagents and Devices of Jiangxi Province, Nanchang, Jiangxi, China
| | - Bin He
- College of Life Sciences, Jiangxi Science & Technology Normal University, Jiangxi Key Laboratory of Bioprocess Engineering and Co-Innovation Center for In-Vitro Diagnostic Reagents and Devices of Jiangxi Province, Nanchang, Jiangxi, China
| |
Collapse
|
23
|
Tang Z, Song N, Peng W, Yang Y, Qiu T, Huang C, Dai L, Wang B. Genome Identification and Expression Analysis of GRAS Family Related to Development, Hormone and Pathogen Stress in Brachypodium distachyon. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.675177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
GRAS transcription factors are widely present in the plant kingdom and play important roles in regulating multiple plant physiological processes. Brachypodium distachyon is a model for grasses for researching plant-pathogen interactions. However, little is known about the BdGRAS family genes involved in plant response to biotic stress. In this study, we identified 63 genes of the GRAS family in B. distachyon. The phylogenetic analysis showed that BdGRAS genes were divided into ten subfamilies and unevenly distributed on five chromosomes. qRT-PCR results showed that the BdGRAS family genes were involved in the growth and development of B. distachyon. Moreover, the expression of the HAM subfamily genes of BdGRAS changed during the interaction between B. distachyon and Magnaporthe oryzae. Interestingly, BdGRAS31 in the HAM subfamily was regulated by miR171 after inoculation with M. oryzae. These results provide insight into the potential functions of the BdGRAS family in disease resistance.
Collapse
|
24
|
Geng Y, Guo L, Han H, Liu X, Banks JA, Wisecaver JH, Zhou Y. Conservation and diversification of HAIRY MERISTEM gene family in land plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:366-378. [PMID: 33484592 DOI: 10.1111/tpj.15169] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/07/2021] [Accepted: 01/18/2021] [Indexed: 05/27/2023]
Abstract
The shoot apical meristems (SAMs) of land plants are crucial for plant growth and organ formation. In several angiosperms, the HAIRY MERISTEM (HAM) genes function as key regulators that control meristem development and stem cell homeostasis. To date, the origin and evolutionary history of the HAM family in land plants remains unclear. Potentially shared and divergent functions of HAM family members from angiosperms and non-angiosperms are also not known. In constructing a comprehensive phylogeny of the HAM family, we show that HAM proteins are widely present in land plants and that HAM proteins originated prior to the divergence of bryophytes. The HAM family was duplicated in a common ancestor of angiosperms, leading to two distinct groups: type I and type II. Type-II HAM members are widely present in angiosperms, whereas type-I HAM members were independently lost in different orders of monocots. Furthermore, HAM members from angiosperms and non-angiosperms (including bryophytes, lycophytes, ferns and gymnosperms) are able to replace the role of the type-II HAM genes in Arabidopsis, maintaining established SAMs and promoting the initiation of new stem cell niches. Our results uncover the conserved functions of HAM family members and reveal the conserved regulatory mechanisms underlying HAM expression patterning in meristems, providing insight into the evolution of key stem cell regulators in land plants.
Collapse
Affiliation(s)
- Yuan Geng
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, 47907, USA
| | - Lei Guo
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, 47907, USA
| | - Han Han
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, 47907, USA
| | - Xing Liu
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, 47907, USA
- Department of Biochemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Jo Ann Banks
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, 47907, USA
| | - Jennifer H Wisecaver
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, 47907, USA
- Department of Biochemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Yun Zhou
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
25
|
Liu M, Sun W, Li C, Yu G, Li J, Wang Y, Wang X. A multilayered cross-species analysis of GRAS transcription factors uncovered their functional networks in plant adaptation to the environment. J Adv Res 2021; 29:191-205. [PMID: 33842016 PMCID: PMC8020295 DOI: 10.1016/j.jare.2020.10.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/07/2020] [Accepted: 10/24/2020] [Indexed: 11/16/2022] Open
Abstract
Introduction Environmental stress is both a major force of natural selection and a prime factor affecting crop qualities and yields. The impact of the GRAS [gibberellic acid-insensitive (GAI), repressor of GA1-3 mutant (RGA), and scarecrow (SCR)] family on plant development and the potential to resist environmental stress needs much emphasis. Objectives This study aims to investigate the evolution, expansion, and adaptive mechanisms of GRASs of important representative plants during polyploidization. Methods We explored the evolutionary characteristics of GRASs in 15 representative plant species by systematic biological analysis of the genome, transcriptome, metabolite, protein complex map and phenotype. Results The GRAS family was systematically identified from 15 representative plant species of scientific and agricultural importance. The detection of gene duplication types of GRASs in all species showed that the widespread expansion of GRASs in these species was mainly contributed by polyploidization events. Evolutionary analysis reveals that most species experience independent genome-wide duplication (WGD) events and that interspecies GRAS functions may be broadly conserved. Polyploidy-related Chenopodium quinoa GRASs (CqGRASs) and Arabidopsis thaliana GRASs (AtGRASs) formed robust networks with flavonoid pathways by crosstalk with auxin and photosynthetic pathways. Furthermore, Arabidopsis thaliana population transcriptomes and the 1000 Plants (OneKP) project confirmed that GRASs are components of flavonoid biosynthesis, which enables plants to adapt to the environment by promoting flavonoid accumulation. More importantly, the GRASs of important species that may potentially improve important agronomic traits were mapped through TAIR and RARGE-II publicly available phenotypic data. Determining protein interactions and target genes contributes to determining GRAS functions. Conclusion The results of this study suggest that polyploidy-related GRASs in multiple species may be a target for improving plant growth, development, and environmental adaptation.
Collapse
Affiliation(s)
- Moyang Liu
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- College of Life Science, Sichuan Agricultural University, Ya’an 625014, China
| | - Wenjun Sun
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- College of Life Science, Sichuan Agricultural University, Ya’an 625014, China
| | - Chaorui Li
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Guolong Yu
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jiahao Li
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yudong Wang
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xu Wang
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
26
|
Zou Z, Liu F, Huang S, Fernando WGD. Genome-Wide Identification and Analysis of the Valine-Glutamine Motif-Containing Gene Family in Brassica napus and Functional Characterization of BnMKS1 in Response to Leptosphaeria maculans. PHYTOPATHOLOGY 2021; 111:281-292. [PMID: 32804045 DOI: 10.1094/phyto-04-20-0134-r] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Proteins containing valine-glutamine (VQ) motifs play important roles in plant growth and development as well as in defense responses to both abiotic and biotic stresses. Blackleg disease, which is caused by Leptosphaeria maculans, is the most important disease in canola (Brassica napus) worldwide; however, the identification of Brassica napus VQs and their functions in response to blackleg disease have not yet been reported. In this study, we conducted a genome-wide identification and characterization of the VQ gene family in Brassica napus, including chromosome location, phylogenetic relations, gene structure, motif domain, synteny analysis, and cis-elements categorization of their promoter regions. To understand Brassica napus VQ gene function in response to blackleg disease, we overexpressed BnVQ7 (BnaA01g36880D, also known as the mitogen-activated protein kinase 4 substrate 1 [MKS1] gene) in a blackleg-susceptible canola variety, Westar. Overexpression of BnMKS1 in canola did not improve its resistance to blackleg disease at the seedling stage; however, transgenic canola plants overexpressing BnMKS1 displayed an enhanced resistance to L. maculans infection at the adult plant stage. Expression levels of downstream and defense marker genes in cotyledons increased significantly at the necrotrophic stage of L. maculans infection in the overexpression line of BnMKS1, suggesting that the salicylic acid- and jasmonic acid-mediated signaling pathways were both involved in the defense responses. Together, these results suggest that BnMKS1 might play an important role in defense against L. maculans.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Zhongwei Zou
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Fei Liu
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Shuanglong Huang
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - W G Dilantha Fernando
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| |
Collapse
|
27
|
Genome-Wide Characterization of Cucumber (Cucumis sativus L.) GRAS Genes and Their Response to Various Abiotic Stresses. HORTICULTURAE 2020. [DOI: 10.3390/horticulturae6040110] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The GRAS (gibberellic acid insensitive, repressor of GAI, and scarecrow) proteins are a family of plant-specific transcription factors that regulate plant growth, development, and stress response. Currently, the role of GRAS transcription factors in various abiotic stress responses has not been systematically studied in cucumber (Cucumis sativus L.), a popular vegetable crop. Here, we provide a comprehensive bioinformatics analysis of the 35 GRAS genes identified in the cucumber genome. In this study, cucumber genotypes, i.e., “CG104”, which is stress-tolerant, and genotype “CG37”, which is stress-sensitive, were examined to provide insight on potential differences in the GRAS-regulated abiotic stress pathways. Transcriptional analysis by RNA-seq or qRT-PCR of these two genotypes revealed common and divergent functions of CsGRAS genes regulated by low and high temperatures, salinity, and by exposure to the phytohormones gibberellin (GA) and abscisic acid (ABA). Notably, CsGRAS2 (DELLA) and CsGRAS26 (LISCL) were regulated by all abiotic stresses and hormone treatments, suggesting that they may function in the biological cross-talk between multiple signaling pathways. This study provides candidate genes for improving cucumber tolerance to various environmental stresses.
Collapse
|
28
|
Qiao C, Yang J, Wan Y, Xiang S, Guan M, Du H, Tang Z, Lu K, Li J, Qu C. A Genome-Wide Survey of MATE Transporters in Brassicaceae and Unveiling Their Expression Profiles under Abiotic Stress in Rapeseed. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1072. [PMID: 32825473 PMCID: PMC7569899 DOI: 10.3390/plants9091072] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/14/2020] [Accepted: 08/17/2020] [Indexed: 01/22/2023]
Abstract
The multidrug and toxic compound extrusion (MATE) protein family is important in the export of toxins and other substrates, but detailed information on this family in the Brassicaceae has not yet been reported compared to Arabidopsis thaliana. In this study, we identified 57, 124, 81, 85, 130, and 79 MATE genes in A. thaliana, Brassica napus, Brassica oleracea, Brassica rapa, Brassica juncea, and Brassica nigra, respectively, which were unevenly distributed on chromosomes owing to both tandem and segmental duplication events. Phylogenetic analysis showed that these genes could be classified into four subgroups, shared high similarity and conservation within each group, and have evolved mainly through purifying selection. Furthermore, numerous B. napusMATE genes showed differential expression between tissues and developmental stages and between plants treated with heavy metals or hormones and untreated control plants. This differential expression was especially pronounced for the Group 2 and 3 BnaMATE genes, indicating that they may play important roles in stress tolerance and hormone induction. Our results provide a valuable foundation for the functional dissection of the different BnaMATE homologs in B. napus and its parental lines, as well as for the breeding of more stress-tolerant B. napus genotypes.
Collapse
Affiliation(s)
- Cailin Qiao
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China; (C.Q.); (J.Y.); (Y.W.); (S.X.); (M.G.); (H.D.); (Z.T.); (K.L.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Jing Yang
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China; (C.Q.); (J.Y.); (Y.W.); (S.X.); (M.G.); (H.D.); (Z.T.); (K.L.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Yuanyuan Wan
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China; (C.Q.); (J.Y.); (Y.W.); (S.X.); (M.G.); (H.D.); (Z.T.); (K.L.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Sirou Xiang
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China; (C.Q.); (J.Y.); (Y.W.); (S.X.); (M.G.); (H.D.); (Z.T.); (K.L.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Mingwei Guan
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China; (C.Q.); (J.Y.); (Y.W.); (S.X.); (M.G.); (H.D.); (Z.T.); (K.L.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Hai Du
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China; (C.Q.); (J.Y.); (Y.W.); (S.X.); (M.G.); (H.D.); (Z.T.); (K.L.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Zhanglin Tang
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China; (C.Q.); (J.Y.); (Y.W.); (S.X.); (M.G.); (H.D.); (Z.T.); (K.L.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Kun Lu
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China; (C.Q.); (J.Y.); (Y.W.); (S.X.); (M.G.); (H.D.); (Z.T.); (K.L.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Jiana Li
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China; (C.Q.); (J.Y.); (Y.W.); (S.X.); (M.G.); (H.D.); (Z.T.); (K.L.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Cunmin Qu
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China; (C.Q.); (J.Y.); (Y.W.); (S.X.); (M.G.); (H.D.); (Z.T.); (K.L.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
29
|
Kuang C, Li J, Liu H, Liu J, Sun X, Zhu X, Hua W. Genome-Wide Identification and Evolutionary Analysis of the Fruit-Weight 2.2-Like Gene Family in Polyploid Oilseed Rape (Brassica napus L.). DNA Cell Biol 2020; 39:766-782. [DOI: 10.1089/dna.2019.5036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- Chen Kuang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jun Li
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Hongfang Liu
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Jun Liu
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Xingchao Sun
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Xiaoyi Zhu
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Wei Hua
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, China
| |
Collapse
|
30
|
Ke YZ, Wu YW, Zhou HJ, Chen P, Wang MM, Liu MM, Li PF, Yang J, Li JN, Du H. Genome-wide survey of the bHLH super gene family in Brassica napus. BMC PLANT BIOLOGY 2020; 20:115. [PMID: 32171243 PMCID: PMC7071649 DOI: 10.1186/s12870-020-2315-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 02/27/2020] [Indexed: 05/19/2023]
Abstract
BACKGROUND The basic helix-loop-helix (bHLH) gene family is one of the largest transcription factor families in plants and is functionally characterized in diverse species. However, less is known about its functions in the economically important allopolyploid oil crop, Brassica napus. RESULTS We identified 602 potential bHLHs in the B. napus genome (BnabHLHs) and categorized them into 35 subfamilies, including seven newly separated subfamilies, based on phylogeny, protein structure, and exon-intron organization analysis. The intron insertion patterns of this gene family were analyzed and a total of eight types were identified in the bHLH regions of BnabHLHs. Chromosome distribution and synteny analyses revealed that hybridization between Brassica rapa and Brassica oleracea was the main expansion mechanism for BnabHLHs. Expression analyses showed that BnabHLHs were widely in different plant tissues and formed seven main patterns, suggesting they may participate in various aspects of B. napus development. Furthermore, when roots were treated with five different hormones (IAA, auxin; GA3, gibberellin; 6-BA, cytokinin; ABA, abscisic acid and ACC, ethylene), the expression profiles of BnabHLHs changed significantly, with many showing increased expression. The induction of five candidate BnabHLHs was confirmed following the five hormone treatments via qRT-PCR. Up to 246 BnabHLHs from nine subfamilies were predicted to have potential roles relating to root development through the joint analysis of their expression profiles and homolog function. CONCLUSION The 602 BnabHLHs identified from B. napus were classified into 35 subfamilies, and those members from the same subfamily generally had similar sequence motifs. Overall, we found that BnabHLHs may be widely involved in root development in B. napus. Moreover, this study provides important insights into the potential functions of the BnabHLHs super gene family and thus will be useful in future gene function research.
Collapse
Affiliation(s)
- Yun-Zhuo Ke
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715 China
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400715 China
| | - Yun-Wen Wu
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715 China
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400715 China
| | - Hong-Jun Zhou
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715 China
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400715 China
| | - Ping Chen
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715 China
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400715 China
| | - Mang-Mang Wang
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715 China
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400715 China
| | - Ming-Ming Liu
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715 China
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400715 China
| | - Peng-Feng Li
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715 China
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400715 China
| | - Jin Yang
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715 China
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400715 China
| | - Jia-Na Li
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715 China
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400715 China
| | - Hai Du
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715 China
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400715 China
| |
Collapse
|
31
|
Comprehensive analyses of the annexin (ANN) gene family in Brassica rapa, Brassica oleracea and Brassica napus reveals their roles in stress response. Sci Rep 2020; 10:4295. [PMID: 32152363 PMCID: PMC7062692 DOI: 10.1038/s41598-020-59953-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 12/13/2019] [Indexed: 12/02/2022] Open
Abstract
Annexins (ANN) are a multigene, evolutionarily conserved family of calcium-dependent and phospholipid-binding proteins that play important roles in plant development and stress resistance. However, a systematic comprehensive analysis of ANN genes of Brassicaceae species (Brassica rapa, Brassica oleracea, and Brassica napus) has not yet been reported. In this study, we identified 13, 12, and 26 ANN genes in B. rapa, B. oleracea, and B. napus, respectively. About half of these genes were clustered on various chromosomes. Molecular evolutionary analysis showed that the ANN genes were highly conserved in Brassicaceae species. Transcriptome analysis showed that different group ANN members exhibited varied expression patterns in different tissues and under different (abiotic stress and hormones) treatments. Meanwhile, same group members from Arabidopsis thaliana, B. rapa, B. oleracea, and B. napus demonstrated conserved expression patterns in different tissues. The weighted gene coexpression network analysis (WGCNA) showed that BnaANN genes were induced by methyl jasmonate (MeJA) treatment and played important roles in jasmonate (JA) signaling and multiple stress response in B. napus.
Collapse
|