1
|
Zhu M, An Z, Song B, Baskin C, Li M, Liu Z, Wang Y, Li Y, Shen H, Zhang P. Mechanism of thermodormancy induction in Fraxinus mandshurica seeds is related to changes in the endosperm. PLANTA 2025; 261:130. [PMID: 40335751 DOI: 10.1007/s00425-025-04712-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 04/29/2025] [Indexed: 05/09/2025]
Abstract
Does thermodormancy impact the embryo and/or the endosperm? The seed-embryo replacement method was used to determine the mechanism of thermodormancy induction in the endospermic seeds of Fraxinus mandshurica. Germination of "new seeds" after seed embryo replacement (thermodormant embryo + non-dormant endosperm, non-dormant embryo + thermodormant endosperm, thermodormant embryo + thermodormant endosperm, non-dormant embryo + non-dormant endosperm) was compared. Germination of isolated embryos in exogenous hormones and endosperm extracts, endosperm cell wall-degrading enzyme activity, and endosperm hormone content were measured. Endosperm transcriptome of non-dormant and thermodormant seeds was determined using RNA-Seq sequencing technology. The embryos of non-dormant seeds and thermodormant seeds were not dormant, and germination of embryos isolated from them was the same. The twofold dilution of endosperm extract significantly inhibited embryos growth of non-dormant and thermodormant seeds, while the germination percentage (GP) was lower than 15%. Regardless of whether the embryo of the "new seed" came from a thermodormant or non-dormant seed, the GP of the "new seed" was higher if the endosperm came from a non-dormant seed (80 and 84%, respectively). However, if the endosperm came from a thermodormant seed, GP of the new seed with an embryo from a thermodormant or non-dormant seed decreased significantly (64 and 66%, respectively). The activity of cell wall-degrading enzymes in radicle-end endosperm of thermodormant seeds was lower than that in non-radicle-end endosperm, and the activity of enzyme in radicle-end endosperm of seeds decreased significantly after cultivating for more than 5 days at high temperature (HT). ABA content in endosperm increased significantly, GA3 content in endosperm decreased significantly, and GA3/ABA ratio of endosperm was significantly decreased by nearly 1/3. HT triggers stress response by activating ABA biosynthesis and the corresponding signaling pathways. Therefore, the embryo of thermodormant F. mandshurica seeds was non-dormant, and thermodormancy induction was related to changes in the endosperm. During incubation at high temperature, the softening ability of endosperm (especially in radicle-end endosperm) was significantly weakened, while ABA accumulation and GA3 decomposition in endosperm significantly enhanced the inhibition of germination by endosperm. High temperature strongly activated ABA-related signaling pathways and stress response mechanisms in endosperm. MAIN CONCLUSIONS: Induction of F. mandshurica seeds into thermodormancy is related to changes in the endosperm. The embryo of the thermodormant seeds F. mandshurica is non-dormant.
Collapse
Affiliation(s)
- Meiru Zhu
- College of Forestry, Northeast Forestry University, Harbin, 150040, China
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| | - Zeyu An
- College of Forestry, Northeast Forestry University, Harbin, 150040, China
| | - Boyang Song
- College of Forestry, Northeast Forestry University, Harbin, 150040, China
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| | - Carol Baskin
- Department of Biology, University of Kentucky, Lexington, KY, 40506, USA
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, 40546, USA
| | - Mingyue Li
- College of Forestry, Northeast Forestry University, Harbin, 150040, China
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| | - Zhuolin Liu
- College of Forestry, Northeast Forestry University, Harbin, 150040, China
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| | - Yu Wang
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Yuhua Li
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Hailong Shen
- College of Forestry, Northeast Forestry University, Harbin, 150040, China.
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin, 150040, China.
| | - Peng Zhang
- College of Forestry, Northeast Forestry University, Harbin, 150040, China.
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin, 150040, China.
| |
Collapse
|
2
|
Liu J, Qiu S, Xue T, Yuan Y. Physiology and transcriptome of Eucommia ulmoides seeds at different germination stages. PLANT SIGNALING & BEHAVIOR 2024; 19:2329487. [PMID: 38493506 PMCID: PMC10950268 DOI: 10.1080/15592324.2024.2329487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/03/2024] [Indexed: 03/19/2024]
Abstract
E. ulmoides (Eucommia ulmoides) has significant industrial and medicinal value and high market demand. E. ulmoides grows seedlings through sowing. According to previous studies, plant hormones have been shown to regulate seed germination. To understand the relationship between hormones and E. ulmoides seed germination, we focused on examining the changes in various indicators during the germination stage of E. ulmoides seeds. We measured the levels of physiological and hormone indicators in E. ulmoides seeds at different germination stages and found that the levels of abscisic acid (ABA), gibberellin (GA), and indole acetic acid (IAA) significantly varied as the seeds germinated. Furthermore, we confirmed that ABA, GA, and IAA are essential hormones in the germination of E. ulmoides seeds using Gene Ontology and Kyoto Encyclopedia of Genes and Genomics enrichment analyses of the transcriptome. The discovery of hormone-related synthesis pathways in the control group of Eucommia seeds at different germination stages further confirmed this conclusion. This study provides a basis for further research into the regulatory mechanisms of E. ulmoides seeds at different germination stages and the relationship between other seed germination and plant hormones.
Collapse
Affiliation(s)
- Jia Liu
- Department of Civil and Architecture and Engineering, Chuzhou University, Chuzhou, Anhui, China
- Anhui Low Carbon Highway Engineering Research Center, Chuzhou University, Anhui, China
| | - Sumei Qiu
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, China
| | - Tingting Xue
- Department of Civil and Architecture and Engineering, Chuzhou University, Chuzhou, Anhui, China
| | - Yingdan Yuan
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, China
| |
Collapse
|
3
|
Guo H, Li S, Liu Y, Yang Q. Catechin promotes the germination of Pistacia chinensis seeds via GA biosynthesis. ANNALS OF BOTANY 2024; 134:233-246. [PMID: 38682952 PMCID: PMC11232523 DOI: 10.1093/aob/mcae061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/19/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND AND AIMS Chinese pistachio (Pistacia chinensis), an important horticultural plant species, holds great ornamental value with beautiful leaves and fruits. Seedling propagation of this tree species is restricted by its erratic seed germination; however, the germination mechanism is ambiguous. The aim of this study was to determine the germination mechanism from a novel perspective based on the multi-omics data. METHODS The multi-omics technique combined with hormone content measurement was applied to seed germination of Chinese pistachio. KEY RESULTS Due to its great accumulation during seed germination, catechin stood out from the identified metabolites in a broadly targeted metabolomic analysis. Exogenous catechin at 10 mg L-1 significantly improved the germination of Chinese pistachio seeds. An interesting result of hormone analysis was that the improving effect of catechin could be attributed to an increase in gibberellic acid 3 (GA3) content rather than a decrease in abscisic acid (ABA) content before germination. Treatments with paclobutrazol (PAC, a GA biosynthesis inhibitor) and PAC + catechin also showed that the promoting effect of catechin on seed germination depends on GA biosynthesis. Transcriptome analysis and qRT‒PCR further revealed that catechin induced the expression of PcGA20ox5 to activate GA biosynthesis. Several transcription factors were induced by catechin and GA treatments, such as TCP, bZIP and C3H, which may play an important regulatory role in GA biosynthesis in a catechin-mediated way. CONCLUSIONS Catechin promotes seed germination via GA biosynthesis in Chinese pistachios. This study proposes a novel mechanism by which catechin promotes seed germination via the GA pathway, which provides new insight into a comprehensive understanding of seed dormancy and germination.
Collapse
Affiliation(s)
- Huanhuan Guo
- Key Laboratory for Silviculture and Conservation, Ministry of Education, Beijing Forestry University, Beijing 100083, China
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Haidian District, Beijing 100083, China
| | - Shiqin Li
- Key Laboratory for Silviculture and Conservation, Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - Yong Liu
- Key Laboratory for Silviculture and Conservation, Ministry of Education, Beijing Forestry University, Beijing 100083, China
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Haidian District, Beijing 100083, China
| | - Qinsong Yang
- Key Laboratory for Silviculture and Conservation, Ministry of Education, Beijing Forestry University, Beijing 100083, China
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Haidian District, Beijing 100083, China
| |
Collapse
|
4
|
Niu J, Xu M, Zong N, Sun J, Zhao L, Hui W. Ascorbic acid releases dormancy and promotes germination by an integrated regulation of abscisic acid and gibberellin in Pyrus betulifolia seeds. PHYSIOLOGIA PLANTARUM 2024; 176:e14271. [PMID: 38566130 DOI: 10.1111/ppl.14271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 02/28/2024] [Accepted: 03/08/2024] [Indexed: 04/04/2024]
Abstract
Seed dormancy is an important life history state in which intact viable seeds delay or prevent germination under suitable conditions. Ascorbic acid (AsA) acts as a small molecule antioxidant, and breaking seed dormancy and promoting subsequent growth are among its numerous functions. In this study, a germination test using Pyrus betulifolia seeds treated with exogenous AsA or AsA synthesis inhibitor lycorine (Lyc) and water absorption was conducted. The results indicated that AsA released dormancy and increased germination and 20 mmol L-1 AsA promoted cell division, whereas Lyc reduced germination. Seed germination showed typical three phases of water absorption; and seeds at five key time points were sampled for transcriptome analysis. It revealed that multiple pathways were involved in breaking dormancy and promoting germination through transcriptome data, and 12 differentially expressed genes (DEGs) related to the metabolism and signal transduction of abscisic acid (ABA) and gibberellins (GA) were verified by subsequent RT-qPCR. For metabolites, exogenous AsA increased endogenous AsA and GA3 but reduced ABA and the ABA/GA3 ratio. In addition, three genes regulating ABA synthesis were downregulated by AsA, while five genes mediating ABA degradation were upregulated. Taken together, AsA regulates the pathways associated with ABA and GA synthesis, catalysis, and signal transduction, with subsequent reduction in ABA and increase in GA and further the balance of ABA/GA, ultimately releasing dormancy and promoting germination.
Collapse
Affiliation(s)
- Junpeng Niu
- College of Life Sciences, Shaanxi Normal University, China
- College of Grassland Agriculture, Northwest A&F University, Yangling, China
| | - Mingzhen Xu
- College of Life Sciences, Shaanxi Normal University, China
| | - Na Zong
- College of Life Sciences, Shaanxi Normal University, China
| | - Jia Sun
- College of Life Sciences, Shaanxi Normal University, China
| | - Lei Zhao
- College of Life Sciences, Shaanxi Normal University, China
| | - Wei Hui
- College of Life Sciences, Shaanxi Normal University, China
| |
Collapse
|
5
|
Zeng F, Zheng C, Ge W, Gao Y, Pan X, Ye X, Wu X, Sun Y. Regulatory function of the endogenous hormone in the germination process of quinoa seeds. FRONTIERS IN PLANT SCIENCE 2024; 14:1322986. [PMID: 38259945 PMCID: PMC10801742 DOI: 10.3389/fpls.2023.1322986] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/08/2023] [Indexed: 01/24/2024]
Abstract
The economic and health significance of quinoa is steadily growing on a global scale. Nevertheless, the primary obstacle to achieving high yields in quinoa cultivation is pre-harvest sprouting (PHS), which is intricately linked to seed dormancy. However, there exists a dearth of research concerning the regulatory mechanisms governing PHS. The regulation of seed germination by various plant hormones has been extensively studied. Consequently, understanding the mechanisms underlying the role of endogenous hormones in the germination process of quinoa seeds and developing strategies to mitigate PHS in quinoa cultivation are of significant research importance. This study employed the HPLC-ESI-MS/MS internal standard and ELISA method to quantify 8 endogenous hormones. The investigation of gene expression changes before and after germination was conducted using RNA-seq analysis, leading to the discovery of 280 differentially expressed genes associated with the regulatory pathway of endogenous hormones. Additionally, a correlation analysis of 99 genes with significant differences identified 14 potential genes that may act as crucial "transportation hubs" in hormonal interactions. Through the performance of an analysis on the modifications in hormone composition and the expression of associated regulatory genes, we posit a prediction that implies the presence of a negative feedback regulatory mechanism of endogenous hormones during the germination of quinoa seeds. This mechanism is potentially influenced by the unique structure of quinoa seeds. To shed light on the involvement of endogenous hormones in the process of quinoa seed germination, we have established a regulatory network. This study aims to offer innovative perspectives on the breeding of quinoa varieties that exhibit resistance to PHS, as well as strategies for preventing PHS.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xiaoyong Wu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering and Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Yanxia Sun
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering and Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, China
| |
Collapse
|
6
|
Zhang F, Chen T, Liu N, Hou X, Wang L, Cai Q, Li R, Qian X, Xu H, Zhu Z, Zheng W, Yu Y, Zhou K. Genome-wide characterization of SDR gene family and its potential role in seed dormancy of Brassica napus L. BMC PLANT BIOLOGY 2024; 24:21. [PMID: 38166550 PMCID: PMC10759766 DOI: 10.1186/s12870-023-04700-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 12/19/2023] [Indexed: 01/04/2024]
Abstract
Rapeseed (Brassica napus L.) with short or no dormancy period are easy to germinate before harvest (pre-harvest sprouting, PHS). PHS has seriously decreased seed weight and oil content in B. napus. Short-chain dehydrogenase/ reductase (SDR) genes have been found to related to seed dormancy by promoting ABA biosynthesis in rice and Arabidopsis. In order to clarify whether SDR genes are the key factor of seed dormancy in B. napus, homology sequence blast, protein physicochemical properties, conserved motif, gene structure, cis-acting element, gene expression and variation analysis were conducted in present study. Results shown that 142 BnaSDR genes, unevenly distributed on 19 chromosomes, have been identified in B. napus genome. Among them, four BnaSDR gene clusters present in chromosome A04、A05、C03、C04 were also identified. These 142 BnaSDR genes were divided into four subfamilies on phylogenetic tree. Members of the same subgroup have similar protein characters, conserved motifs, gene structure, cis-acting elements and tissue expression profiles. Specially, the expression levels of genes in subgroup A, B and C were gradually decreased, but increased in subgroup D with the development of seeds. Among seven higher expressed genes in group D, six BnaSDR genes were significantly higher expressed in weak dormancy line than that in nondormancy line. And the significant effects of BnaC01T0313900ZS and BnaC03T0300500ZS variation on seed dormancy were also demonstrated in present study. These findings provide a key information for investigating the function of BnaSDRs on seed dormancy in B. napus.
Collapse
Affiliation(s)
- Fugui Zhang
- College of Agronomy, Anhui Agricultural University, 130, Changjiang West Road, Hefei, Anhui, 230036, China
| | - Tianhua Chen
- College of Agronomy, Anhui Agricultural University, 130, Changjiang West Road, Hefei, Anhui, 230036, China
| | - Nian Liu
- College of Agronomy, Anhui Agricultural University, 130, Changjiang West Road, Hefei, Anhui, 230036, China
| | - Xinzhe Hou
- College of Agronomy, Anhui Agricultural University, 130, Changjiang West Road, Hefei, Anhui, 230036, China
| | - Ling Wang
- College of Agronomy, Anhui Agricultural University, 130, Changjiang West Road, Hefei, Anhui, 230036, China
| | - Qingao Cai
- College of Agronomy, Anhui Agricultural University, 130, Changjiang West Road, Hefei, Anhui, 230036, China
| | - Rui Li
- College of Agronomy, Anhui Agricultural University, 130, Changjiang West Road, Hefei, Anhui, 230036, China
| | - Xingzhi Qian
- College of Agronomy, Anhui Agricultural University, 130, Changjiang West Road, Hefei, Anhui, 230036, China
| | - Hong Xu
- College of Agronomy, Anhui Agricultural University, 130, Changjiang West Road, Hefei, Anhui, 230036, China
| | - Zonghe Zhu
- College of Agronomy, Anhui Agricultural University, 130, Changjiang West Road, Hefei, Anhui, 230036, China
| | - Wenyin Zheng
- College of Agronomy, Anhui Agricultural University, 130, Changjiang West Road, Hefei, Anhui, 230036, China
| | - Yan Yu
- College of Agronomy, Anhui Agricultural University, 130, Changjiang West Road, Hefei, Anhui, 230036, China
| | - Kejin Zhou
- College of Agronomy, Anhui Agricultural University, 130, Changjiang West Road, Hefei, Anhui, 230036, China.
| |
Collapse
|
7
|
Veerabagu M, van der Schoot C, Turečková V, Tarkowská D, Strnad M, Rinne PLH. Light on perenniality: Para-dormancy is based on ABA-GA antagonism and endo-dormancy on the shutdown of GA biosynthesis. PLANT, CELL & ENVIRONMENT 2023; 46:1785-1804. [PMID: 36760106 DOI: 10.1111/pce.14562] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/23/2023] [Accepted: 02/07/2023] [Indexed: 05/04/2023]
Abstract
Perennial para- and endo-dormancy are seasonally separate phenomena. Whereas para-dormancy is the suppression of axillary buds (AXBs) by a growing shoot, endo-dormancy is the short-day elicited arrest of terminal and AXBs. In hybrid aspen (Populus tremula x P. tremuloides) compromising the apex releases para-dormancy, whereas endo-dormancy requires chilling. ABA and GA are implicated in both phenomena. To untangle their roles, we blocked ABA biosynthesis with fluridone (FD), which significantly reduced ABA levels, downregulated GA-deactivation genes, upregulated the major GA3ox-biosynthetic genes, and initiated branching. Comprehensive GA-metabolite analyses suggested that FD treatment shifted GA production to the non-13-hydroxylation pathway, enhancing GA4 function. Applied ABA counteracted FD effects on GA metabolism and downregulated several GA3/4 -inducible α- and γ-clade 1,3-β-glucanases that hydrolyze callose at plasmodesmata (PD), thereby enhancing PD-callose accumulation. Remarkably, ABA-deficient plants repressed GA4 biosynthesis and established endo-dormancy like controls but showed increased stress sensitivity. Repression of GA4 biosynthesis involved short-day induced DNA methylation events within the GA3ox2 promoter. In conclusion, the results cast new light on the roles of ABA and GA in dormancy cycling. In para-dormancy, PD-callose turnover is antagonized by ABA, whereas in short-day conditions, lack of GA4 biosynthesis promotes callose deposition that is structurally persistent throughout endo-dormancy.
Collapse
Affiliation(s)
| | | | - Veronika Turečková
- Laboratory of Growth Regulators, Faculty of Sciences, Palacký University & Institute of Experimental Botany of the Czech Academy of Sciences, Olomouc, Czech Republic
| | - Danuše Tarkowská
- Laboratory of Growth Regulators, Faculty of Sciences, Palacký University & Institute of Experimental Botany of the Czech Academy of Sciences, Olomouc, Czech Republic
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Faculty of Sciences, Palacký University & Institute of Experimental Botany of the Czech Academy of Sciences, Olomouc, Czech Republic
| | - Päivi L H Rinne
- Department of Plant Sciences, Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
8
|
Zheng G, Li W, Zhang S, Mi Q, Luo W, Zhao Y, Qin X, Li W, Pu S, Xu F. Multiomics strategies for decoding seed dormancy breakdown in Paris polyphylla. BMC PLANT BIOLOGY 2023; 23:247. [PMID: 37170087 PMCID: PMC10173654 DOI: 10.1186/s12870-023-04262-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 05/03/2023] [Indexed: 05/13/2023]
Abstract
BACKGROUND The disruption of seed dormancy is a complicated process and is controlled by various factors. Among these factors, membrane lipids and plant hormones are two of the most important ones. Paris polyphylla is an important Chinese herbaceous species, and the dormancy trait of its seed limits the cultivation of this herb. RESULTS In this study, we investigate the global metabolic and transcriptomic profiles of Paris polyphylla during seed dormancy breaking. Widely targeted metabolomics revealed that lysophospholipids (lysoPLs) increased during P. polyphylla seed dormancy breaking. The expression of phospholipase A2 (PLA2), genes correlated to the production of lysoPLs, up-regulated significantly during this process. Abscisic acid (ABA) decreased dramatically during seed dormancy breaking of P. polyphylla. Changes of different GAs varied during P. polyphylla seeds dormancy breaking, 13-OH GAs, such as GA53 were not detected, and GA3 decreased significantly, whereas 13-H GAs, such as GA15, GA24 and GA4 increased. The expression of CYP707As was not synchronous with the change of ABA content, and the expression of most UGTs, GA20ox and GA3ox up-regulated during seed dormancy breaking. CONCLUSIONS These results suggest that PLA2 mediated production of lysoPLs may correlate to the seed dormancy breaking of P. polyphylla. The conversion of ABA to ABA-GE catalysed by UGTs may be the main cause of ABA degradation. Through inhibition the expression of genes related to the synthesis of 13-OH GAs and up-regulation genes related to the synthesis of 13-H GAs, P. polyphylla synthesized more bioactive 13-H GA (GA4) to break its seed dormancy.
Collapse
Affiliation(s)
- Guowei Zheng
- College of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Wenchun Li
- College of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Shunzhen Zhang
- College of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Qi Mi
- College of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Wenxiu Luo
- College of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Yanli Zhao
- College of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Xiangshi Qin
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Weijiao Li
- College of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, 650500, China.
| | - Shibiao Pu
- College of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, 650500, China.
| | - Furong Xu
- College of Ethnic Medicines, Yunnan University of Chinese Medicine, Kunming, 650500, China.
| |
Collapse
|
9
|
Fan X, Zou X, Fu L, Yang Y, Li M, Wang C, Sun H. The RING-H2 gene LdXERICO plays a negative role in dormancy release regulated by low temperature in Lilium davidii var. unicolor. HORTICULTURE RESEARCH 2023; 10:uhad030. [PMID: 37799625 PMCID: PMC10548414 DOI: 10.1093/hr/uhad030] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 02/14/2023] [Indexed: 10/07/2023]
Abstract
Dormancy regulation is the basis of the sustainable development of the lily industry. Therefore, basic research on lily dormancy is crucial for innovation in lily cultivation and breeding. Previous studies revealed that dormancy release largely depends on abscisic acid (ABA) degradation. However, the key genes and potential regulatory network remain unclear. We used exogenous ABA and ABA inhibitors to elucidate the effect of ABA on lily dormancy. Based on the results of weighted gene coexpression network analysis (WGCNA), the hub gene LdXERICO was identified in modules highly related to endogenous ABA, and a large number of coexpressed genes were identified. LdXERICO was induced by exogenous ABA and expressed at higher levels in tissues with vigorous physiological activity. Silencing LdXERICO increased the low-temperature sensitivity of bulblets and accelerated bulblet sprouting. LdXERICO rescued the ABA insensitivity of xerico mutants during seed germination in Arabidopsis, suggesting that it promotes seed dormancy and supporting overexpression studies on lily bulblets. The significant increase in ABA levels in transgenic Arabidopsis expressing LdXERICO indicated that LdXERICO played a role by promoting ABA synthesis. We generated three transgenic lines by overexpressing LdICE1 in Arabidopsis thaliana and showed that, in contrast to LdXERICO, LdICE1 positively regulated dormancy release. Finally, qRT-PCR confirmed that LdXERICO was epistatic to LdICE1 for dormancy release. We propose that LdXERICO, an essential gene in dormancy regulation through the ABA-related pathway, has a complex regulatory network involving temperature signals. This study provides a theoretical basis for further exploring the mechanism of bulb dormancy release.
Collapse
Affiliation(s)
- Xinyue Fan
- Key Laboratory of Protected Horticulture of Education Ministry, College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Xiaoman Zou
- Key Laboratory of Protected Horticulture of Education Ministry, College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Linlan Fu
- Key Laboratory of Protected Horticulture of Education Ministry, College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Yue Yang
- Key Laboratory of Protected Horticulture of Education Ministry, College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Min Li
- Key Laboratory of Protected Horticulture of Education Ministry, College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Chunxia Wang
- Key Laboratory of Protected Horticulture of Education Ministry, College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Hongmei Sun
- Key Laboratory of Protected Horticulture of Education Ministry, College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- National and Local Joint Engineering Research Center of Northern Horticultural Facilities Design and Application Technology, Shenyang 110866, China
| |
Collapse
|
10
|
Lee SY, Park K, Jang BK, Ji B, Lee H, Baskin CC, Cho JS. Exogenous gibberellin can effectively and rapidly break intermediate physiological dormancy of Amsonia elliptica seeds. FRONTIERS IN PLANT SCIENCE 2022; 13:1043897. [PMID: 36388572 PMCID: PMC9643720 DOI: 10.3389/fpls.2022.1043897] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Accelerated global warming is leading to the loss of plant species diversity, and ex situ preservation of seeds is becoming an increasingly important aspect of species conservation. However, information on dormancy and germination is lacking in many endangered species. Amsonia elliptica (Apocynaceae) is the only Amsonia species native to Korea, and the South Korean Ministry of Environment has designated it Class II endangered wildlife. Nevertheless, the dormancy class and the dormancy breaking method for seeds of this species for germination are not precisely known. We identified the structure of A. elliptica seeds and the causes of dormancy, which inhibits germination. In addition, we tried to develop an effective germination promotion method by testing the wet stratified condition, which breaks dormancy, and the form of gibberellin that can replace it. Fresh seeds of A. elliptica imbibe water, but the covering layers (endosperm and seed coat) inhibit germination by mechanically restricting the embryo. Initial germination tests confirmed low embryo growth potential and physiological dormancy (PD). Restriction due to the covering layer was eliminated by seed scarification, and abnormal germination was observed. After 12 weeks of cold moist stratification at 4°C, only 12% of seeds germinated. However, 68.8% of seeds subjected to 8 weeks of warm moist stratification followed by 12 weeks of cold stratification germinated, indicating that warm stratification pretreatment before cold stratification is effective in breaking dormancy. A. elliptica seeds exhibited intermediate PD. Furthermore, 61.3% of seeds soaked in 500 mg/L GA4+7 for 14 days and incubated at 25/15°C germinated. Therefore, GA4+7 rapidly broke the dormancy of A. elliptica seeds compared with warm plus cold stratification treatment, thus providing an efficient method for seedling production.
Collapse
Affiliation(s)
- Sang Yeob Lee
- Kiban Operation Department (KOD) production planning, The Kiban Co. Ltd., Anseong, South Korea
- Division of Animal, Horticultural and Food Sciences, Chungbuk National University, Cheongju, South Korea
- Brain Korea 21 Center for Bio-Health Industry, Chungbuk National University, Cheongju, South Korea
| | - Kyungtae Park
- Division of Animal, Horticultural and Food Sciences, Chungbuk National University, Cheongju, South Korea
- Brain Korea 21 Center for Bio-Health Industry, Chungbuk National University, Cheongju, South Korea
| | - Bo-Kook Jang
- Division of Animal, Horticultural and Food Sciences, Chungbuk National University, Cheongju, South Korea
- Brain Korea 21 Center for Bio-Health Industry, Chungbuk National University, Cheongju, South Korea
- Garden and Plant Resources Division, Korea National Arboretum, Pocheon, South Korea
| | - Boran Ji
- Division of Animal, Horticultural and Food Sciences, Chungbuk National University, Cheongju, South Korea
- Brain Korea 21 Center for Bio-Health Industry, Chungbuk National University, Cheongju, South Korea
| | - Hamin Lee
- Division of Animal, Horticultural and Food Sciences, Chungbuk National University, Cheongju, South Korea
- Brain Korea 21 Center for Bio-Health Industry, Chungbuk National University, Cheongju, South Korea
| | - Carol C. Baskin
- Department of Biology, University of Kentucky, Lexington, KY, United States
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, United States
| | - Ju-Sung Cho
- Division of Animal, Horticultural and Food Sciences, Chungbuk National University, Cheongju, South Korea
- Brain Korea 21 Center for Bio-Health Industry, Chungbuk National University, Cheongju, South Korea
| |
Collapse
|
11
|
Liu Z, Tong X, Liu R, Zou L. Metabolome and Transcriptome Profiling Reveal That Four Terpenoid Hormones Dominate the Growth and Development of Sanghuangporus baumii. J Fungi (Basel) 2022; 8:jof8070648. [PMID: 35887404 PMCID: PMC9317858 DOI: 10.3390/jof8070648] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 06/17/2022] [Accepted: 06/17/2022] [Indexed: 01/27/2023] Open
Abstract
Sanghuangporus baumii is a traditional medicinal fungus that produces pharmacological terpenoids, but natural resources are insufficient for applications, and its growth and development mechanisms are poorly understood. Combining metabolomic and transcriptomic analyses, we found four terpenoid hormones and a central gene, isopentenyl diphosphate isomerase (IDI), involved in growth and development. Additionally, an exogenous hormone test was used to further confirm the importance of the four terpenoid hormones. Finally, hormone content determination and qRT−PCR were performed to explore the growth and development mechanism; we found thatcis-zeatin (CZ) plays a major role in the mycelia stage, trans-zeatin (TZ) and gibberellin A4 (GA4) are important in the primordia stage, GA4 is crucial for the fruiting bodies stage, and abscisic acid (ABA) may be a marker of maturity. The IDI gene was also found to affectterpenoid hormone content by regulating the relative gene transcript levels, thereby controlling morphological changes in S. baumii. Our results revealthe growth and development mechanisms of S. baumii and may promote the breeding and utilisation of high-quality varieties.
Collapse
Affiliation(s)
| | | | | | - Li Zou
- Correspondence: ; Tel.: +86-0451-86660457
| |
Collapse
|
12
|
Wang H, Zhang Y, Shi Z, Pang H, Jia L, Feng H. Extracellular ATP is involved in regulating Arabidopsis seed germination. PLANTA 2022; 255:66. [PMID: 35152326 DOI: 10.1007/s00425-022-03839-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
Extracellular ATP level induced a transient increase during germination of Arabidopsis seeds, and extracellular ATP could negatively regulate the seed germination by its receptor, DORN1. Extracellular ATP (exATP) acts as a signal molecule for regulating growth, development, and responses of plants to external environments. In this study, we investigated the possible involvement of exATP in regulating the seed germination of Arabidopsis thaliana. Treatments of Arabidopsis seeds with exogenous ATP delayed seed germination, suggesting that exATP could be a repressor for seed germination. During the germination of Arabidopsis seeds, the exATP level of the seeds presented a transient increase. When exogenous application of the glucose-hexokinase system effectively decreased the exATP level of the Arabidopsis seeds during germination, the percentage of germination was significantly enhanced, while the products of ATP hydrolysis had no effects on the germination. Further studies showed that the seeds of dorn 1-3 mutant plants (mutation in exATP receptor) showed a higher germination percentage, compared to the seeds of wide type (WT) plants. In addition, the dorn 1-3 mutant seeds were less sensitive to the delay-effect of exogenous ATP on seed germination than the WT seeds. The dorn 1-3 mutant seeds presented a higher GA (gibberellin) content, lower ABA (abscisic acid) content, and lower ratio of ABA/GA contents before the imbibition, compared to the WT seeds. The regulation of seed germination by exATP was dependent on the external temperature. These data suggest that exATP is involved in regulating Arabidopsis seed germination.
Collapse
Affiliation(s)
- Hanqi Wang
- College of Life Science, Northwest Normal University, Lanzhou, 730070, Gansu, China
| | - Yuejing Zhang
- College of Life Science, Northwest Normal University, Lanzhou, 730070, Gansu, China
| | - Zhenzhen Shi
- College of Life Science, Northwest Normal University, Lanzhou, 730070, Gansu, China
| | - Hailong Pang
- College of Life Science, Northwest Normal University, Lanzhou, 730070, Gansu, China
| | - Lingyun Jia
- College of Life Science, Northwest Normal University, Lanzhou, 730070, Gansu, China
| | - Hanqing Feng
- College of Life Science, Northwest Normal University, Lanzhou, 730070, Gansu, China.
| |
Collapse
|
13
|
Malek M, Ghaderi-Far F, Torabi B, Sadeghipour HR. Dynamics of seed dormancy and germination at high temperature stress is affected by priming and phytohormones in rapeseed (Brassica napus L.). JOURNAL OF PLANT PHYSIOLOGY 2022; 269:153614. [PMID: 34979489 DOI: 10.1016/j.jplph.2021.153614] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 12/25/2021] [Accepted: 12/25/2021] [Indexed: 06/14/2023]
Abstract
High temperature stress (HTS) imposes secondary dormancy (SD) also known as thermo-dormancy in many seeds. Priming by soil moisture however, may improve germination though under HTS it may compromise seed longevity. Knowledge of how HTS and priming affect dormancy status/viability loss of a particular crop seed species is essential in agriculture. Accordingly, control non-primed and hydro-primed seeds from Dk-xpower and Traper rapeseed cultivars with low and high potential for SD induction, respectively, were compared for germination behavior, response to GA and some phytohormone effectors under HTS. HTS reduced germination in non-primed Dk-xpower and Traper seeds mainly through the induction of thermo-inhibition/death and thermo-dormancy, respectively. Under HTS, GA3 application reduced thermo-dormancy in favor of thermo-inhibition only in Traper but the GA inhibitor paclobutrazol intensified thermo-dormancy in both cultivars. The ABA inhibitor, fluridone also reduced thermo-dormancy in favor of thermo-inhibition only in Traper. Thus, under HTS, GA biosynthesis is determinant in seed thermo-dormancy/thermo-inhibition dynamics. Hydropriming improved germination under HTS through reduced thermo-inhibition/death (Dk-xpower) and thermo-dormancy (Traper). Here, GA3 application increased death and compromised germination mainly in Dk-xpower. Paclubutrazol application however, increased thermo-dormancy by compromising thermo-inhibition/death in Traper. Overall, hydro-priming weakened seed phytohormonal germination responses. Controlled deterioration resulted in decreased longevity of hydro-primed seeds but induced SD in non-primed Traper seeds. Thus, down-regulation of GA biosynthesis may control differential induction of SD in rapeseed seeds under HTS while hydro-priming stimulates seed germination possibly through overcoming limitations in GA biosynthesis. The agricultural importance of these findings at the ecosystem scale is discussed.
Collapse
Affiliation(s)
- Mohsen Malek
- Department of Agronomy, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Farshid Ghaderi-Far
- Department of Agronomy, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
| | - Benjamin Torabi
- Department of Agronomy, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | | |
Collapse
|
14
|
OsABF1 Represses Gibberellin Biosynthesis to Regulate Plant Height and Seed Germination in Rice ( Oryza sativa L.). Int J Mol Sci 2021; 22:ijms222212220. [PMID: 34830102 PMCID: PMC8622533 DOI: 10.3390/ijms222212220] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/04/2021] [Accepted: 08/12/2021] [Indexed: 11/17/2022] Open
Abstract
Gibberellins (GAs) are diterpenoid phytohormones regulating various aspects of plant growth and development, such as internode elongation and seed germination. Although the GA biosynthesis pathways have been identified, the transcriptional regulatory network of GA homeostasis still remains elusive. Here, we report the functional characterization of a GA-inducible OsABF1 in GA biosynthesis underpinning plant height and seed germination. Overexpression of OsABF1 produced a typical GA-deficient phenotype with semi-dwarf and retarded seed germination. Meanwhile, the phenotypes could be rescued by exogenous GA3, suggesting that OsABF1 is a key regulator of GA homeostasis. OsABF1 could directly suppress the transcription of green revolution gene SD1, thus reducing the endogenous GA level in rice. Moreover, OsABF1 interacts with and transcriptionally antagonizes to the polycomb repression complex component OsEMF2b, whose mutant showed as similar but more severe phenotype to OsABF1 overexpression lines. It is suggested that OsABF1 recruits RRC2-mediated H3K27me3 deposition on the SD1 promoter, thus epigenetically silencing SD1 to maintain the GA homeostasis for growth and seed germination. These findings shed new insight into the functions of OsABF1 and regulatory mechanism underlying GA homeostasis in rice.
Collapse
|