1
|
Nascimento J, Sader M, Ribeiro T, Pedrosa-Harand A. Influence of Ty3/gypsy and Ty1/copia LTR-retrotransposons on the large genomes of Alstroemeriaceae: genome landscape of Bomarea edulis (Tussac) Herb. PROTOPLASMA 2025:10.1007/s00709-025-02036-2. [PMID: 39883160 DOI: 10.1007/s00709-025-02036-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 01/15/2025] [Indexed: 01/31/2025]
Abstract
Repetitive elements are the main components of many plant genomes and play a crucial role in the variation of genome size and structure, ultimately impacting species diversification and adaptation. Alstroemeriaceae exhibits species with large genomes, not attributed to polyploidy. In this study, we analysed the repetitive fraction of the genome of Bomarea edulis through low-coverage sequencing and in silico characterization, and compared it to the repeats of Alstroemeria longistaminea, a species from a sister genus that has been previously characterized. LTR-retrotransposons were identified as the most abundant elements in the B. edulis genome (50.22%), with significant variations in abundance for specific lineages between the two species. The expansion of the B. edulis genome was likely due to three main lineages of LTR retrotransposons, Ty3/gypsy Tekay and Retand and Ty1/copia SIRE, all represented by truncated elements which were probably active in the past. Furthermore, the proportion of satDNA (~ 7%) was six times higher in B. edulis compared to A. longistaminea, with most families exhibiting a dispersed, uniform distribution in the genome. SatDNAs, thus, contributed to some extent to genome obesity. Despite diverging around 29 Mya, both species still share some satDNA families and retrotransposons. However, differences in repeat abundances and sequence variants led to genome differentiation despite their similar sizes and structure.
Collapse
Affiliation(s)
- Jéssica Nascimento
- Laboratory of Plant Cytogenetics and Evolution, Department of Botany, Biosciences Centre, Federal University of Pernambuco, Recife, PE, 50670-901, Brazil
| | - Mariela Sader
- Multidisciplinary Institute of Plant Biology (National Council for Scientific and Technical Research - National University of Córdoba), Córdoba, Argentina
| | - Tiago Ribeiro
- Integrative Plant Research Lab, Department of Botany and Ecology, Institute of Biosciences, Federal University of Mato Grosso, Cuiabá, Brazil
| | - Andrea Pedrosa-Harand
- Laboratory of Plant Cytogenetics and Evolution, Department of Botany, Biosciences Centre, Federal University of Pernambuco, Recife, PE, 50670-901, Brazil.
| |
Collapse
|
2
|
Hlavatá K, Záveská E, Leong-Škorničková J, Pouch M, Poulsen AD, Šída O, Khadka B, Mandáková T, Fér T. Ancient hybridization and repetitive element proliferation in the evolutionary history of the monocot genus Amomum (Zingiberaceae). FRONTIERS IN PLANT SCIENCE 2024; 15:1324358. [PMID: 38708400 PMCID: PMC11066291 DOI: 10.3389/fpls.2024.1324358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 03/12/2024] [Indexed: 05/07/2024]
Abstract
Genome size variation is a crucial aspect of plant evolution, influenced by a complex interplay of factors. Repetitive elements, which are fundamental components of genomic architecture, often play a role in genome expansion by selectively amplifying specific repeat motifs. This study focuses on Amomum, a genus in the ginger family (Zingiberaceae), known for its 4.4-fold variation in genome size. Using a robust methodology involving PhyloNet reconstruction, RepeatExplorer clustering, and repeat similarity-based phylogenetic network construction, we investigated the repeatome composition, analyzed repeat dynamics, and identified potential hybridization events within the genus. Our analysis confirmed the presence of four major infrageneric clades (A-D) within Amomum, with clades A-C exclusively comprising diploid species (2n = 48) and clade D encompassing both diploid and tetraploid species (2n = 48 and 96). We observed an increase in the repeat content within the genus, ranging from 84% to 89%, compared to outgroup species with 75% of the repeatome. The SIRE lineage of the Ty1-Copia repeat superfamily was prevalent in most analyzed ingroup genomes. We identified significant difference in repeatome structure between the basal Amomum clades (A, B, C) and the most diverged clade D. Our investigation revealed evidence of ancient hybridization events within Amomum, coinciding with a substantial proliferation of multiple repeat groups. This finding supports the hypothesis that ancient hybridization is a driving force in the genomic evolution of Amomum. Furthermore, we contextualize our findings within the broader context of genome size variations and repeatome dynamics observed across major monocot lineages. This study enhances our understanding of evolutionary processes within monocots by highlighting the crucial roles of repetitive elements in shaping genome size and suggesting the mechanisms that drive these changes.
Collapse
Affiliation(s)
- Kristýna Hlavatá
- Department of Botany, Faculty of Science, Charles University, Prague, Czechia
| | - Eliška Záveská
- Department of Botany, Faculty of Science, Charles University, Prague, Czechia
- Institute of Botany, Czech Academy of Science, Průhonice, Czechia
| | - Jana Leong-Škorničková
- Herbarium, Singapore Botanic Gardens, National Parks Board, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Milan Pouch
- Central European Institute of Technology, Masaryk University, Brno, Czechia
- National Center for Biomolecular Research (NCBR), Masaryk University, Kamenice, Czechia
| | - Axel Dalberg Poulsen
- Tropical Diversity Section, Royal Botanic Garden Edinburgh, Edinburgh, United Kingdom
| | - Otakar Šída
- Department of Botany, National Museum in Prague, Prague, Czechia
| | - Bijay Khadka
- Department of Botany, Faculty of Science, Charles University, Prague, Czechia
| | - Terezie Mandáková
- Central European Institute of Technology, Masaryk University, Brno, Czechia
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Tomáš Fér
- Department of Botany, Faculty of Science, Charles University, Prague, Czechia
| |
Collapse
|
3
|
Zou Y, Wang J, Peng D, Zhang X, Tembrock LR, Yang J, Zhao J, Liao H, Wu Z. Multi-integrated genomic data for Passiflora foetida provides insights into genome size evolution and floral development in Passiflora. MOLECULAR HORTICULTURE 2023; 3:27. [PMID: 38105261 PMCID: PMC10726625 DOI: 10.1186/s43897-023-00076-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/03/2023] [Indexed: 12/19/2023]
Abstract
Passiflora is a plant genus known for its extremely distinctive and colorful flowers and a wide range of genome size variation. However, how genome characteristics are related to flower traits among Passiflora species remains poorly understood. Here, we assembled a chromosome-scale genome of P. foetida, which belongs to the same subgenus as the commercial passionfruit P. edulis. The genome of P. foetida is smaller (424.16 Mb) and contains fewer copies of long terminal repeat retrotransposons (LTR-RTs). The disparity in LTR-RTs is one of the main contributors to the differences in genome sizes between these two species and possibly in floral traits. Additionally, we observed variation in insertion times and copy numbers of LTR-RTs across different transposable element (TE) lineages. Then, by integrating transcriptomic data from 33 samples (eight floral organs and flower buds at three developmental stages) with phylogenomic and metabolomic data, we conducted an in-depth analysis of the expression, phylogeny, and copy number of MIKC-type MADS-box genes and identified essential biosynthetic genes responsible for flower color and scent from glandular bracts and other floral organs. Our study pinpoints LRT-RTs as an important player in genome size variation in Passiflora species and provides insights into future genetic improvement.
Collapse
Affiliation(s)
- Yi Zou
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan, 650504, China
| | - Jie Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Dan Peng
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- College of Agriculture, Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiaoni Zhang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Kunpeng Institute of Modern Agriculture at Foshan, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
| | - Luke R Tembrock
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Jinliang Yang
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | - Jianli Zhao
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan, 650504, China.
| | - Hong Liao
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan, 650504, China.
| | - Zhiqiang Wu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
- Kunpeng Institute of Modern Agriculture at Foshan, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China.
| |
Collapse
|
4
|
Cabral-de-Mello DC, Mora P, Rico-Porras JM, Ferretti ABSM, Palomeque T, Lorite P. The spread of satellite DNAs in euchromatin and insights into the multiple sex chromosome evolution in Hemiptera revealed by repeatome analysis of the bug Oxycarenus hyalinipennis. INSECT MOLECULAR BIOLOGY 2023; 32:725-737. [PMID: 37615351 DOI: 10.1111/imb.12868] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/07/2023] [Indexed: 08/25/2023]
Abstract
Satellite DNAs (satDNAs) are highly repeated tandem sequences primarily located in heterochromatin, although their occurrence in euchromatin has been reported. Here, our aim was to advance the understanding of satDNA and multiple sex chromosome evolution in heteropterans. We combined cytogenetic and genomic approaches to study, for the first time, the satDNA composition of the genome in an Oxycarenidae bug, Oxycarenus hyalinipennis. The species exhibits a male karyotype of 2n = 19 (14A + 2 m + X1 X2 Y), with a highly differentiated Y chromosome, as demonstrated by C-banding and comparative genomic hybridization, revealing an enrichment of repeats from the male genome. Additionally, comparative analysis between males and females revealed that the 26 identified satDNA families are significantly biased towards male genome, accumulating in discrete regions in the Y chromosome. Exceptionally, the OhyaSat04-125 family was found to be distributed virtually throughout the entire extension of the Y chromosome. This suggests an important role of satDNA in Y chromosome differentiation, in comparison of other repeats, which collectively shows similar abundance between sexes, about 50%. Furthermore, chromosomal mapping of all satDNA families revealed an unexpected high spread in euchromatic regions, covering the entire extension, irrespective of their abundance. Only discrete regions of heterochromatin on the Y chromosome and of the m-chromosomes (peculiar chromosomes commonly observed in heteropterans) were enriched with satDNAs. The putative causes of the intense enrichment of satDNAs in euchromatin are discussed, including the possible existence of burst cycles similar to transposable elements and as a result of holocentricity. These data challenge the classical notion that euchromatin is not enriched with satDNAs.
Collapse
Affiliation(s)
- Diogo C Cabral-de-Mello
- Departamento de Biologia Geral e Aplicada, Instituto de Biociências/IB, UNESP-Universidade Estadual Paulista, Rio Claro, Brazil
- Departamento de Biología Experimental, Área de Genética, Universidad de Jaén, Jaén, Spain
| | - Pablo Mora
- Departamento de Biología Experimental, Área de Genética, Universidad de Jaén, Jaén, Spain
| | - José M Rico-Porras
- Departamento de Biología Experimental, Área de Genética, Universidad de Jaén, Jaén, Spain
| | - Ana B S M Ferretti
- Departamento de Biologia Geral e Aplicada, Instituto de Biociências/IB, UNESP-Universidade Estadual Paulista, Rio Claro, Brazil
| | - Teresa Palomeque
- Departamento de Biología Experimental, Área de Genética, Universidad de Jaén, Jaén, Spain
| | - Pedro Lorite
- Departamento de Biología Experimental, Área de Genética, Universidad de Jaén, Jaén, Spain
| |
Collapse
|
5
|
Mata-Sucre Y, Matzenauer W, Castro N, Huettel B, Pedrosa-Harand A, Marques A, Souza G. Repeat-based phylogenomics shed light on unclear relationships in the monocentric genus Juncus L. (Juncaceae). Mol Phylogenet Evol 2023; 189:107930. [PMID: 37717642 DOI: 10.1016/j.ympev.2023.107930] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 09/19/2023]
Abstract
The repetitive fraction (repeatome) of eukaryotic genomes is diverse and usually fast evolving, being an important tool for clarify plant systematics. The genus Juncus L. comprises 332 species, karyotypically recognized by having holocentric chromosomes. However, four species were recently described as monocentric, yet our understanding of their genome evolution is largely masked by unclear phylogenetic relationships. Here, we reassess the current Juncus systematics using low-coverage genome skimming data of 33 taxa to construct repeats, nuclear rDNA and plastome-based phylogenetic hypothesis. Furthermore, we characterize the repeatome and chromosomal distribution of Juncus-specific centromeric repeats/CENH3 protein to test the monocentricity reach in the genus. Repeat-base phylogenies revealed topologies congruent with the rDNA tree, but not with the plastome tree. The incongruence between nuclear and plastome chloroplast dataset suggest an ancient hybridization in the divergence of Juncotypus and Tenageia sections 40 Myr ago. The phylogenetic resolution at section level was better fitted with the rDNA/repeat-based approaches, with the recognition of two monophyletic sections (Stygiopsis and Tenageia). We found specific repeatome trends for the main lineages, such as the higher abundances of TEs in the Caespitosi and Iridifolii + Ozophyllum clades. CENH3 immunostaining confirmed the monocentricity of Juncus, which can be a generic synapomorphy for the genus. The heterogeneity of the repeatomes, with high phylogenetic informativeness, identified here may be correlated with their ancient origin (56 Mya) and reveals the potential of comparative genomic analyses for understanding plant systematics and evolution.
Collapse
Affiliation(s)
- Yennifer Mata-Sucre
- Laboratório de Citogenética e Evolução Vegetal, Departamento de Botânica, Centro de Biociências, Universidade Federal de Pernambuco. Recife PE 50670-901, Brasil
| | - William Matzenauer
- Laboratório de Morfo-Taxonomia Vegetal, Departamento de Botânica, Centro de Biociências, Universidade Federal de Pernambuco, Recife PE 50670-901, Brasil
| | - Natália Castro
- Laboratório de Citogenética e Evolução Vegetal, Departamento de Botânica, Centro de Biociências, Universidade Federal de Pernambuco. Recife PE 50670-901, Brasil
| | - Bruno Huettel
- Max Planck Genome-Centre Cologne, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Andrea Pedrosa-Harand
- Laboratório de Citogenética e Evolução Vegetal, Departamento de Botânica, Centro de Biociências, Universidade Federal de Pernambuco. Recife PE 50670-901, Brasil
| | - André Marques
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Gustavo Souza
- Laboratório de Citogenética e Evolução Vegetal, Departamento de Botânica, Centro de Biociências, Universidade Federal de Pernambuco. Recife PE 50670-901, Brasil.
| |
Collapse
|
6
|
Zhang GJ, Jia KL, Wang J, Gao WJ, Li SF. Genome-wide analysis of transposable elements and satellite DNA in Humulus scandens, a dioecious plant with XX/XY 1Y 2 chromosomes. FRONTIERS IN PLANT SCIENCE 2023; 14:1230250. [PMID: 37908838 PMCID: PMC10614002 DOI: 10.3389/fpls.2023.1230250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 10/04/2023] [Indexed: 11/02/2023]
Abstract
Transposable elements (TEs) and satellite DNAs, two major categories of repetitive sequences, are expected to accumulate in non-recombining genome regions, including sex-linked regions, and contribute to sex chromosome evolution. The dioecious plant, Humulus scandens, can be used for studying the evolution of the XX/XY1Y2 sex chromosomes. In this study, we thoroughly examined the repetitive components of male and female H. scandens using next-generation sequencing data followed by bioinformatics analysis and florescence in situ hybridization (FISH). The H. scandens genome has a high overall repetitive sequence composition, 68.30% in the female and 66.78% in the male genome, with abundant long terminal repeat (LTR) retrotransposons (RTs), including more Ty3/Gypsy than Ty1/Copia elements, particularly two Ty3/Gypsy lineages, Tekay and Retand. Most LTR-RT lineages were found dispersed across the chromosomes, though CRM and Athila elements were predominately found within the centromeres and the pericentromeric regions. The Athila elements also showed clearly higher FISH signal intensities in the Y1 and Y2 chromosomes than in the X or autosomes. Three novel satellite DNAs were specifically distributed in the centromeric and/or telomeric regions, with markedly different distributions on the X, Y1, and Y2 chromosomes. Combined with FISH using satellite DNAs to stain chromosomes during meiotic diakinesis, we determined the synapsis pattern and distinguish pseudoautosomal regions (PARs). The results indicate that the XY1Y2 sex chromosomes of H. scandens might have originated from a centric fission event. This study improves our understanding of the repetitive sequence organization of H. scandens genome and provides a basis for further analysis of their chromosome evolution process.
Collapse
Affiliation(s)
- Guo-Jun Zhang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Ke-Li Jia
- College of Life Sciences, Henan Normal University, Xinxiang, China
- SanQuan Medical College, Xinxiang Medical University, Xinxiang, China
| | - Jin Wang
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Wu-Jun Gao
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Shu-Fen Li
- College of Life Sciences, Henan Normal University, Xinxiang, China
| |
Collapse
|
7
|
Ferraz ME, Ribeiro T, Sader M, Nascimento T, Pedrosa-Harand A. Comparative analysis of repetitive DNA in dysploid and non-dysploid Phaseolus beans. Chromosome Res 2023; 31:30. [PMID: 37812264 DOI: 10.1007/s10577-023-09739-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/31/2023] [Accepted: 09/15/2023] [Indexed: 10/10/2023]
Abstract
Structural karyotype changes result from ectopic recombination events frequently associated with repetitive DNA. Although most Phaseolus species present relatively stable karyotypes with 2n = 22 chromosomes, the karyotypes of species of the Leptostachyus group show high rates of structural rearrangements, including a nested chromosome fusion that led to the dysploid chromosome number of the group (2n = 20). We examined the roles of repetitive landscapes in the rearrangements of species of the Leptostachyus group using genome-skimming data to characterize the repeatome in a range of Phaseolus species and compared them to species of that group (P. leptostachyus and P. macvaughii). LTR retrotransposons, especially the Ty3/gypsy lineage Chromovirus, were the most abundant elements in the genomes. Differences in the abundance of Tekay, Retand, and SIRE elements between P. macvaughii and P. leptostachyus were reflected in their total amounts of Ty3/gypsy and Ty1/copia. The satellite DNA fraction was the most divergent among the species, varying both in abundance and distribution, even between P. leptostachyus and P. macvaughii. The rapid turnover of repeats in the Leptostachyus group may be associated with the several rearrangements observed.
Collapse
Affiliation(s)
- Maria Eduarda Ferraz
- Laboratory of Plant Cytogenetics and Evolution, Department of Botany, Biosciences Centre, Federal University of Pernambuco, Recife, PE, Brazil
| | - Tiago Ribeiro
- Integrative Plant Research Lab, Department of Botany and Ecology, Institute of Biosciences, Federal University of Mato Grosso, Cuiabá, MT, Brazil
| | - Mariela Sader
- Multidisciplinary Institute of Plant Biology, National Council for Scientific and Technical Research, National University of Córdoba, Córdoba, Argentina
| | - Thiago Nascimento
- Laboratory of Plant Cytogenetics and Evolution, Department of Botany, Biosciences Centre, Federal University of Pernambuco, Recife, PE, Brazil
| | - Andrea Pedrosa-Harand
- Laboratory of Plant Cytogenetics and Evolution, Department of Botany, Biosciences Centre, Federal University of Pernambuco, Recife, PE, Brazil.
| |
Collapse
|
8
|
de Assis R, Gonçalves LSA, Guyot R, Vanzela ALL. Abundance of distal repetitive DNA sequences in Capsicum L. (Solanaceae) chromosomes. Genome 2023; 66:269-280. [PMID: 37364373 DOI: 10.1139/gen-2022-0083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Chili peppers (Solanaceae family) have great commercial value. They are commercialized in natura and used as spices and for ornamental and medicinal purposes. Although three whole genomes have been published, limited information about satellite DNA sequences, their composition, and genomic distribution has been provided. Here, we exploited the noncoding repetitive fraction, represented by satellite sequences, that tends to accumulate in blocks along chromosomes, especially near the chromosome ends of peppers. Two satellite DNA sequences were identified (CDR-1 and CDR-2), characterized and mapped in silico in three Capsicum genomes (C. annuum, C. chinense, and C. baccatum) using data from the published high-coverage sequencing and repeats finding bioinformatic tools. Localization using FISH in the chromosomes of these species and in two others (C. frutescens and C. chacoense), totaling five species, showed signals adjacent to the rDNA sites. A sequence comparison with existing Solanaceae repeats showed that CDR-1 and CDR-2 have different origins but without homology to rDNA sequences. Satellites occupied subterminal chromosomal regions, sometimes collocated with or adjacent to 35S rDNA sequences. Our results expand knowledge about the diversity of subterminal regions of Capsicum chromosomes, showing different amounts and distributions within and between karyotypes. In addition, these sequences may be useful for future phylogenetic studies.
Collapse
Affiliation(s)
- Rafael de Assis
- Laboratório de Citogenética e Diversidade Vegetal, Departamento de Biologia Geral, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina 86097-570, Paraná, Brazil
| | | | - Romain Guyot
- Institute de Recherche pour le Développement, CIRAD, Université de Montpellier, UMR DIADE, Montpellier, France
| | | |
Collapse
|
9
|
Šatović-Vukšić E, Plohl M. Satellite DNAs-From Localized to Highly Dispersed Genome Components. Genes (Basel) 2023; 14:genes14030742. [PMID: 36981013 PMCID: PMC10048060 DOI: 10.3390/genes14030742] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
According to the established classical view, satellite DNAs are defined as abundant non-coding DNA sequences repeated in tandem that build long arrays located in heterochromatin. Advances in sequencing methodologies and development of specialized bioinformatics tools enabled defining a collection of all repetitive DNAs and satellite DNAs in a genome, the repeatome and the satellitome, respectively, as well as their reliable annotation on sequenced genomes. Supported by various non-model species included in recent studies, the patterns of satellite DNAs and satellitomes as a whole showed much more diversity and complexity than initially thought. Differences are not only in number and abundance of satellite DNAs but also in their distribution across the genome, array length, interspersion patterns, association with transposable elements, localization in heterochromatin and/or in euchromatin. In this review, we compare characteristic organizational features of satellite DNAs and satellitomes across different animal and plant species in order to summarize organizational forms and evolutionary processes that may lead to satellitomes' diversity and revisit some basic notions regarding repetitive DNA landscapes in genomes.
Collapse
Affiliation(s)
- Eva Šatović-Vukšić
- Division of Molecular Biology, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Miroslav Plohl
- Division of Molecular Biology, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| |
Collapse
|
10
|
Ramos LC, Báez M, Fuchs J, Houben A, Carvalho R, Pedrosa-Harand A. Differential Repeat Accumulation in the Bimodal Karyotype of Agave L. Genes (Basel) 2023; 14:491. [PMID: 36833420 PMCID: PMC9956584 DOI: 10.3390/genes14020491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/10/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
The genus Agave presents a bimodal karyotype with x = 30 (5L, large, +25S, small chromosomes). Bimodality within this genus is generally attributed to allopolyploidy in the ancestral form of Agavoideae. However, alternative mechanisms, such as the preferential accumulation of repetitive elements at the macrochromosomes, could also be important. Aiming to understand the role of repetitive DNA within the bimodal karyotype of Agave, genomic DNA from the commercial hybrid 11648 (2n = 2x = 60, 6.31 Gbp) was sequenced at low coverage, and the repetitive fraction was characterized. In silico analysis showed that ~67.6% of the genome is mainly composed of different LTR retrotransposon lineages and one satellite DNA family (AgSAT171). The satellite DNA localized at the centromeric regions of all chromosomes; however, stronger signals were observed for 20 of the macro- and microchromosomes. All transposable elements showed a dispersed distribution, but not uniform across the length of the chromosomes. Different distribution patterns were observed for different TE lineages, with larger accumulation at the macrochromosomes. The data indicate the differential accumulation of LTR retrotransposon lineages at the macrochromosomes, probably contributing to the bimodality. Nevertheless, the differential accumulation of the satDNA in one group of macro- and microchromosomes possibly reflects the hybrid origin of this Agave accession.
Collapse
Affiliation(s)
- Lamonier Chaves Ramos
- Laboratory of Plant Cytogenetics, Graduate Program in Agronomy, Genetic Plant Breeding—PPGAMGP, Department of Agronomy, Federal Rural University of Pernambuco, Recife 52171-900, Brazil
- Laboratory of Plant Cytogenetics and Evolution, Department of Botany, Federal University of Pernambuco, Recife 50670-420, Brazil
| | - Mariana Báez
- Laboratory of Plant Cytogenetics and Evolution, Department of Botany, Federal University of Pernambuco, Recife 50670-420, Brazil
- Plant Breeding Department, University of Bonn, Katzenburgweg 5, 53115 Bonn, Germany
| | - Joerg Fuchs
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Stadt Seeland, Germany
| | - Andreas Houben
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Stadt Seeland, Germany
| | - Reginaldo Carvalho
- Laboratory of Plant Cytogenetics, Graduate Program in Agronomy, Genetic Plant Breeding—PPGAMGP, Department of Agronomy, Federal Rural University of Pernambuco, Recife 52171-900, Brazil
| | - Andrea Pedrosa-Harand
- Laboratory of Plant Cytogenetics and Evolution, Department of Botany, Federal University of Pernambuco, Recife 50670-420, Brazil
| |
Collapse
|
11
|
Anjos A, Milani D, Bardella VB, Paladini A, Cabral-de-Mello DC. Evolution of satDNAs on holocentric chromosomes: insights from hemipteran insects of the genus Mahanarva. CHROMOSOME RESEARCH : AN INTERNATIONAL JOURNAL ON THE MOLECULAR, SUPRAMOLECULAR AND EVOLUTIONARY ASPECTS OF CHROMOSOME BIOLOGY 2023; 31:5. [PMID: 36705735 DOI: 10.1007/s10577-023-09710-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/09/2022] [Accepted: 12/05/2022] [Indexed: 01/28/2023]
Abstract
Satellite DNAs (satDNAs) constitute one of the main components of eukaryote genomes and are involved in chromosomal organization and diversification. Although largely studied, little information was gathered about their evolution on holocentric species, i.e., diffuse centromeres, which, due to differences in repeat organization, could result in different evolutionary patterns. Here, we combined bioinformatics and cytogenetic approaches to evaluate the evolution of the satellitomes in Mahanarva holocentric insects. In two species, de novo identification revealed a high number of satDNAs, 110 and 113, with an extreme monomer length range of 18-4228 bp. The overall abundance of satDNAs was observed to be 6.67% in M. quadripunctata and 1.98% in M. spectabilis, with different abundances for the shared satDNAs. Chromosomal mapping of the most abundant repeats of M. quadripunctata and M. spectabilis on other Mahanarva reinforced the dynamic nature of satDNAs. Variable patterns of chromosomal distribution for the satDNAs were noticed, with the occurrence of clusters on distinct numbers of chromosomes and at different positions and the occurrence of scattered signals or nonclustered satDNAs. Altogether, our data demonstrated the high dynamism of satDNAs in Mahanarva with the involvement of this genomic fraction in chromosome diversification of the genus. The general characteristics and patterns of evolution of satDNAs are similar to those observed on monocentric chromosomes, suggesting that the differential organization of genome compartments observed on holocentric chromosomes compared with monocentric chromosomes does not have a large impact on the evolution of satDNAs. Analysis of the satellitomes of other holocentric species in a comparative manner will shed light on this issue.
Collapse
Affiliation(s)
- Allison Anjos
- Departamento de Biologia Geral e Aplicada, Instituto de Biociências, UNESP, Rio Claro, SP, 13506-900, Brazil
| | - Diogo Milani
- Departamento de Biologia Geral e Aplicada, Instituto de Biociências, UNESP, Rio Claro, SP, 13506-900, Brazil
| | - Vanessa B Bardella
- Departamento de Biologia Geral e Aplicada, Instituto de Biociências, UNESP, Rio Claro, SP, 13506-900, Brazil
| | - Andressa Paladini
- Departamento de Ecologia e Evolução, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Diogo C Cabral-de-Mello
- Departamento de Biologia Geral e Aplicada, Instituto de Biociências, UNESP, Rio Claro, SP, 13506-900, Brazil.
- Department of Experimental Biology, Genetics Area, University of Jaén, Paraje las Lagunillas s/n, 23071, Jaen, Spain.
| |
Collapse
|
12
|
Henning PM, Roalson EH, Mir W, McCubbin AG, Shore JS. Annotation of the Turnera subulata (Passifloraceae) Draft Genome Reveals the S-Locus Evolved after the Divergence of Turneroideae from Passifloroideae in a Stepwise Manner. PLANTS (BASEL, SWITZERLAND) 2023; 12:286. [PMID: 36679000 PMCID: PMC9862265 DOI: 10.3390/plants12020286] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/27/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
A majority of Turnera species (Passifloraceae) exhibit distyly, a reproductive system involving both self-incompatibility and reciprocal herkogamy. This system differs from self-incompatibility in Passiflora species. The genetic basis of distyly in Turnera is a supergene, restricted to the S-morph, and containing three S-genes. How supergenes and distyly evolved in Turnera, and the other Angiosperm families exhibiting distyly remain largely unknown. Unraveling the evolutionary origins in Turnera requires the generation of genomic resources and extensive phylogenetic analyses. Here, we present the annotated draft genome of the S-morph of distylous Turnera subulata. Our annotation allowed for phylogenetic analyses of the three S-genes' families across 56 plant species ranging from non-seed plants to eudicots. In addition to the phylogenetic analysis, we identified the three S-genes' closest paralogs in two species of Passiflora. Our analyses suggest that the S-locus evolved after the divergence of Passiflora and Turnera. Finally, to provide insights into the neofunctionalization of the S-genes, we compared expression patterns of the S-genes with close paralogs in Arabidopsis and Populus trichocarpa. The annotation of the T. subulata genome will provide a useful resource for future comparative work. Additionally, this work has provided insights into the convergent nature of distyly and the origin of supergenes.
Collapse
Affiliation(s)
- Paige M. Henning
- School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA
- Center for Genomic Science Innovation, University of Wisconsin Madison, 425 Henry Mall, Madison, WI 53706-1577, USA
| | - Eric H. Roalson
- School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA
| | - Wali Mir
- Department of Biology, York University, 4700 Keele Street, Toronto, ON M3J 1P3, Canada
| | - Andrew G. McCubbin
- School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA
| | - Joel S. Shore
- Department of Biology, York University, 4700 Keele Street, Toronto, ON M3J 1P3, Canada
| |
Collapse
|
13
|
Gutiérrez J, Aleix-Mata G, Montiel EE, Cabral-de-Mello DC, Marchal JA, Sánchez A. Satellitome Analysis on Talpa aquitania Genome and Inferences about the satDNAs Evolution on Some Talpidae. Genes (Basel) 2022; 14:117. [PMID: 36672858 PMCID: PMC9859602 DOI: 10.3390/genes14010117] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 01/04/2023] Open
Abstract
In the genus Talpa a new species, named Talpa aquitania, has been recently described. Only cytogenetic data are available for the nuclear genome of this species. In this work, we characterize the satellitome of the T. aquitania genome that presents 16 different families, including telomeric sequences, and they represent 1.24% of the genome. The first satellite DNA family (TaquSat1-183) represents 0.558%, and six more abundant families, including TaquSat1-183, comprise 1.13%, while the remaining 11 sat-DNAs represent only 0.11%. The average A + T content of the SatDNA families was 50.43% and the median monomer length was 289.24 bp. The analysis of these SatDNAs indicated that they have different grades of clusterization, homogenization, and degeneration. Most of the satDNA families are present in the genomes of the other Talpa species analyzed, while in the genomes of other more distant species of Talpidae, only some of them are present, in accordance with the library hypothesis. Moreover, chromosomal localization by FISH revealed that some satDNAs are localized preferentially on centromeric and non-centromeric heterochromatin in T. aquitania and also in the sister species T. occidentalis karyotype. The differences observed between T. aquitania and the close relative T. occidentalis and T. europaea suggested that the satellitome is a very dynamic component of the genomes and that the satDNAs could be responsible for chromosomal differences between the species. Finally, in a broad context, these data contribute to the understanding of the evolution of satellitomes on mammals.
Collapse
Affiliation(s)
- Juana Gutiérrez
- Departamento de Biología Experimental, Área de Genética, Universidad de Jaén, Paraje de las Lagunillas s/n, 23071 Jaén, Spain
| | - Gaël Aleix-Mata
- Departamento de Biología Experimental, Área de Genética, Universidad de Jaén, Paraje de las Lagunillas s/n, 23071 Jaén, Spain
| | - Eugenia E. Montiel
- Departamento de Biología Experimental, Área de Genética, Universidad de Jaén, Paraje de las Lagunillas s/n, 23071 Jaén, Spain
| | - Diogo C. Cabral-de-Mello
- Departamento de Biología Experimental, Área de Genética, Universidad de Jaén, Paraje de las Lagunillas s/n, 23071 Jaén, Spain
- Departamento de Biologia Geral e Aplicada, Instituto de Biociências/IB, UNESP—Universidade Estadual Paulista, Rio Claro, São Paulo 13506-900, Brazil
| | - Juan Alberto Marchal
- Departamento de Biología Experimental, Área de Genética, Universidad de Jaén, Paraje de las Lagunillas s/n, 23071 Jaén, Spain
| | - Antonio Sánchez
- Departamento de Biología Experimental, Área de Genética, Universidad de Jaén, Paraje de las Lagunillas s/n, 23071 Jaén, Spain
| |
Collapse
|
14
|
Goes CAG, dos Santos N, Rodrigues PHDM, Stornioli JHF, da Silva AB, dos Santos RZ, Vidal JAD, Silva DMZDA, Artoni RF, Foresti F, Hashimoto DT, Porto-Foresti F, Utsunomia R. The Satellite DNA Catalogues of Two Serrasalmidae (Teleostei, Characiformes): Conservation of General satDNA Features over 30 Million Years. Genes (Basel) 2022; 14:91. [PMID: 36672835 PMCID: PMC9859320 DOI: 10.3390/genes14010091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/08/2022] [Accepted: 12/24/2022] [Indexed: 12/31/2022] Open
Abstract
Satellite DNAs (satDNAs) are tandemly repeated sequences that are usually located on the heterochromatin, and the entire collection of satDNAs within a genome is called satellitome. Primarily, these sequences are not under selective pressure and evolve by concerted evolution, resulting in elevated rates of divergence between the satDNA profiles of reproductive isolated species/populations. Here, we characterized two additional satellitomes of Characiformes fish (Colossoma macropomum and Piaractus mesopotamicus) that diverged approximately 30 million years ago, while still retaining conserved karyotype features. The results we obtained indicated that several satDNAs (50% of satellite sequences in P. mesopotamicus and 43% in C. macropomum) show levels of conservation between the analyzed species, in the nucleotide and chromosomal levels. We propose that long-life cycles and few genomic changes could slow down rates of satDNA differentiation.
Collapse
Affiliation(s)
| | - Natalia dos Santos
- Faculty of Sciences, São Paulo State University (UNESP), Bauru 17033-360, SP, Brazil
| | | | - José Henrique Forte Stornioli
- Institute of Biological Sciences and Health, Federal Rural University of Rio de Janeiro, Seropédica 23890-000, RJ, Brazil
| | - Amanda Bueno da Silva
- Faculty of Sciences, São Paulo State University (UNESP), Bauru 17033-360, SP, Brazil
| | | | - Jhon Alex Dziechciarz Vidal
- Department of Structural, Molecular and Genetic Biology, State University of Ponta Grossa, Ponta Grossa 84030-900, PR, Brazil
- Department of Genetics and Evolution, Federal University of São Carlos, São Carlos 13565-905, SP, Brazil
| | | | - Roberto Ferreira Artoni
- Department of Structural, Molecular and Genetic Biology, State University of Ponta Grossa, Ponta Grossa 84030-900, PR, Brazil
- Department of Genetics and Evolution, Federal University of São Carlos, São Carlos 13565-905, SP, Brazil
| | - Fausto Foresti
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University, Botucatu 18618-970, SP, Brazil
| | - Diogo Teruo Hashimoto
- Aquaculture Center of UNESP, São Paulo State University, Jaboticabal 14884-900, SP, Brazil
| | - Fábio Porto-Foresti
- Faculty of Sciences, São Paulo State University (UNESP), Bauru 17033-360, SP, Brazil
- Aquaculture Center of UNESP, São Paulo State University, Jaboticabal 14884-900, SP, Brazil
| | - Ricardo Utsunomia
- Faculty of Sciences, São Paulo State University (UNESP), Bauru 17033-360, SP, Brazil
- Institute of Biological Sciences and Health, Federal Rural University of Rio de Janeiro, Seropédica 23890-000, RJ, Brazil
- Aquaculture Center of UNESP, São Paulo State University, Jaboticabal 14884-900, SP, Brazil
| |
Collapse
|
15
|
Samoluk SS, Vaio M, Ortíz AM, Chalup LMI, Robledo G, Bertioli DJ, Seijo G. Comparative repeatome analysis reveals new evidence on genome evolution in wild diploid Arachis (Fabaceae) species. PLANTA 2022; 256:50. [PMID: 35895167 DOI: 10.1007/s00425-022-03961-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
Opposing changes in the abundance of satellite DNA and long terminal repeat (LTR) retroelements are the main contributors to the variation in genome size and heterochromatin amount in Arachis diploids. The South American genus Arachis (Fabaceae) comprises 83 species organized in nine taxonomic sections. Among them, section Arachis is characterized by species with a wide genome and karyotype diversity. Such diversity is determined mainly by the amount and composition of repetitive DNA. Here we performed computational analysis on low coverage genome sequencing to infer the dynamics of changes in major repeat families that led to the differentiation of genomes in diploid species (x = 10) of genus Arachis, focusing on section Arachis. Estimated repeat content ranged from 62.50 to 71.68% of the genomes. Species with different genome composition tended to have different landscapes of repeated sequences. Athila family retrotransposons were the most abundant and variable lineage among Arachis repeatomes, with peaks of transpositional activity inferred at different times in the evolution of the species. Satellite DNAs (satDNAs) were less abundant, but differentially represented among species. High rates of evolution of an AT-rich superfamily of satDNAs led to the differential accumulation of heterochromatin in Arachis genomes. The relationship between genome size variation and the repetitive content is complex. However, largest genomes presented a higher accumulation of LTR elements and lower contents of satDNAs. In contrast, species with lowest genome sizes tended to accumulate satDNAs in detriment of LTR elements. Phylogenetic analysis based on repetitive DNA supported the genome arrangement of section Arachis. Altogether, our results provide the most comprehensive picture on the repeatome dynamics that led to the genome differentiation of Arachis species.
Collapse
Affiliation(s)
- Sergio S Samoluk
- Instituto de Botánica del Nordeste (UNNE-CONICET), Facultad de Ciencias Agrarias, Corrientes, Argentina.
| | - Magdalena Vaio
- Laboratory of Plant Genome Evolution and Domestication, Department of Plant Biology, Faculty of Agronomy, University of the Republic, Montevideo, Uruguay
| | - Alejandra M Ortíz
- Instituto de Botánica del Nordeste (UNNE-CONICET), Facultad de Ciencias Agrarias, Corrientes, Argentina
| | - Laura M I Chalup
- Instituto de Botánica del Nordeste (UNNE-CONICET), Facultad de Ciencias Agrarias, Corrientes, Argentina
| | - Germán Robledo
- Instituto de Botánica del Nordeste (UNNE-CONICET), Facultad de Ciencias Agrarias, Corrientes, Argentina
- Facultad de Ciencias Exactas y Naturales y Agrimensura, Universidad Nacional del Nordeste, Corrientes, Argentina
| | - David J Bertioli
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA, USA
| | - Guillermo Seijo
- Instituto de Botánica del Nordeste (UNNE-CONICET), Facultad de Ciencias Agrarias, Corrientes, Argentina
- Facultad de Ciencias Exactas y Naturales y Agrimensura, Universidad Nacional del Nordeste, Corrientes, Argentina
| |
Collapse
|
16
|
Li L, Chen X, Fang D, Dong S, Guo X, Li N, Campos‐Dominguez L, Wang W, Liu Y, Lang X, Peng Y, Tian D, Thomas DC, Mu W, Liu M, Wu C, Yang T, Zhang S, Yang L, Yang J, Liu Z, Zhang L, Zhang X, Chen F, Jiao Y, Guo Y, Hughes M, Wang W, Liu X, Zhong C, Li A, Sahu SK, Yang H, Wu E, Sharbrough J, Lisby M, Liu X, Xu X, Soltis DE, Van de Peer Y, Kidner C, Zhang S, Liu H. Genomes shed light on the evolution of Begonia, a mega-diverse genus. THE NEW PHYTOLOGIST 2022; 234:295-310. [PMID: 34997964 PMCID: PMC7612470 DOI: 10.1111/nph.17949] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 12/20/2021] [Indexed: 05/02/2023]
Abstract
Clarifying the evolutionary processes underlying species diversification and adaptation is a key focus of evolutionary biology. Begonia (Begoniaceae) is one of the most species-rich angiosperm genera with c. 2000 species, most of which are shade-adapted. Here, we present chromosome-scale genome assemblies for four species of Begonia (B. loranthoides, B. masoniana, B. darthvaderiana and B. peltatifolia), and whole genome shotgun data for an additional 74 Begonia representatives to investigate lineage evolution and shade adaptation of the genus. The four genome assemblies range in size from 331.75 Mb (B. peltatifolia) to 799.83 Mb (B. masoniana), and harbor 22 059-23 444 protein-coding genes. Synteny analysis revealed a lineage-specific whole-genome duplication (WGD) that occurred just before the diversification of Begonia. Functional enrichment of gene families retained after WGD highlights the significance of modified carbohydrate metabolism and photosynthesis possibly linked to shade adaptation in the genus, which is further supported by expansions of gene families involved in light perception and harvesting. Phylogenomic reconstructions and genomics studies indicate that genomic introgression has also played a role in the evolution of Begonia. Overall, this study provides valuable genomic resources for Begonia and suggests potential drivers underlying the diversity and adaptive evolution of this mega-diverse clade.
Collapse
|
17
|
Mascagni F, Barghini E, Ceccarelli M, Baldoni L, Trapero C, Díez CM, Natali L, Cavallini A, Giordani T. The Singular Evolution of Olea Genome Structure. FRONTIERS IN PLANT SCIENCE 2022; 13:869048. [PMID: 35432417 PMCID: PMC9009077 DOI: 10.3389/fpls.2022.869048] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
The current view of plant genome evolution proposes that genome size has mainly been determined by polyploidisation and amplification/loss of transposons, with a minor role played by other repeated sequences, such as tandem repeats. In cultivated olive (Olea europaea subsp. europaea var. europaea), available data suggest a singular model of genome evolution, in which a massive expansion of tandem-repeated sequences accompanied changes in nuclear architecture. This peculiar scenario highlights the importance of focusing on Olea genus evolution, to shed light on mechanisms that led to its present genomic structure. Next-generation sequencing technologies, bioinformatics and in situ hybridisation were applied to study the genomic structure of five related Olea taxa, which originated at different times from their last common ancestor. On average, repetitive DNA in the Olea taxa ranged from ~59% to ~73% of the total genome, showing remarkable differences in terms of composition. Among repeats, we identified 11 major families of tandem repeats, with different abundances in the analysed taxa, five of which were novel discoveries. Interestingly, overall tandem repeat abundance was inversely correlated to that of retrotransposons. This trend might imply a competition in the proliferation of these repeat classes. Indeed, O. paniculata, the species closest to the Olea common ancestor, showed very few tandem-repeated sequences, while it was rich in long terminal repeat retrotransposons, suggesting that the amplification of tandem repeats occurred after its divergence from the Olea ancestor. Furthermore, some tandem repeats were physically localised in closely related O. europaea subspecies (i.e., cultivated olive and O. europaea subsp. cuspidata), which showed a significant difference in tandem repeats abundance. For 4 tandem repeats families, a similar number of hybridisation signals were observed in both subspecies, apparently indicating that, after their dissemination throughout the olive genome, these tandem repeats families differentially amplified maintaining the same positions in each genome. Overall, our research identified the temporal dynamics shaping genome structure during Olea speciation, which represented a singular model of genome evolution in higher plants.
Collapse
Affiliation(s)
- Flavia Mascagni
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Elena Barghini
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Marilena Ceccarelli
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Luciana Baldoni
- CNR, Institute of Biosciences and BioResources, Perugia, Italy
| | - Carlos Trapero
- CSIRO Agriculture & Food, Narrabri, NSW, Australia
- Agronomy Department, University of Cordoba, Cordoba, Spain
| | | | - Lucia Natali
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Andrea Cavallini
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Tommaso Giordani
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| |
Collapse
|
18
|
Borowska-Zuchowska N, Senderowicz M, Trunova D, Kolano B. Tracing the Evolution of the Angiosperm Genome from the Cytogenetic Point of View. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11060784. [PMID: 35336666 PMCID: PMC8953110 DOI: 10.3390/plants11060784] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 03/14/2022] [Accepted: 03/14/2022] [Indexed: 05/05/2023]
Abstract
Cytogenetics constitutes a branch of genetics that is focused on the cellular components, especially chromosomes, in relation to heredity and genome structure, function and evolution. The use of modern cytogenetic approaches and the latest microscopes with image acquisition and processing systems enables the simultaneous two- or three-dimensional, multicolour visualisation of both single-copy and highly-repetitive sequences in the plant genome. The data that is gathered using the cytogenetic methods in the phylogenetic background enable tracing the evolution of the plant genome that involve changes in: (i) genome sizes; (ii) chromosome numbers and morphology; (iii) the content of repetitive sequences and (iv) ploidy level. Modern cytogenetic approaches such as FISH using chromosome- and genome-specific probes have been widely used in studies of the evolution of diploids and the consequences of polyploidy. Nowadays, modern cytogenetics complements analyses in other fields of cell biology and constitutes the linkage between genetics, molecular biology and genomics.
Collapse
|
19
|
Costa ZP, Varani AM, Cauz-Santos LA, Sader MA, Giopatto HA, Zirpoli B, Callot C, Cauet S, Marande W, Souza Cardoso JL, Pinheiro DG, Kitajima JP, Dornelas MC, Harand AP, Berges H, Monteiro-Vitorello CB, Carneiro Vieira ML. A genome sequence resource for the genus Passiflora, the genome of the wild diploid species Passiflora organensis. THE PLANT GENOME 2021; 14:e20117. [PMID: 34296827 DOI: 10.1002/tpg2.20117] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 05/09/2021] [Indexed: 06/13/2023]
Abstract
The genus Passiflora comprises a large group of plants popularly known as passionfruit, much appreciated for their exotic flowers and edible fruits. The species (∼500) are morphologically variable (e.g., growth habit, size, and color of flowers) and are adapted to distinct tropical ecosystems. In this study, we generated the genome of the wild diploid species Passiflora organensis Gardner by adopting a hybrid assembly approach. Passiflora organensis has a small genome of 259 Mbp and a heterozygosity rate of 81%, consistent with its reproductive system. Most of the genome sequences could be integrated into its chromosomes with cytogenomic markers (satellite DNA) as references. The repeated sequences accounted for 58.55% of the total DNA analyzed, and the Tekay lineage was the prevalent retrotransposon. In total, 25,327 coding genes were predicted. Passiflora organensis retains 5,609 singletons and 15,671 gene families. We focused on the genes potentially involved in the locus determining self-incompatibility and the MADS-box gene family, allowing us to infer expansions and contractions within specific subfamilies. Finally, we recovered the organellar DNA. Structural rearrangements and two mitoviruses, besides relics of other mobile elements, were found in the chloroplast and mt-DNA molecules, respectively. This study presents the first draft genome assembly of a wild Passiflora species, providing a valuable sequence resource for genomic and evolutionary studies on the genus, and support for breeding cropped passionfruit species.
Collapse
Affiliation(s)
- Zirlane Portugal Costa
- Dep. de Genética, Escola Superior de Agricultura "Luiz de Queiroz", Univ. de São Paulo, Piracicaba, 13418-900, Brazil
| | - Alessandro Mello Varani
- Dep. de Tecnologia, Faculdade de Ciências Agrárias e Veterinárias, Univ. Estadual Paulista, Jaboticabal, 14884-900, Brazil
| | - Luiz Augusto Cauz-Santos
- Dep. de Genética, Escola Superior de Agricultura "Luiz de Queiroz", Univ. de São Paulo, Piracicaba, 13418-900, Brazil
- Present address: Dep. of Botany and Biodiversity Research, Univ. of Vienna, Vienna, 1030, Austria
| | | | - Helena Augusto Giopatto
- Dep. de Biologia Vegetal, Instituto de Biologia, Univ. Estadual de Campinas, Campinas, 13083-862, Brazil
| | - Bruna Zirpoli
- Dep. de Botânica, Univ. Federal de Pernambuco, Recife, 50670-901, Brazil
| | - Caroline Callot
- Institut National de la Recherche Agronomique, Centre National de Ressources Génomique Végétales, Castanet-Tolosan, 31326, France
| | - Stephane Cauet
- Institut National de la Recherche Agronomique, Centre National de Ressources Génomique Végétales, Castanet-Tolosan, 31326, France
| | - Willian Marande
- Institut National de la Recherche Agronomique, Centre National de Ressources Génomique Végétales, Castanet-Tolosan, 31326, France
| | - Jessica Luana Souza Cardoso
- Dep. de Genética, Escola Superior de Agricultura "Luiz de Queiroz", Univ. de São Paulo, Piracicaba, 13418-900, Brazil
| | - Daniel Guariz Pinheiro
- Dep. de Tecnologia, Faculdade de Ciências Agrárias e Veterinárias, Univ. Estadual Paulista, Jaboticabal, 14884-900, Brazil
| | | | - Marcelo Carnier Dornelas
- Dep. de Biologia Vegetal, Instituto de Biologia, Univ. Estadual de Campinas, Campinas, 13083-862, Brazil
| | | | - Helene Berges
- Institut National de la Recherche Agronomique, Centre National de Ressources Génomique Végétales, Castanet-Tolosan, 31326, France
| | | | - Maria Lucia Carneiro Vieira
- Dep. de Genética, Escola Superior de Agricultura "Luiz de Queiroz", Univ. de São Paulo, Piracicaba, 13418-900, Brazil
| |
Collapse
|
20
|
Pellicer J, Fernández P, Fay MF, Michálková E, Leitch IJ. Genome Size Doubling Arises From the Differential Repetitive DNA Dynamics in the Genus Heloniopsis (Melanthiaceae). Front Genet 2021; 12:726211. [PMID: 34552621 PMCID: PMC8450539 DOI: 10.3389/fgene.2021.726211] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/19/2021] [Indexed: 12/23/2022] Open
Abstract
Plant genomes are highly diverse in size and repetitive DNA composition. In the absence of polyploidy, the dynamics of repetitive elements, which make up the bulk of the genome in many species, are the main drivers underpinning changes in genome size and the overall evolution of the genomic landscape. The advent of high-throughput sequencing technologies has enabled investigation of genome evolutionary dynamics beyond model plants to provide exciting new insights in species across the biodiversity of life. Here we analyze the evolution of repetitive DNA in two closely related species of Heloniopsis (Melanthiaceae), which despite having the same chromosome number differ nearly twofold in genome size [i.e., H. umbellata (1C = 4,680 Mb), and H. koreana (1C = 2,480 Mb)]. Low-coverage genome skimming and the RepeatExplorer2 pipeline were used to identify the main repeat families responsible for the significant differences in genome sizes. Patterns of repeat evolution were found to correlate with genome size with the main classes of transposable elements identified being twice as abundant in the larger genome of H. umbellata compared with H. koreana. In addition, among the satellite DNA families recovered, a single shared satellite (HeloSAT) was shown to have contributed significantly to the genome expansion of H. umbellata. Evolutionary changes in repetitive DNA composition and genome size indicate that the differences in genome size between these species have been underpinned by the activity of several distinct repeat lineages.
Collapse
Affiliation(s)
- Jaume Pellicer
- Institut Botànic de Barcelona (IBB, CSIC-Ajuntament de Barcelona), Barcelona, Spain.,Royal Botanic Gardens, Kew, Richmond, United Kingdom
| | - Pol Fernández
- Institut Botànic de Barcelona (IBB, CSIC-Ajuntament de Barcelona), Barcelona, Spain
| | - Michael F Fay
- Royal Botanic Gardens, Kew, Richmond, United Kingdom.,School of Plant Biology, University of Western Australia, Crawley, WA, Australia
| | | | - Ilia J Leitch
- Royal Botanic Gardens, Kew, Richmond, United Kingdom
| |
Collapse
|
21
|
Tunjić-Cvitanić M, Pasantes JJ, García-Souto D, Cvitanić T, Plohl M, Šatović-Vukšić E. Satellitome Analysis of the Pacific Oyster Crassostrea gigas Reveals New Pattern of Satellite DNA Organization, Highly Scattered across the Genome. Int J Mol Sci 2021; 22:ijms22136798. [PMID: 34202698 PMCID: PMC8268682 DOI: 10.3390/ijms22136798] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 06/18/2021] [Accepted: 06/19/2021] [Indexed: 12/22/2022] Open
Abstract
Several features already qualified the invasive bivalve species Crassostrea gigas as a valuable non-standard model organism in genome research. C. gigas is characterized by the low contribution of satellite DNAs (satDNAs) vs. mobile elements and has an extremely low amount of heterochromatin, predominantly built of DNA transposons. In this work, we have identified 52 satDNAs composing the satellitome of C. gigas and constituting about 6.33% of the genome. Satellitome analysis reveals unusual, highly scattered organization of relatively short satDNA arrays across the whole genome. However, peculiar chromosomal distribution and densities are specific for each satDNA. The inspection of the organizational forms of the 11 most abundant satDNAs shows association with constitutive parts of Helitron mobile elements. Nine of the inspected satDNAs are dominantly found in mobile element-associated form, two mostly appear standalone, and only one is present exclusively as Helitron-associated sequence. The Helitron-related satDNAs appear in more chromosomes than other satDNAs, indicating that these mobile elements could be leading satDNA propagation in C. gigas. No significant accumulation of satDNAs on certain chromosomal positions was detected in C. gigas, thus establishing a novel pattern of satDNA organization on the genome level.
Collapse
Affiliation(s)
- Monika Tunjić-Cvitanić
- Division of Molecular Biology, Ruđer Bošković Institute, 10000 Zagreb, Croatia; (M.T.-C.); (M.P.)
| | - Juan J. Pasantes
- Centro de Investigación Mariña, Universidade de Vigo, Dpto de Bioquímica, Xenética e Inmunoloxía, 36310 Vigo, Spain;
| | - Daniel García-Souto
- Genomes and Disease, Centre for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Spain;
- Department of Zoology, Genetics and Physical Anthropology, Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Spain
| | - Tonči Cvitanić
- Rimac Automobili d.o.o., Ljubljanska ulica 7, 10431 Sveta Nedelja, Croatia;
| | - Miroslav Plohl
- Division of Molecular Biology, Ruđer Bošković Institute, 10000 Zagreb, Croatia; (M.T.-C.); (M.P.)
| | - Eva Šatović-Vukšić
- Division of Molecular Biology, Ruđer Bošković Institute, 10000 Zagreb, Croatia; (M.T.-C.); (M.P.)
- Correspondence:
| |
Collapse
|
22
|
Montiel EE, Panzera F, Palomeque T, Lorite P, Pita S. Satellitome Analysis of Rhodnius prolixus, One of the Main Chagas Disease Vector Species. Int J Mol Sci 2021; 22:6052. [PMID: 34205189 PMCID: PMC8199985 DOI: 10.3390/ijms22116052] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 12/13/2022] Open
Abstract
The triatomine Rhodnius prolixus is the main vector of Chagas disease in countries such as Colombia and Venezuela, and the first kissing bug whose genome has been sequenced and assembled. In the repetitive genome fraction (repeatome) of this species, the transposable elements represented 19% of R. prolixus genome, being mostly DNA transposon (Class II elements). However, scarce information has been published regarding another important repeated DNA fraction, the satellite DNA (satDNA), or satellitome. Here, we offer, for the first time, extended data about satellite DNA families in the R. prolixus genome using bioinformatics pipeline based on low-coverage sequencing data. The satellitome of R. prolixus represents 8% of the total genome and it is composed by 39 satDNA families, including four satDNA families that are shared with Triatoma infestans, as well as telomeric (TTAGG)n and (GATA)n repeats, also present in the T. infestans genome. Only three of them exceed 1% of the genome. Chromosomal hybridization with these satDNA probes showed dispersed signals over the euchromatin of all chromosomes, both in autosomes and sex chromosomes. Moreover, clustering analysis revealed that most abundant satDNA families configured several superclusters, indicating that R. prolixus satellitome is complex and that the four most abundant satDNA families are composed by different subfamilies. Additionally, transcription of satDNA families was analyzed in different tissues, showing that 33 out of 39 satDNA families are transcribed in four different patterns of expression across samples.
Collapse
Affiliation(s)
- Eugenia E. Montiel
- Department of Experimental Biology, Genetics, University of Jaén. Paraje las Lagunillas sn., 23071 Jaén, Spain; (E.E.M.); (T.P.)
| | - Francisco Panzera
- Evolutionary Genetic Section, Faculty of Science, University of the Republic, Iguá 4225, Montevideo 11400, Uruguay;
| | - Teresa Palomeque
- Department of Experimental Biology, Genetics, University of Jaén. Paraje las Lagunillas sn., 23071 Jaén, Spain; (E.E.M.); (T.P.)
| | - Pedro Lorite
- Department of Experimental Biology, Genetics, University of Jaén. Paraje las Lagunillas sn., 23071 Jaén, Spain; (E.E.M.); (T.P.)
| | - Sebastián Pita
- Evolutionary Genetic Section, Faculty of Science, University of the Republic, Iguá 4225, Montevideo 11400, Uruguay;
| |
Collapse
|