1
|
Xiaoqi C, Kang N, Pei X. Enhancing medicinal proteins production in plant bioreactors: A focal review on promoters. Fitoterapia 2025; 180:106338. [PMID: 39667679 DOI: 10.1016/j.fitote.2024.106338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 12/01/2024] [Accepted: 12/05/2024] [Indexed: 12/14/2024]
Abstract
The use of plant bioreactors for the production of medicinal proteins has emerged as a promising and cost-effective alternative to traditional microbial and mammalian cell culture systems. This review provides a focused examination of the critical role of promoters in enhancing the production of therapeutic proteins within plant-based platforms. We discuss the latest advancements in promoter discovery, modification, and optimization for the expression of medicinal proteins in plants. The review highlights the challenges and opportunities associated with various types of promoters, including constitutive, tissue-specific, and inducible promoters, and their impact on medicinal protein yield and quality. Case studies are presented to illustrate the successful application of these promoter engineering techniques in plant bioreactors, emphasizing the potential for scalable and sustainable production of pharmaceutical proteins. Additionally, we explore the strategies for improving promoter function. This review is intended to guide researchers and industry professionals in the selection and design of promoters for the enhanced production of medicinal proteins in plant bioreactors.
Collapse
Affiliation(s)
- Cai Xiaoqi
- Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, Hangzhou 310018, PR China
| | - Ning Kang
- Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, Hangzhou 310018, PR China
| | - Xu Pei
- Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, Hangzhou 310018, PR China.
| |
Collapse
|
2
|
Yasmeen E, Wang J, Riaz M, Zhang L, Zuo K. Designing artificial synthetic promoters for accurate, smart, and versatile gene expression in plants. PLANT COMMUNICATIONS 2023:100558. [PMID: 36760129 PMCID: PMC10363483 DOI: 10.1016/j.xplc.2023.100558] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 01/30/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
With the development of high-throughput biology techniques and artificial intelligence, it has become increasingly feasible to design and construct artificial biological parts, modules, circuits, and even whole systems. To overcome the limitations of native promoters in controlling gene expression, artificial promoter design aims to synthesize short, inducible, and conditionally controlled promoters to coordinate the expression of multiple genes in diverse plant metabolic and signaling pathways. Synthetic promoters are versatile and can drive gene expression accurately with smart responses; they show potential for enhancing desirable traits in crops, thereby improving crop yield, nutritional quality, and food security. This review first illustrates the importance of synthetic promoters, then introduces promoter architecture and thoroughly summarizes advances in synthetic promoter construction. Restrictions to the development of synthetic promoters and future applications of such promoters in synthetic plant biology and crop improvement are also discussed.
Collapse
Affiliation(s)
- Erum Yasmeen
- Single Cell Research Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jin Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Muhammad Riaz
- Single Cell Research Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lida Zhang
- Single Cell Research Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Kaijing Zuo
- Single Cell Research Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
3
|
Sherpa T, Jha DK, Kumari K, Chanwala J, Dey N. Synthetic sub-genomic transcript promoter from Horseradish Latent Virus (HRLV). PLANTA 2023; 257:40. [PMID: 36653682 DOI: 10.1007/s00425-023-04066-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 12/31/2022] [Indexed: 06/17/2023]
Abstract
We characterized an efficient chimeric sub-genomic transcript promoter from Horseradish Latent Virus, FHS4, active in both dicot and monocot plants, and it could be a potential tool for plant biotechnology. Plant pararetroviruses are a rich source of novel plant promoters widely used for biotechnological applications. Here, we comprehensively characterized a unique sub-genomic transcript (Sgt) promoter of Horseradish Latent Virus (HRLV) and identified a fragment (HS4; - 340 to + 10; 351 bp) that showed the highest expression of reporter genes in both transient and transgenic assays as evidenced by biochemical, histochemical GUS reporter assay and transcript analysis of uidA gene by qRT-PCR. Phylogenetic analysis showed that the HSgt promoter was closely related to the sub-genomic promoter of the Cauliflower Mosaic Virus (CaMV19S). We found that the as-1 element and W-box played an important role in the transcriptional activity of the HS4 promoter. Furthermore, the HS4 promoter was also induced by salicylic acid. Alongside, we enhanced the activity of the HS4 promoter by coupling the enhancer region from Figwort Mosaic Virus (FMV) promoter to the upstream region of it. This hybrid promoter FHS4 was around 1.1 times stronger than the most commonly used promoter, 35S (Cauliflower Mosaic Virus full-length transcript promoter), and was efficient in driving reporter genes in both dicot and monocot plants. Subsequently, transgenic tobacco plants expressing an anti-microbial peptide BrLTP2.1 (Brassica rapa lipid transport protein 2.1), under the control of the FHS4 promoter, were developed. The in vitro anti-fungal assay revealed that the plant-derived BrLTP2.1 protein driven by an FHS4 promoter manifested increased resistance against an important plant fungal pathogen, Alternaria alternata. Finally, we concluded that the FHS4 promoter can be used as an alternative to the 35S promoter and has a high potential to become an efficient tool in plant biotechnology.
Collapse
Affiliation(s)
- Tsheten Sherpa
- Division of Plant Biotechnology, Institute of Life Sciences, NALCO Square, Chandrasekharpur, Bhubaneswar, Odisha, 751023, India
- Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, Haryana (NCR Delhi), 121001, India
| | - Deepak Kumar Jha
- Division of Plant Biotechnology, Institute of Life Sciences, NALCO Square, Chandrasekharpur, Bhubaneswar, Odisha, 751023, India
- Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, Haryana (NCR Delhi), 121001, India
| | - Khushbu Kumari
- Division of Plant Biotechnology, Institute of Life Sciences, NALCO Square, Chandrasekharpur, Bhubaneswar, Odisha, 751023, India
- Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, Haryana (NCR Delhi), 121001, India
| | - Jeky Chanwala
- Division of Plant Biotechnology, Institute of Life Sciences, NALCO Square, Chandrasekharpur, Bhubaneswar, Odisha, 751023, India
- Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, Haryana (NCR Delhi), 121001, India
| | - Nrisingha Dey
- Division of Plant Biotechnology, Institute of Life Sciences, NALCO Square, Chandrasekharpur, Bhubaneswar, Odisha, 751023, India.
| |
Collapse
|
4
|
Sethi L, Sherpa T, Kumari K, Dey N. Further Characterization of MUAS35SCP and FUAS35SCP Recombinant Promoters and Their Implication in Translational Research. Mol Biotechnol 2022; 64:1356-1366. [PMID: 35641838 DOI: 10.1007/s12033-022-00513-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 05/11/2022] [Indexed: 11/24/2022]
Abstract
Recombinant promoters are of high value in translational research. Earlier, we developed two recombinant promoters, namely MUAS35SCP and FUAS35SCP, and their transcriptional activities were found to be stronger than that of the most widely used CaMV35S promoter in dicot plants. Presently, we are reporting constitutive expression of both GUS and GFP reporters under the control of these promoters in several monocots, including rice, wheat, and pearl millet. We observed that these promoters could express the reporter genes constitutively, and their expression abilities were almost equal to that of the CaMV35S2 promoter. Plant-derived enriched PaDef (Persea americana var. drymifolia defensin) and NsDef2 (Nigella sativa L. defensin 2) antimicrobial peptides expressed under the control of these promoters arrest the growth of devastating phytopathogens like Pseudomonas syringae, Rhodococcus fascians, and Alternaria alternata. We observed that plant-derived NsDef2 and PaDef under control of these promoters showed approximately 80-90% inhibitory activity against Pseudomonas syringae. Hence, these promoters were constitutive and universal, as they can drive the expression of transgenes in both dicot and monocot plants. Alongside, these promoters could become a valuable tool for raising genetically modified plants with in-built resistance toward phytopathogens.
Collapse
Affiliation(s)
- Lini Sethi
- Division of Plant and Microbial Biotechnology, Institute of Life Sciences, NALCO Square, Chandrasekharpur, Bhubaneswar, Odisha, 751023, India.,Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, Haryana (NCR Delhi), 121001, India
| | - Tsheten Sherpa
- Division of Plant and Microbial Biotechnology, Institute of Life Sciences, NALCO Square, Chandrasekharpur, Bhubaneswar, Odisha, 751023, India.,Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, Haryana (NCR Delhi), 121001, India
| | - Khushbu Kumari
- Division of Plant and Microbial Biotechnology, Institute of Life Sciences, NALCO Square, Chandrasekharpur, Bhubaneswar, Odisha, 751023, India.,Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, Haryana (NCR Delhi), 121001, India
| | - Nrisingha Dey
- Division of Plant and Microbial Biotechnology, Institute of Life Sciences, NALCO Square, Chandrasekharpur, Bhubaneswar, Odisha, 751023, India.
| |
Collapse
|