1
|
Ruijia Y, Sakura H, Gunji YP. Feeling of hand deformation as a monkey's hand: an experiment on a visual body with discomfort and its algebraic analysis. Front Neurosci 2023; 17:975597. [PMID: 37492401 PMCID: PMC10363724 DOI: 10.3389/fnins.2023.975597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 06/08/2023] [Indexed: 07/27/2023] Open
Abstract
While there are many studies in which body ownership can be transferred to a virtual body, there are few experimental studies of how subjects feel about their own bodies being deformed since a real body cannot be deformed. Here, we propose such an experimental setup, in which a twisted hand is diagonally viewed from behind, which is called a "monkey's hand." Although the subject cannot see the thumb hidden behind his or her arm, he or she feels that the monkey's hand has an ambiguous thumb that functionally never exists but structurally exists. This ambiguity is consistent with experimental results on proprioceptive drift, by which the deformation of the hand is measured. The ambiguity of the presence and absence of the thumb is finally analyzed with a specific algebraic structure called a lattice. This can help us understand disownership as being different from the absence of ownership.
Collapse
Affiliation(s)
- Yang Ruijia
- Department of Intermedia Art and Science, School of Fundamental Science and Technology, Waseda University, Tokyo, Japan
| | - Hirokazu Sakura
- Department of Intermedia Art and Science, School of Fundamental Science and Technology, Waseda University, Tokyo, Japan
| | - Yukio-Pegio Gunji
- Department of Intermedia Art and Science, School of Fundamental Science and Technology, Waseda University, Tokyo, Japan
| |
Collapse
|
2
|
Zhou Z, Chen S, Li Y, Zhao J, Li G, Chen L, Wu Y, Zhang S, Shi X, Chen X, Xu S, Ren M, Chang S, Shan C. Comparison of Sensory Observation and Somatosensory Stimulation in Mirror Neurons and the Sensorimotor Network: A Task-Based fMRI Study. Front Neurol 2022; 13:916990. [PMID: 35847217 PMCID: PMC9279701 DOI: 10.3389/fneur.2022.916990] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 05/25/2022] [Indexed: 12/03/2022] Open
Abstract
Objective This study aimed to investigate brain plasticity by somatosensory stimulation (SS) and sensory observation (SO) based on mirror neuron and embodied cognition theory. Action observation therapy has been widely adopted for motor function improvement in post-stroke patients. However, it is uncertain whether the SO approach can also contribute to the recovery of sensorimotor function after stroke. In this study, we explored the therapeutic potential of SO for sensorimotor dysfunction and provided new evidence for neurorehabilitation. Methods Twenty-six healthy right-handed adults (12 men and 14 women), aged 18–27 (mean, 22.12; SD, 2.12) years were included. All subjects were evaluated with task-based functional magnetic resonance imaging (fMRI) to discover the characteristics and differences in brain activation between SO and SS. We adopted a block design with two conditions during fMRI scanning: observing a sensory video of brushing (task condition A, defined as SO) and brushing subjects' right forearms while they watched a nonsense string (task condition B, defined as SS). One-sample t-tests were performed to identify brain regions and voxels activated for each task condition. A paired-sample t-test and conjunction analysis were performed to explore the differences and similarities between SO and SS. Results The task-based fMRI showed that the bilateral postcentral gyrus, left precentral gyrus, bilateral middle temporal gyrus, right supramarginal gyrus, and left supplementary motor area were significantly activated during SO or SS. In addition to these brain regions, SO could also activate areas containing mirror neurons, like the left inferior parietal gyrus. Conclusion SO could activate mirror neurons and sensorimotor network-related brain regions in healthy subjects like SS. Therefore, SO may be a promising novel therapeutic approach for sensorimotor dysfunction recovery in post-stroke patients.
Collapse
Affiliation(s)
- Zhiqing Zhou
- Center of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Songmei Chen
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rehabilitation Medicine, Shanghai No. 3 Rehabilitation Hospital, Shanghai, China
| | - Yuanli Li
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, China
| | - Jingjun Zhao
- Center of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guanwu Li
- Department of Radiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lei Chen
- Department of Radiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuwei Wu
- Center of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Sicong Zhang
- Center of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaolong Shi
- Center of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xixi Chen
- Center of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shutian Xu
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, China
| | - Meng Ren
- Center of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shixin Chang
- Department of Radiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Shixin Chang
| | - Chunlei Shan
- Center of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, China
- Chunlei Shan
| |
Collapse
|
3
|
The Role of Body in Brain Plasticity. Brain Sci 2022; 12:brainsci12020277. [PMID: 35204040 PMCID: PMC8869932 DOI: 10.3390/brainsci12020277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 02/12/2022] [Indexed: 12/14/2022] Open
|
4
|
Leemhuis E, Giuffrida V, De Martino ML, Forte G, Pecchinenda A, De Gennaro L, Giannini AM, Pazzaglia M. Rethinking the Body in the Brain after Spinal Cord Injury. J Clin Med 2022; 11:388. [PMID: 35054089 PMCID: PMC8780443 DOI: 10.3390/jcm11020388] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 01/12/2022] [Indexed: 02/05/2023] Open
Abstract
Spinal cord injuries (SCI) are disruptive neurological events that severly affect the body leading to the interruption of sensorimotor and autonomic pathways. Recent research highlighted SCI-related alterations extend beyond than the expected network, involving most of the central nervous system and goes far beyond primary sensorimotor cortices. The present perspective offers an alternative, useful way to interpret conflicting findings by focusing on the deafferented and deefferented body as the central object of interest. After an introduction to the main processes involved in reorganization according to SCI, we will focus separately on the body regions of the head, upper limbs, and lower limbs in complete, incomplete, and deafferent SCI participants. On one hand, the imprinting of the body's spatial organization is entrenched in the brain such that its representation likely lasts for the entire lifetime of patients, independent of the severity of the SCI. However, neural activity is extremely adaptable, even over short time scales, and is modulated by changing conditions or different compensative strategies. Therefore, a better understanding of both aspects is an invaluable clinical resource for rehabilitation and the successful use of modern robotic technologies.
Collapse
Affiliation(s)
- Erik Leemhuis
- Department of Psychology, Sapienza University of Rome, Via dei Marsi 78, 00185 Rome, Italy; (E.L.); (V.G.); (M.L.D.M.); (A.P.); (L.D.G.); (A.M.G.)
- Action and Body Lab, IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179 Rome, Italy
| | - Valentina Giuffrida
- Department of Psychology, Sapienza University of Rome, Via dei Marsi 78, 00185 Rome, Italy; (E.L.); (V.G.); (M.L.D.M.); (A.P.); (L.D.G.); (A.M.G.)
- Action and Body Lab, IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179 Rome, Italy
| | - Maria Luisa De Martino
- Department of Psychology, Sapienza University of Rome, Via dei Marsi 78, 00185 Rome, Italy; (E.L.); (V.G.); (M.L.D.M.); (A.P.); (L.D.G.); (A.M.G.)
- Action and Body Lab, IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179 Rome, Italy
| | - Giuseppe Forte
- Department of Psychology, Sapienza University of Rome, Via dei Marsi 78, 00185 Rome, Italy; (E.L.); (V.G.); (M.L.D.M.); (A.P.); (L.D.G.); (A.M.G.)
- Action and Body Lab, IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179 Rome, Italy
| | - Anna Pecchinenda
- Department of Psychology, Sapienza University of Rome, Via dei Marsi 78, 00185 Rome, Italy; (E.L.); (V.G.); (M.L.D.M.); (A.P.); (L.D.G.); (A.M.G.)
| | - Luigi De Gennaro
- Department of Psychology, Sapienza University of Rome, Via dei Marsi 78, 00185 Rome, Italy; (E.L.); (V.G.); (M.L.D.M.); (A.P.); (L.D.G.); (A.M.G.)
- Action and Body Lab, IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179 Rome, Italy
| | - Anna Maria Giannini
- Department of Psychology, Sapienza University of Rome, Via dei Marsi 78, 00185 Rome, Italy; (E.L.); (V.G.); (M.L.D.M.); (A.P.); (L.D.G.); (A.M.G.)
| | - Mariella Pazzaglia
- Department of Psychology, Sapienza University of Rome, Via dei Marsi 78, 00185 Rome, Italy; (E.L.); (V.G.); (M.L.D.M.); (A.P.); (L.D.G.); (A.M.G.)
- Action and Body Lab, IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179 Rome, Italy
| |
Collapse
|
5
|
Leemhuis E, Giuffrida V, Giannini AM, Pazzaglia M. A Therapeutic Matrix: Virtual Reality as a Clinical Tool for Spinal Cord Injury-Induced Neuropathic Pain. Brain Sci 2021; 11:1201. [PMID: 34573221 PMCID: PMC8472645 DOI: 10.3390/brainsci11091201] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 08/31/2021] [Accepted: 09/10/2021] [Indexed: 11/16/2022] Open
Abstract
Neuropathic pain (NP) is a chronic, debilitating, and resistant form of pain. The onset rate of NP following spinal cord injuries (SCI) is high and may reduce the quality of life more than the sensorimotor loss itself. The long-term ineffectiveness of current treatments in managing symptoms and counteracting maladaptive plasticity highlights the need to find alternative therapeutic approaches. Virtual reality (VR) is possibly the best way to administer the specific illusory or reality-like experience and promote behavioral responses that may be effective in mitigating the effects of long-established NP. This approach aims to promote a more systematic adoption of VR-related techniques in pain research and management procedures, highlighting the encouraging preliminary results in SCI. We suggest that the multisensory modulation of the sense of agency and ownership by residual body signals may produce positive responses in cases of brain-body disconnection. First, we focus on the transversal role embodiment and how multisensory and environmental or artificial stimuli modulate illusory sensations of bodily presence and ownership. Then, we present a brief overview of the use of VR in healthcare and pain management. Finally, we discus research experiences which used VR in patients with SCI to treating NP, including the most recent combinations of VR with further stimulation techniques.
Collapse
Affiliation(s)
- Erik Leemhuis
- Department of Psychology, Sapienza University of Rome, Via dei Marsi 78, 00185 Rome, Italy
- Body and Action Lab, IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179 Rome, Italy
| | - Valentina Giuffrida
- Department of Psychology, Sapienza University of Rome, Via dei Marsi 78, 00185 Rome, Italy
- Body and Action Lab, IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179 Rome, Italy
| | - Anna Maria Giannini
- Department of Psychology, Sapienza University of Rome, Via dei Marsi 78, 00185 Rome, Italy
| | - Mariella Pazzaglia
- Department of Psychology, Sapienza University of Rome, Via dei Marsi 78, 00185 Rome, Italy
- Body and Action Lab, IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179 Rome, Italy
| |
Collapse
|
6
|
De Martino ML, De Bartolo M, Leemhuis E, Pazzaglia M. Rebuilding Body-Brain Interaction from the Vagal Network in Spinal Cord Injuries. Brain Sci 2021; 11:brainsci11081084. [PMID: 34439702 PMCID: PMC8391959 DOI: 10.3390/brainsci11081084] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/12/2021] [Accepted: 08/15/2021] [Indexed: 12/12/2022] Open
Abstract
Spinal cord injuries (SCIs) exert devastating effects on body awareness, leading to the disruption of the transmission of sensory and motor inputs. Researchers have attempted to improve perceived body awareness post-SCI by intervening at the multisensory level, with the integration of somatic sensory and motor signals. However, the contributions of interoceptive-visceral inputs, particularly the potential interaction of motor and interoceptive signals, remain largely unaddressed. The present perspective aims to shed light on the use of interoceptive signals as a significant resource for patients with SCI to experience a complete sense of body awareness. First, we describe interoceptive signals as a significant obstacle preventing such patients from experiencing body awareness. Second, we discuss the multi-level mechanisms associated with the homeostatic stability of the body, which creates a unified, coherent experience of one's self and one's body, including real-time updates. Body awareness can be enhanced by targeting the vagus nerve function by, for example, applying transcutaneous vagus nerve stimulation. This perspective offers a potentially useful insight for researchers and healthcare professionals, allowing them to be better equipped in SCI therapy. This will lead to improved sensory motor and interoceptive signals, a decreased likelihood of developing deafferentation pain, and the successful implementation of modern robotic technologies.
Collapse
Affiliation(s)
- Maria Luisa De Martino
- Department of Psychology, Sapienza University of Rome, Via dei Marsi 78, 00185 Rome, Italy; (M.L.D.M.); (M.D.B.); (E.L.)
- Body and Action Lab, IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179 Rome, Italy
| | - Mina De Bartolo
- Department of Psychology, Sapienza University of Rome, Via dei Marsi 78, 00185 Rome, Italy; (M.L.D.M.); (M.D.B.); (E.L.)
| | - Erik Leemhuis
- Department of Psychology, Sapienza University of Rome, Via dei Marsi 78, 00185 Rome, Italy; (M.L.D.M.); (M.D.B.); (E.L.)
- Body and Action Lab, IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179 Rome, Italy
| | - Mariella Pazzaglia
- Department of Psychology, Sapienza University of Rome, Via dei Marsi 78, 00185 Rome, Italy; (M.L.D.M.); (M.D.B.); (E.L.)
- Body and Action Lab, IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179 Rome, Italy
- Correspondence: ; Tel.: +39-6-49917633
| |
Collapse
|
7
|
Leemhuis E, Esposito RM, De Gennaro L, Pazzaglia M. Go Virtual to Get Real: Virtual Reality as a Resource for Spinal Cord Treatment. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:1819. [PMID: 33668438 PMCID: PMC7918193 DOI: 10.3390/ijerph18041819] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 02/05/2023]
Abstract
Increasingly, refined virtual reality (VR) techniques allow for the simultaneous and coherent stimulation of multiple sensory and motor domains. In some clinical interventions, such as those related to spinal cord injuries (SCIs), the impact of VR on people's multisensory perception, movements, attitudes, and even modulations of socio-cognitive aspects of their behavior may influence every phase of their rehabilitation treatment, from the acute to chronic stages. This work describes the potential advantages of using first-person-perspective VR to treat SCIs and its implications for manipulating sensory-motor feedback to alter body signals. By situating a patient with SCI in a virtual environment, sensorial perceptions and motor intention can be enriched into a more coherent bodily experience that also promotes processes of neural regeneration and plasticity. In addition to the great potential of research, the most significant areas of interest concern is managing neuropathic pain, motor rehabilitation, and psychological well-being.
Collapse
Affiliation(s)
- Erik Leemhuis
- Department of Psychology, Sapienza University of Rome, 00185 Rome, Italy; (E.L.); (R.M.E.); (L.D.G.)
- Body and Action Lab IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
| | - Rita Maria Esposito
- Department of Psychology, Sapienza University of Rome, 00185 Rome, Italy; (E.L.); (R.M.E.); (L.D.G.)
- Body and Action Lab IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
| | - Luigi De Gennaro
- Department of Psychology, Sapienza University of Rome, 00185 Rome, Italy; (E.L.); (R.M.E.); (L.D.G.)
- Body and Action Lab IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
| | - Mariella Pazzaglia
- Department of Psychology, Sapienza University of Rome, 00185 Rome, Italy; (E.L.); (R.M.E.); (L.D.G.)
- Body and Action Lab IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
| |
Collapse
|
8
|
Duarte D, Bauer CCC, Pinto CB, Saleh Velez FG, Estudillo-Guerra MA, Pacheco-Barrios K, Gunduz ME, Crandell D, Merabet L, Fregni F. Cortical plasticity in phantom limb pain: A fMRI study on the neural correlates of behavioral clinical manifestations. Psychiatry Res Neuroimaging 2020; 304:111151. [PMID: 32738724 PMCID: PMC9394643 DOI: 10.1016/j.pscychresns.2020.111151] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 07/21/2020] [Accepted: 07/21/2020] [Indexed: 12/29/2022]
Abstract
The neural mechanism of phantom limb pain (PLP) is related to the intense brain reorganization process implicating plasticity after deafferentation mostly in sensorimotor system. There is a limited understanding of the association between the sensorimotor system and PLP. We used a novel task-based functional magnetic resonance imaging (fMRI) approach to (1) assess neural activation within a-priori selected regions-of-interested (motor cortex [M1], somatosensory cortex [S1], and visual cortex [V1]), (2) quantify the cortical representation shift in the affected M1, and (3) correlate these changes with baseline clinical characteristics. In a sample of 18 participants, we found a significantly increased activity in M1 and S1 as well as a shift in motor cortex representation that was not related to PLP intensity. In an exploratory analyses (not corrected for multiple comparisons), they were directly correlated with time since amputation; and there was an association between increased activity in M1 with a lack of itching sensation and V1 activation was negatively correlated with PLP. Longer periods of amputation lead to compensatory changes in sensory-motor areas; and itching seems to be a protective marker for less signal changes. We confirmed that PLP intensity is not associated with signal changes in M1 and S1 but in V1.
Collapse
Affiliation(s)
- D Duarte
- Spaulding Neuromodulation Center, Spaulding Rehabilitation Hospital, Harvard Medical School. 96 13th Street, Charlestown, Boston, MA 02129, USA; Department of Psychiatry and Behavioural Neurosciences, McMaster University. 100 West 5th Street, Hamilton, ON L8N 3K7, Canada
| | - C C C Bauer
- McGovern Institute for Brain Research, MIT. 43 Vassar St, Cambridge, MA 02139, USA; Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus UNAM 3001, 76230 Juriquilla, Querétaro, 76230, México; Department of Psychology, Northeastern University, 805 Columbus Avenue, Boston, MA 02139, USA.
| | - C B Pinto
- Spaulding Neuromodulation Center, Spaulding Rehabilitation Hospital, Harvard Medical School. 96 13th Street, Charlestown, Boston, MA 02129, USA
| | - F G Saleh Velez
- Spaulding Neuromodulation Center, Spaulding Rehabilitation Hospital, Harvard Medical School. 96 13th Street, Charlestown, Boston, MA 02129, USA; University of Chicago Medical Center, Department of Neurology, University of Chicago. 5841 S Maryland Ave # C411, Chicago, IL 60637, USA
| | - M A Estudillo-Guerra
- Spaulding Neuromodulation Center, Spaulding Rehabilitation Hospital, Harvard Medical School. 96 13th Street, Charlestown, Boston, MA 02129, USA
| | - K Pacheco-Barrios
- Spaulding Neuromodulation Center, Spaulding Rehabilitation Hospital, Harvard Medical School. 96 13th Street, Charlestown, Boston, MA 02129, USA; Universidad San Ignacio de Loyola, Vicerrectorado de Investigación, Unidad de Investigación para la Generación y Síntesis de Evidencias en Salud. Lima, Peru. Av. La Fontana 750 Edificio El Cubo, La Molina - Perú
| | - M E Gunduz
- Spaulding Neuromodulation Center, Spaulding Rehabilitation Hospital, Harvard Medical School. 96 13th Street, Charlestown, Boston, MA 02129, USA
| | - D Crandell
- Spaulding Neuromodulation Center, Spaulding Rehabilitation Hospital, Harvard Medical School. 96 13th Street, Charlestown, Boston, MA 02129, USA
| | - L Merabet
- Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School. 243 Charles St, Boston, MA 02114, USA
| | - F Fregni
- Spaulding Neuromodulation Center, Spaulding Rehabilitation Hospital, Harvard Medical School. 96 13th Street, Charlestown, Boston, MA 02129, USA; Massachusetts General Hospital, Harvard Medical School. 55 Fruit St, Boston, MA 02114, USA.
| |
Collapse
|
9
|
Effects of Rubber Hand Illusion and Excitatory Theta Burst Stimulation on Tactile Sensation: A Pilot Study. Neural Plast 2020; 2020:3069639. [PMID: 32318103 PMCID: PMC7152971 DOI: 10.1155/2020/3069639] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 03/11/2020] [Indexed: 12/14/2022] Open
Abstract
Synchronous visuotactile stimulation on the own hidden hand and a visible fake limb can alter bodily self-perception and influence spontaneous neuroplasticity. The rubber hand illusion (RHI) paradigm experimentally produces an illusion of rubber hand ownership and arm shift by simultaneously stroking a rubber hand in view and a participant's visually occluded hand. The aim of this cross-over, placebo-controlled, single-blind study was to assess whether RHI, in combination with high-frequency repetitive transcranial magnetic stimulation (rTMS) given as intermittent (excitatory) theta burst stimulation (iTBS) applied over the hand area of the primary sensory region (S1) can enhance tactile sensation in a group of 21 healthy subjects and one patient with cervical spinal cord injury. Four sessions covered all combinations of real and sham stimulations of the RHI and the TBS: real TBS and real RHI, real TBS and sham RHI, sham TBS and real RHI, and both conditions sham. The condition sham TBS and real RHI shows the greatest effect on the proprioceptive drift (median 2.3 cm, IQR 2) and on the score of RHI questionnaires (median 3, IQR 2) in the control group as well as in the real-real condition (median 2, IQR 2). The sham TBS and real RHI condition also shows the best results in the electrical perception test of the patient (median 1.9 mA). Conversely, the upregulation of the cortical excitability of S1 via TBS seems to impair the effect of the RHI. This might be due to a strengthening of the top-down connection between the central nervous system and the periphery, diminishing the RHI. This finding helps in understanding the mechanisms of top-down and bottom-up mechanisms in healthy subjects and patients with spinal cord injury. The RHI paradigm could represent an interesting therapeutic approach in improving tactile sensation and rTMS techniques could modulate these effects. Yet, further studies are needed, to examine the direction of the interaction effect of TMS and RH.
Collapse
|
10
|
Acquisition of Ownership Illusion with Self-Disownership in Neurological Patients. Brain Sci 2020; 10:brainsci10030170. [PMID: 32183477 PMCID: PMC7139520 DOI: 10.3390/brainsci10030170] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/10/2020] [Accepted: 03/13/2020] [Indexed: 12/26/2022] Open
Abstract
The multisensory regions in frontoparietal cortices play a crucial role in the sense of body and self. Disrupting this sense may lead to a feeling of disembodiment, or more generally, a sense of disownership. Experimentally, this altered consciousness disappears during illusory own-body perceptions, increasing the intensity of perceived ownership for an external virtual limb. In many clinical conditions, particularly in individuals with a discontinuous or absent sense of bodily awareness, the brain may effortlessly create a convincing feeling of body ownership over a surrogate body or body part. The immediate visual input dominates the current bodily state and induces rapid plastic adaptation that reconfigures the dynamics of bodily representation, allowing the brain to acquire an alternative sense of body and self. Investigating strategies to deconstruct the lack of a normal sense of bodily ownership, especially after a neurological injury, may aid the selection of appropriate clinical treatment.
Collapse
|
11
|
Osumi M, Sano Y, Ichinose A, Wake N, Yozu A, Kumagaya SI, Kuniyoshi Y, Morioka S, Sumitani M. Direct evidence of EEG coherence in alleviating phantom limb pain by virtual referred sensation: Case report. Neurocase 2020; 26:55-59. [PMID: 31762364 DOI: 10.1080/13554794.2019.1696368] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Virtual reality (VR) systems have been integrated into rehabilitation techniques for phantom limb pain (PLP). In this case report, we used electroencephalography (EEG) to analyze corticocortical coherence between the bilateral sensorimotor cortices during vibrotactile stimulation in conjunction with VR rehabilitation in two PLP patients. As a result, we observed PLP alleviation and increased alpha wave coherence during VR rehabilitation when stimulation was delivered to the cheek and shoulder (referred sensation areas) of the affected side. Vibrotactile stimulation with VR rehabilitation may enhance the awareness and movement of the phantom hand.
Collapse
Affiliation(s)
- Michihiro Osumi
- Neurorehabilitation Research Center, Kio University, Nara, Japan
| | - Yuko Sano
- Intelligent Systems and Informatics Laboratory, Department of Mechano-Informatics, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Akimichi Ichinose
- Intelligent Systems and Informatics Laboratory, Department of Mechano-Informatics, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Naoki Wake
- Intelligent Systems and Informatics Laboratory, Department of Mechano-Informatics, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Arito Yozu
- Center of Medical Science, Ibaraki Prefectural University of Health Science, Tokyo, Japan
| | - Shin-Ichiro Kumagaya
- Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Yasuo Kuniyoshi
- Intelligent Systems and Informatics Laboratory, Department of Mechano-Informatics, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Shu Morioka
- Neurorehabilitation Research Center, Kio University, Nara, Japan
| | - Masahiko Sumitani
- Department of Pain and Palliative Medicine, The University of Tokyo Hospital, Tokyo, Japan
| |
Collapse
|
12
|
Leemhuis E, De Gennaro L, Pazzaglia M. Disconnected Body Representation: Neuroplasticity Following Spinal Cord Injury. J Clin Med 2019; 8:2144. [PMID: 31817187 PMCID: PMC6947607 DOI: 10.3390/jcm8122144] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 12/02/2019] [Accepted: 12/02/2019] [Indexed: 02/05/2023] Open
Abstract
Neuroplastic changes in somatotopic organization within the motor and somatosensory systems have long been observed. The interruption of afferent and efferent brain-body pathways promotes extensive cortical reorganization. Changes are majorly related to the typical homuncular organization of sensorimotor areas and specific "somatotopic interferences". Recent findings revealed a relevant peripheral contribution to the plasticity of body representation in addition to the role of sensorimotor cortices. Here, we review the ways in which structures and brain mechanisms react to missing or critically altered sensory and motor peripheral signals. We suggest that these plastic events are: (i) variably affected across multiple timescales, (ii) age-dependent, (iii) strongly related to altered perceptual sensations during and after remapping of the deafferented peripheral area, and (iv) may contribute to the appearance of secondary pathological conditions, such as allodynia, hyperalgesia, and neuropathic pain. Understanding the considerable complexity of plastic reorganization processes will be a fundamental step in the formulation of theoretical and clinical models useful for maximizing rehabilitation programs and resulting recovery.
Collapse
Affiliation(s)
- Erik Leemhuis
- Department of Psychology, University of Rome “La Sapienza”, Via dei Marsi 78, 00185 Rome, Italy;
- Istituto di Ricovero e Cura a Carattere Scientifico Fondazione Santa Lucia, Via Ardeatina 306, 00179 Rome, Italy
| | - Luigi De Gennaro
- Department of Psychology, University of Rome “La Sapienza”, Via dei Marsi 78, 00185 Rome, Italy;
- Istituto di Ricovero e Cura a Carattere Scientifico Fondazione Santa Lucia, Via Ardeatina 306, 00179 Rome, Italy
| | - Mariella Pazzaglia
- Department of Psychology, University of Rome “La Sapienza”, Via dei Marsi 78, 00185 Rome, Italy;
- Istituto di Ricovero e Cura a Carattere Scientifico Fondazione Santa Lucia, Via Ardeatina 306, 00179 Rome, Italy
| |
Collapse
|
13
|
Galli G, Lenggenhager B, Scivoletto G, Giannini AM, Pazzaglia M. "My friend, the pain": does altered body awareness affect the valence of pain descriptors? J Pain Res 2019; 12:1721-1732. [PMID: 31213884 PMCID: PMC6549758 DOI: 10.2147/jpr.s191548] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 02/27/2019] [Indexed: 11/23/2022] Open
Abstract
Background: Pain is a marker of bodily status, that despite being aversive under most conditions, may also be perceived as a positive experience. However, how bodily states represent, define, and interpret pain signals, and how these processes might be reflected in common language, remains unclear. Methods: Qualitative and quantitative methods were used to explore the relationship between bodily awareness, pain reactions, and descriptions. A list of pain-related terms was generated from open-ended interviews with persons with spinal cord injury (SCI), and 138 participants (persons with SCI, health professionals, and a healthy control group) rated each descriptor as representative of pain on a gradated scale. A lexical decision task was used to test the strength of the automatic association of the word “pain” with positive and negative concepts. The behavioral results were related to body awareness, experience of pain, and exposure to pain, by comparing the three groups. Results: Higher positive and lower negative pain descriptors, as well as slower response times when categorizing pain as an unpleasant experience were found in the SCI group. The effect was not modulated by either the time since the injury or the present pain intensity, but it was linked to the level of subjective bodily awareness. Compared with the SCI group, health experts and non-experts both associated more quickly the word “pain” and unpleasant in the lexical decision task. However, while health professionals attributed positive linguistic qualities to pain, pain was exclusively associated with negative descriptors in healthy controls group. Conclusions: These findings are discussed in terms of their theoretical and clinical implications. An awareness of bodily signals prominently affects both the sensory and linguistic responses in persons with SCI. Pain should be evaluated more broadly to understand and, by extension, to manage, experiences beyond its adverse side.
Collapse
Affiliation(s)
- G Galli
- IRCCS Fondazione Santa Lucia, Rome, Italy
| | - B Lenggenhager
- Neuropsychology Unit, Department of Neurology, University Hospital Zurich, Zurich, Switzerland
| | | | - A M Giannini
- Dipartimento di Psicologia, University of Rome 'La Sapienza', Rome, Italy
| | - M Pazzaglia
- IRCCS Fondazione Santa Lucia, Rome, Italy.,Dipartimento di Psicologia, University of Rome 'La Sapienza', Rome, Italy
| |
Collapse
|
14
|
Pazzaglia M, Galli G. Action Observation for Neurorehabilitation in Apraxia. Front Neurol 2019; 10:309. [PMID: 31001194 PMCID: PMC6456663 DOI: 10.3389/fneur.2019.00309] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 03/11/2019] [Indexed: 12/21/2022] Open
Abstract
Neurorehabilitation and brain stimulation studies of post-stroke patients suggest that action-observation effects can lead to rapid improvements in the recovery of motor functions and long-term motor cortical reorganization. Apraxia is a clinically important disorder characterized by marked impairment in representing and performing skillful movements [gestures], which limits many daily activities and impedes independent functioning. Recent clinical research has revealed errors of visuo-motor integration in patients with apraxia. This paper presents a rehabilitative perspective focusing on the possibility of action observation as a therapeutic treatment for patients with apraxia. This perspective also outlines impacts on neurorehabilitation and brain repair following the reinforcement of the perceptual-motor coupling. To date, interventions based primarily on action observation in apraxia have not been undertaken.
Collapse
Affiliation(s)
- Mariella Pazzaglia
- Department of Psychology, University of Rome "La Sapienza", Rome, Italy.,IRCCS Fondazione Santa Lucia, Rome, Italy
| | | |
Collapse
|
15
|
Scivoletto G, Galli G, Torre M, Molinari M, Pazzaglia M. The Overlooked Outcome Measure for Spinal Cord Injury: Use of Assistive Devices. Front Neurol 2019; 10:272. [PMID: 30967836 PMCID: PMC6438886 DOI: 10.3389/fneur.2019.00272] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 02/28/2019] [Indexed: 12/12/2022] Open
Abstract
Although several outcome measures are used to assess various areas of interest regarding spinal cord injuries (SCIs), little is known about the frequency of their use, and the ways in which they transform shared knowledge into implemented practices. Herein, 800 professionals from the International Spinal Cord Society, especially trained for caring in patients with SCI, were invited to respond to an Internet survey collecting information on the use of standardized measures in daily clinical practices. We asked both clinicians and researchers with different areas of interest about their use of functional outcome measures, and, in particular, which scales they habitually use to assess various aspects of clinical practice and rehabilitation. We selected a set of rating scales, which were validated for measuring SCIs (http://www.scireproject.com/outcome-measures). The results show that the areas of interest assessed by most of the participants were neurological status, upper limb, lower limb gait, pain, spasticity, self-care, and daily living. The most widely used rating scales were the spinal cord independence measure, the functional independence measure and the International Standards for Neurological Classification of Spinal Cord Injury. Instead, the majority of respondents did not evaluate the use of assistive technology. Despite the availability of several outcome scales, the practice of evaluating SCIs with standardized measures for assistive technologies and wheelchair mobility is still not widespread, even though it is a high priority in the rehabilitation of SCI patients. The results emphasize the need for a more thorough knowledge and use of outcome scales, thus improving the quality of assistive device evaluation.
Collapse
Affiliation(s)
- Giorgio Scivoletto
- Spinal Cord Unit, IRCCS Fondazione Santa Lucia, Rome, Italy.,Spinal Rehabilitation Lab, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Giulia Galli
- Spinal Cord Unit, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Monica Torre
- Spinal Cord Unit, IRCCS Fondazione Santa Lucia, Rome, Italy.,Spinal Rehabilitation Lab, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Marco Molinari
- Spinal Cord Unit, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Mariella Pazzaglia
- Spinal Cord Unit, IRCCS Fondazione Santa Lucia, Rome, Italy.,Department of Psychology, La Sapienza University of Rome, Rome, Italy
| |
Collapse
|
16
|
The Homuncular Jigsaw: Investigations of Phantom Limb and Body Awareness Following Brachial Plexus Block or Avulsion. J Clin Med 2019; 8:jcm8020182. [PMID: 30717476 PMCID: PMC6406464 DOI: 10.3390/jcm8020182] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 01/29/2019] [Accepted: 02/01/2019] [Indexed: 02/07/2023] Open
Abstract
Many neuropsychological theories agree that the brain maintains a relatively persistent representation of one’s own body, as indicated by vivid “phantom” experiences. It remains unclear how the loss of sensory and motor information contributes to the presence of this representation. Here, we focus on new empirical and theoretical evidence of phantom sensations following damage to or an anesthetic block of the brachial plexus. We suggest a crucial role of this structure in understanding the interaction between peripheral and central mechanisms in health and in pathology. Studies of brachial plexus function have shed new light on how neuroplasticity enables “somatotopic interferences”, including pain and body awareness. Understanding the relations among clinical disorders, their neural substrate, and behavioral outcomes may enhance methods of sensory rehabilitation for phantom limbs.
Collapse
|