1
|
Huang L, Ho C, Ye X, Gao Y, Guo W, Chen J, Sun J, Wen D, Liu Y, Liu Y, Zhang Y, Li Q. Mechanisms and translational applications of regeneration in limbs: From renewable animals to humans. Ann Anat 2024; 255:152288. [PMID: 38823491 DOI: 10.1016/j.aanat.2024.152288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 04/08/2024] [Accepted: 05/27/2024] [Indexed: 06/03/2024]
Abstract
BACKGROUND The regenerative capacity of organisms declines throughout evolution, and mammals lack the ability to regenerate limbs after injury. Past approaches to achieving successful restoration through pharmacological intervention, tissue engineering, and cell therapies have faced significant challenges. OBJECTIVES This review aims to provide an overview of the current understanding of the mechanisms behind animal limb regeneration and the successful translation of these mechanisms for human tissue regeneration. RESULTS Particular attention was paid to the Mexican axolotl (Ambystoma mexicanum), the only adult tetrapod capable of limb regeneration. We will explore fundamental questions surrounding limb regeneration, such as how amputation initiates regeneration, how the limb knows when to stop and which parts to regenerate, and how these findings can apply to mammalian systems. CONCLUSIONS Given the urgent need for regenerative therapies to treat conditions like diabetic foot ulcers and trauma survivors, this review provides valuable insights and ideas for researchers, clinicians, and biomedical engineers seeking to facilitate the regeneration process or elicit full regeneration from partial regeneration events.
Collapse
Affiliation(s)
- Lu Huang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China; Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA.
| | - Chiakang Ho
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China
| | - Xinran Ye
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China
| | - Ya Gao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China
| | - Weiming Guo
- Shanghai Key Laboratory of Stomatology, 639 Zhizaoju Road, Shanghai 200011, China; National Clinical Research Center for Oral Diseases, Shanghai 200011, China; National Center for Stomatology, Shanghai 200011, China; College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China; Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China
| | - Julie Chen
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Jiaming Sun
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China
| | - Dongsheng Wen
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China
| | - Yangdan Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China
| | - Yuxin Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China
| | - Yifan Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China.
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China.
| |
Collapse
|
2
|
Di Nardo AA, Fuchs J, Joshi RL, Moya KL, Prochiantz A. The Physiology of Homeoprotein Transduction. Physiol Rev 2019; 98:1943-1982. [PMID: 30067157 DOI: 10.1152/physrev.00018.2017] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The homeoprotein family comprises ~300 transcription factors and was long seen as primarily involved in developmental programs through cell autonomous regulation. However, recent evidence reveals that many of these factors are also expressed in the adult where they exert physiological functions not yet fully deciphered. Furthermore, the DNA-binding domain of most homeoproteins contains two signal sequences allowing their secretion and internalization, thus intercellular transfer. This review focuses on this new-found signaling in cell migration, axon guidance, and cerebral cortex physiological homeostasis and speculates on how it may play important roles in early arealization of the neuroepithelium. It also describes the use of homeoproteins as therapeutic proteins in mouse models of diseases affecting the central nervous system, in particular Parkinson disease and glaucoma.
Collapse
Affiliation(s)
- Ariel A Di Nardo
- Centre for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS UMR 7241, INSERM U1050, Labex MemoLife, PSL Research University , Paris , France
| | - Julia Fuchs
- Centre for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS UMR 7241, INSERM U1050, Labex MemoLife, PSL Research University , Paris , France
| | - Rajiv L Joshi
- Centre for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS UMR 7241, INSERM U1050, Labex MemoLife, PSL Research University , Paris , France
| | - Kenneth L Moya
- Centre for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS UMR 7241, INSERM U1050, Labex MemoLife, PSL Research University , Paris , France
| | - Alain Prochiantz
- Centre for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS UMR 7241, INSERM U1050, Labex MemoLife, PSL Research University , Paris , France
| |
Collapse
|
3
|
Torres-Oliva M, Schneider J, Wiegleb G, Kaufholz F, Posnien N. Dynamic genome wide expression profiling of Drosophila head development reveals a novel role of Hunchback in retinal glia cell development and blood-brain barrier integrity. PLoS Genet 2018; 14:e1007180. [PMID: 29360820 PMCID: PMC5796731 DOI: 10.1371/journal.pgen.1007180] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 02/02/2018] [Accepted: 01/01/2018] [Indexed: 01/01/2023] Open
Abstract
Drosophila melanogaster head development represents a valuable process to study the developmental control of various organs, such as the antennae, the dorsal ocelli and the compound eyes from a common precursor, the eye-antennal imaginal disc. While the gene regulatory network underlying compound eye development has been extensively studied, the key transcription factors regulating the formation of other head structures from the same imaginal disc are largely unknown. We obtained the developmental transcriptome of the eye-antennal discs covering late patterning processes at the late 2nd larval instar stage to the onset and progression of differentiation at the end of larval development. We revealed the expression profiles of all genes expressed during eye-antennal disc development and we determined temporally co-expressed genes by hierarchical clustering. Since co-expressed genes may be regulated by common transcriptional regulators, we combined our transcriptome dataset with publicly available ChIP-seq data to identify central transcription factors that co-regulate genes during head development. Besides the identification of already known and well-described transcription factors, we show that the transcription factor Hunchback (Hb) regulates a significant number of genes that are expressed during late differentiation stages. We confirm that hb is expressed in two polyploid subperineurial glia cells (carpet cells) and a thorough functional analysis shows that loss of Hb function results in a loss of carpet cells in the eye-antennal disc. Additionally, we provide for the first time functional data indicating that carpet cells are an integral part of the blood-brain barrier. Eventually, we combined our expression data with a de novo Hb motif search to reveal stage specific putative target genes of which we find a significant number indeed expressed in carpet cells. The development of different cell types must be tightly coordinated, and the eye-antennal imaginal discs of Drosophila melanogaster represent an excellent model to study the molecular mechanisms underlying this coordination. These imaginal discs contain the anlagen of nearly all adult head structures, such as the antennae, the head cuticle, the ocelli and the compound eyes. While large scale screens have been performed to unravel the gene regulatory network underlying compound eye development, a comprehensive understanding of genome wide expression dynamics throughout head development is still missing to date. We studied the genome wide gene expression dynamics during eye-antennal disc development in D. melanogaster to identify new central regulators of the underlying gene regulatory network. Expression based gene clustering and transcription factor motif enrichment analyses revealed a central regulatory role of the transcription factor Hunchback (Hb). We confirmed that hb is expressed in two polyploid retinal subperineurial glia cells (carpet cells). Our functional analysis shows that Hb is necessary for carpet cell development and we show for the first time that the carpet cells are an integral part of the blood-brain barrier.
Collapse
Affiliation(s)
- Montserrat Torres-Oliva
- Universität Göttingen, Johann-Friedrich-Blumenbach-Institut für Zoologie und Anthropologie, Abteilung für Entwicklungsbiologie, GZMB Ernst-Caspari-Haus, Göttingen, Germany
| | - Julia Schneider
- Universität Göttingen, Johann-Friedrich-Blumenbach-Institut für Zoologie und Anthropologie, Abteilung für Entwicklungsbiologie, GZMB Ernst-Caspari-Haus, Göttingen, Germany
| | - Gordon Wiegleb
- Universität Göttingen, Johann-Friedrich-Blumenbach-Institut für Zoologie und Anthropologie, Abteilung für Entwicklungsbiologie, GZMB Ernst-Caspari-Haus, Göttingen, Germany
| | - Felix Kaufholz
- Universität Göttingen, Johann-Friedrich-Blumenbach-Institut für Zoologie und Anthropologie, Abteilung für Entwicklungsbiologie, GZMB Ernst-Caspari-Haus, Göttingen, Germany
| | - Nico Posnien
- Universität Göttingen, Johann-Friedrich-Blumenbach-Institut für Zoologie und Anthropologie, Abteilung für Entwicklungsbiologie, GZMB Ernst-Caspari-Haus, Göttingen, Germany
- * E-mail:
| |
Collapse
|
4
|
Affiliation(s)
- Lewis Wolpert
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, United Kingdom;
| |
Collapse
|
5
|
Watanabe H, Shimohigashi M, Yokohari F. Serotonin-immunoreactive sensory neurons in the antenna of the cockroachPeriplaneta americana. J Comp Neurol 2013; 522:414-34. [DOI: 10.1002/cne.23419] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 06/24/2013] [Accepted: 07/03/2013] [Indexed: 11/11/2022]
Affiliation(s)
- Hidehiro Watanabe
- Division of Biology, Department of Earth System Science; Fukuoka University; Fukuoka Japan
| | - Miki Shimohigashi
- Division of Biology, Department of Earth System Science; Fukuoka University; Fukuoka Japan
| | - Fumio Yokohari
- Division of Biology, Department of Earth System Science; Fukuoka University; Fukuoka Japan
| |
Collapse
|
6
|
Drosophila distal-less and Rotund bind a single enhancer ensuring reliable and robust bric-a-brac2 expression in distinct limb morphogenetic fields. PLoS Genet 2013; 9:e1003581. [PMID: 23825964 PMCID: PMC3694829 DOI: 10.1371/journal.pgen.1003581] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 05/05/2013] [Indexed: 11/19/2022] Open
Abstract
Most identified Drosophila appendage-patterning genes encode DNA-binding proteins, whose cross-regulatory interactions remain to be better characterized at the molecular level, notably by studying their direct binding to tissue-specific transcriptional enhancers. A fine-tuned spatio-temporal expression of bric-a-brac2 (bab2) along concentric rings is essential for proper proximo-distal (P-D) differentiation of legs and antennae. However, within the genetic interaction landscape governing limb development, no transcription factor directly controlling bab2 expression has been identified to date. Using site-targeted GFP reporter assay and BAC recombineering, we show here that restricted bab2 expression in leg and antennal imaginal discs relies on a single 567-bp-long cis-regulatory module (CRM), termed LAE (for leg and antennal enhancer). We show that this CRM (i) is necessary and sufficient to ensure normal bab2 activity in developing leg and antenna, and (ii) is structurally and functionally conserved among Drosophilidae. Through deletion and site-directed mutagenesis approaches, we identified within the LAE essential sequence motifs required in both leg and antennal tissues. Using genetic and biochemical tests, we establish that in the LAE (i) a key TAAT-rich activator motif interacts with the homeodomain P-D protein Distal-less (Dll) and (ii) a single T-rich activator motif binds the C2H2 zinc-finger P-D protein Rotund (Rn), leading to bab2 up-regulation respectively in all or specifically in the proximal-most ring(s), both in leg and antenna. Joint ectopic expression of Dll and Rn is sufficient to cell-autonomously activate endogenous bab2 and LAE-driven reporter expression in wing and haltere cells. Our findings indicate that accuracy, reliability and robustness of developmental gene expression do not necessarily require cis-regulatory information redundancy. In insects, leg and antenna are homologous limbs, though derive from a single ancestral appendage. In Drosophila, leg and antennal development along the proximo-distal (P-D) axis relies on relatively-well known genetic cascades, in which most appendage-patterning genes encode transcription factors (TF). However, their cross-regulatory interactions remain to be better characterized at the molecular level. A fine-tuned expression of the bric-a-brac2 (bab2) gene is essential for normal leg and antennal segmentation. However, within the genetic cascades governing P-D limb development, no TF directly controlling bab2 expression has been identified to date. We show here that restricted bab2 expression in developing leg and antenna is governed by a single enhancer, termed LAE, which is necessary and sufficient in-vivo to ensure bab2 functions there. We show that leg and antennal cis-regulatory elements are closely associated and that essential LAE sites interact with Distal-less (Dll) and Rotund (Rn) TFs, leading to bab2 activation in all or specifically in the proximal-most expressing cells, respectively. Finally, joint ectopic expression of Dll and Rn is sufficient to instruct wing and haltere cells to up-regulate bab2. Taken together, our work indicates that a single enhancer is necessary and sufficient to reliably govern bab2 expression in distinct morphogenetic fields.
Collapse
|
7
|
Galindo MI, Fernández-Garza D, Phillips R, Couso JP. Control of Distal-less expression in the Drosophila appendages by functional 3' enhancers. Dev Biol 2011; 353:396-410. [PMID: 21320482 PMCID: PMC3940868 DOI: 10.1016/j.ydbio.2011.02.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 02/04/2011] [Accepted: 02/06/2011] [Indexed: 11/22/2022]
Abstract
The expression of the Hox gene Distal-less (Dll) directs the development of appendages in a wide variety of animals. In Drosophila, its expression is subjected to a complex developmental control. In the present work we have studied a 17kb genomic region in the Dll locus which lies downstream of the coding sequence and found control elements of primary functional importance for the expression of Dll in the leg and in other tissues. Of particular interest is a control element, which we have called LP, which drives expression of Dll in the leg primordium from early embryonic development, and whose deletion causes severe truncation and malformation of the adult leg. This is the first Dll enhancer for which, in addition to the ability to drive expression of a reporter, a role can be demonstrated in the expression of the endogenous Dll gene and in the development of the leg. In addition, our results suggest that some enhancers, contrary to the widely accepted notion, may require a specific 5' or 3' position with respect to the transcribed region.
Collapse
Affiliation(s)
- Máximo Ibo Galindo
- Instituto de Biomedicina de Valencia (IBV-CSIC), Jaime Roig, 11, 46010 Valencia, Spain
| | | | | | | |
Collapse
|
8
|
Kim SN, Jung KI, Chung HM, Kim SH, Jeon SH. The pleiohomeotic gene is required for maintaining expression of genes functioning in ventral appendage formation in Drosophila melanogaster. Dev Biol 2008; 319:121-9. [PMID: 18495104 DOI: 10.1016/j.ydbio.2008.04.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2007] [Revised: 04/14/2008] [Accepted: 04/15/2008] [Indexed: 10/22/2022]
Abstract
Polycomb group (PcG) proteins are negative regulators that maintain the expression of homeotic genes and affect cell proliferation. Pleiohomeotic (Pho) is a unique PcG member with a DNA-binding zinc finger motif and was proposed to recruit other PcG proteins to form a complex. The pho null mutants exhibited several mutant phenotypes such as the transformation of antennae to mesothoracic legs. We examined the effects of pho on the identification of ventral appendages and proximo-distal axis formation during postembryogenesis. In the antennal disc of the pho mutant, Antennapedia (Antp), which is a selector gene in determining leg identity, was ectopically expressed. The homothorax (hth), dachshund (dac) and Distal-less (Dll) genes involved in proximo-distal axis formation were also abnormally expressed in both the antennal and leg discs of the pho mutant. The engrailed (en) gene, which affects the formation of the anterior-posterior axis, was also misexpressed in the anterior compartment of antennal and leg discs. These mutant phenotypes were enhanced in the mutant background of Posterior sex combs (Psc) and pleiohomeotic-like (phol), which are another PcG genes. These results suggest that pho functions in maintaining expression of genes involved in the formation of ventral appendages and the proximo-distal axis.
Collapse
Affiliation(s)
- Su-Na Kim
- Department of Biological Sciences, Seoul National University, Seoul 151-747, Republic of Korea.
| | | | | | | | | |
Collapse
|
9
|
Jockusch EL, Williams TA, Nagy LM. The evolution of patterning of serially homologous appendages in insects. Dev Genes Evol 2004; 214:324-38. [PMID: 15170569 DOI: 10.1007/s00427-004-0412-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2004] [Accepted: 04/29/2004] [Indexed: 10/26/2022]
Abstract
Arthropod bodies are formed by a series of appendage-bearing segments, and appendages have diversified both along the body axis within species and between species. Understanding the developmental basis of this variation is essential for addressing questions about the evolutionary diversification of limbs. We examined the development of serially homologous appendages of two insect species, the beetle Tribolium castaneum and the grasshopper Schistocerca americana. Both species retain aspects of ancestral appendage morphology and development that have been lost in Drosophila, including branched mouthparts and direct development of appendages during embryogenesis. We characterized the expression of four genes important in proximodistal axis development of Drosophila appendages: the secreted signaling factors wingless and decapentaplegic, and the homeodomain transcription factors extradenticle and Distal-less. Our comparisons focus on two aspects of appendage morphology: differentiation of the main axis of serial homologues and the appearance of proximal branches (endites) in the mouthparts. Although Distal-less expression is similar in endites and palps of the mouthparts, the expression of other genes in the endites does not conform to their known roles in axial patterning, leading us to reject the hypothesis that branched insect mouthparts develop by reiteration of the limb patterning network. With the exception of decapentaplegic, patterning of the main appendage axis is generally more similar in direct homologues than in serial homologues. Interestingly, however, phylogenetic comparisons suggest that patterning of serial homologues was more similar in ancestral insects, and thus that the observed developmental differences did not cause the evolutionary divergence in morphology among serial homologues.
Collapse
Affiliation(s)
- Elizabeth L Jockusch
- Department of Ecology and Evolutionary Biology, University of Connecticut, U-3043, 75 N. Eagleville Rd., Storrs, CT 06269, USA.
| | | | | |
Collapse
|
10
|
Prpic NM, Damen WGM. Expression patterns of leg genes in the mouthparts of the spider Cupiennius salei (Chelicerata: Arachnida). Dev Genes Evol 2004; 214:296-302. [PMID: 15014991 DOI: 10.1007/s00427-004-0393-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2003] [Accepted: 02/02/2004] [Indexed: 10/26/2022]
Abstract
The leg genes extradenticle, homothorax, dachshund, and Distal-less define three antagonistic developmental domains in the legs, but not in the antenna, of Drosophila. Here we report the expression patterns of these leg genes in the prosomal appendages of the spider Cupiennius salei. The prosoma of the spider bears six pairs of appendages: a pair of cheliceres, a pair of pedipalps, and four pairs of walking legs. Three types of appendages thus can be distinguished in the spider. We show here that in the pedipalp, the leg-like second prosomal appendage, the patterns are very similar to those in the legs themselves, indicating the presence of three antagonistic developmental domains in both appendage types. In contrast, in the chelicera, the fang-like first prosomal appendage, the patterns are different and there is no evidence for antagonistic domains. Together with data from Drosophila this suggests that leg-shaped morphology of arthropod appendages requires an underlying set of antagonistic developmental domains, whereas other morphologies (e.g. antenna, chelicera) may result from the loss of such antagonistic domains.
Collapse
Affiliation(s)
- Nikola-Michael Prpic
- Institut für Genetik, Universität zu Köln, Weyertal 121, 50931, Cologne, Germany
| | | |
Collapse
|