1
|
Grau-Bové X, Subirana L, Meister L, Soubigou A, Neto A, Elek A, Naranjo S, Fornas O, Gomez-Skarmeta JL, Tena JJ, Irimia M, Bertrand S, Sebé-Pedrós A, Escriva H. An amphioxus neurula stage cell atlas supports a complex scenario for the emergence of vertebrate head mesoderm. Nat Commun 2024; 15:4550. [PMID: 38811547 PMCID: PMC11136973 DOI: 10.1038/s41467-024-48774-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 05/13/2024] [Indexed: 05/31/2024] Open
Abstract
The emergence of new structures can often be linked to the evolution of novel cell types that follows the rewiring of developmental gene regulatory subnetworks. Vertebrates are characterized by a complex body plan compared to the other chordate clades and the question remains of whether and how the emergence of vertebrate morphological innovations can be related to the appearance of new embryonic cell populations. We previously proposed, by studying mesoderm development in the cephalochordate amphioxus, a scenario for the evolution of the vertebrate head mesoderm. To further test this scenario at the cell population level, we used scRNA-seq to construct a cell atlas of the amphioxus neurula, stage at which the main mesodermal compartments are specified. Our data allowed us to validate the presence of a prechordal-plate like territory in amphioxus. Additionally, the transcriptomic profile of somite cell populations supports the homology between specific territories of amphioxus somites and vertebrate cranial/pharyngeal and lateral plate mesoderm. Finally, our work provides evidence that the appearance of the specific mesodermal structures of the vertebrate head was associated to both segregation of pre-existing cell populations, and co-option of new genes for the control of myogenesis.
Collapse
Affiliation(s)
- Xavier Grau-Bové
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Lucie Subirana
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins, BIOM, F-66650, Banyuls-sur-Mer, France
| | - Lydvina Meister
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins, BIOM, F-66650, Banyuls-sur-Mer, France
| | - Anaël Soubigou
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins, BIOM, F-66650, Banyuls-sur-Mer, France
| | - Ana Neto
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Sevilla, Spain
| | - Anamaria Elek
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Silvia Naranjo
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Sevilla, Spain
| | - Oscar Fornas
- Flow Cytometry Unit, Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology (BIST), Barcelona, Spain
- Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Jose Luis Gomez-Skarmeta
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Sevilla, Spain
| | - Juan J Tena
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Sevilla, Spain
| | - Manuel Irimia
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- ICREA, Barcelona, Spain
| | - Stéphanie Bertrand
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins, BIOM, F-66650, Banyuls-sur-Mer, France.
- Institut universitaire de France (IUF), Paris, France.
| | - Arnau Sebé-Pedrós
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
- Universitat Pompeu Fabra (UPF), Barcelona, Spain.
- ICREA, Barcelona, Spain.
| | - Hector Escriva
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins, BIOM, F-66650, Banyuls-sur-Mer, France.
| |
Collapse
|
2
|
Li HY, Grifone R, Saquet A, Carron C, Shi DL. The Xenopus homologue of Down syndrome critical region protein 6 drives dorsoanterior gene expression and embryonic axis formation by antagonising polycomb group proteins. Development 2013; 140:4903-13. [DOI: 10.1242/dev.098319] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mesoderm and embryonic axis formation in vertebrates is mediated by maternal and zygotic factors that activate the expression of target genes. Transcriptional derepression plays an important role in the regulation of expression in different contexts; however, its involvement and possible mechanism in mesoderm and embryonic axis formation are largely unknown. Here we demonstrate that XDSCR6, a Xenopus homologue of human Down syndrome critical region protein 6 (DSCR6, or RIPPLY3), regulates mesoderm and embryonic axis formation through derepression of polycomb group (PcG) proteins. Xdscr6 maternal mRNA is enriched in the endoderm of the early gastrula and potently triggers the formation of dorsal mesoderm and neural tissues in ectoderm explants; it also dorsalises ventral mesoderm during gastrulation and induces a secondary embryonic axis. A WRPW motif, which is present in all DSCR6 homologues, is necessary and sufficient for the dorsal mesoderm- and axis-inducing activity. Knockdown of Xdscr6 inhibits dorsal mesoderm gene expression and results in head deficiency. We further show that XDSCR6 physically interacts with PcG proteins through the WRPW motif, preventing the formation of PcG bodies and antagonising their repressor activity in embryonic axis formation. By chromatin immunoprecipitation, we demonstrate that XDSCR6 releases PcG proteins from chromatin and allows dorsal mesoderm gene transcription. Our studies suggest that XDSCR6 might function to sequester PcG proteins and identify a novel derepression mechanism implicated in embryonic induction and axis formation.
Collapse
Affiliation(s)
- Hong-Yan Li
- Laboratory of Developmental Biology, CNRS UMR 7622, University Pierre et Marie Curie, 9 quai Saint-Bernard, 75005 Paris, France
- Department of Marine Biology, Ocean University of China, Qingdao 266003, China
| | - Raphaëlle Grifone
- Laboratory of Developmental Biology, CNRS UMR 7622, University Pierre et Marie Curie, 9 quai Saint-Bernard, 75005 Paris, France
| | - Audrey Saquet
- Laboratory of Developmental Biology, CNRS UMR 7622, University Pierre et Marie Curie, 9 quai Saint-Bernard, 75005 Paris, France
| | - Clémence Carron
- Laboratory of Developmental Biology, CNRS UMR 7622, University Pierre et Marie Curie, 9 quai Saint-Bernard, 75005 Paris, France
| | - De-Li Shi
- Laboratory of Developmental Biology, CNRS UMR 7622, University Pierre et Marie Curie, 9 quai Saint-Bernard, 75005 Paris, France
| |
Collapse
|
3
|
Holland LZ, Onai T. Analyses of gene function in amphioxus embryos by microinjection of mRNAs and morpholino oligonucleotides. Methods Mol Biol 2011; 770:423-38. [PMID: 21805274 DOI: 10.1007/978-1-61779-210-6_16] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The invertebrate chordate amphioxus (Branchiostoma), which is the most basal living chordate, has become an accepted model for the vertebrate ancestor in studies of development and evolution. Amphioxus resembles vertebrates in regard to morphology, developmental gene expression, and gene function. In addition, the amphioxus genome has representatives of most vertebrate gene families. Although it has not undergone the two rounds of whole genome duplications that occurred early in the vertebrate lineage, the amphioxus genome has retained considerable synteny with vertebrate genomes. Thus, studies of genes and development in amphioxus embryos can reveal the fundamental genetic basis of the vertebrate body plan, giving insights into the developmental mechanisms of such organs as the somites, pharynx, kidney, and the central nervous system. Moreover, amphioxus is very useful for understanding how these characters evolved. This chapter details methods for microinjection of amphioxus eggs with mRNAs or morpholino antisense oligonucleotides to analyze gene networks operating in early development.
Collapse
Affiliation(s)
- Linda Z Holland
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA.
| | | |
Collapse
|
4
|
Cloning and characterization of NM23-Bbt2 gene from amphioxus Branchiostoma belcheri tsingtauense. Biologia (Bratisl) 2009. [DOI: 10.2478/s11756-009-0124-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
5
|
Asashima M, Ito Y, Chan T, Michiue T, Nakanishi M, Suzuki K, Hitachi K, Okabayashi K, Kondow A, Ariizumi T. In vitro organogenesis from undifferentiated cells inXenopus. Dev Dyn 2009; 238:1309-20. [DOI: 10.1002/dvdy.21979] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
6
|
Beaster-Jones L, Kaltenbach SL, Koop D, Yuan S, Chastain R, Holland LZ. Expression of somite segmentation genes in amphioxus: a clock without a wavefront? Dev Genes Evol 2008; 218:599-611. [PMID: 18949486 DOI: 10.1007/s00427-008-0257-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2008] [Accepted: 09/26/2008] [Indexed: 12/22/2022]
Abstract
In the basal chordate amphioxus (Branchiostoma), somites extend the full length of the body. The anteriormost somites segment during the gastrula and neurula stages from dorsolateral grooves of the archenteron. The remaining ones pinch off, one at a time, from the tail bud. These posterior somites appear to be homologous to those of vertebrates, even though the latter pinch off from the anterior end of bands of presomitic mesoderm rather than directly from the tail bud. To gain insights into the evolution of mesodermal segmentation in chordates, we determined the expression of ten genes in nascent amphioxus somites. Five (Uncx4.1, NeuroD/atonal-related, IrxA, Pcdhdelta2-17/18, and Hey1) are expressed in stripes in the dorsolateral mesoderm at the gastrula stage and in the tail bud while three (Paraxis, Lcx, and Axin) are expressed in the posterior mesendoderm at the gastrula and neurula stages and in the tail bud at later stages. Expression of two genes (Pbx and OligA) suggests roles in the anterior somites that may be unrelated to initial segmentation. Together with previous data, our results indicate that, with the exception that Engrailed is only segmentally expressed in the anterior somites, the genetic mechanisms controlling formation of both the anterior and posterior somites are probably largely identical. Thus, the fundamental pathways for mesodermal segmentation involving Notch-Delta, Wnt/beta-catenin, and Fgf signaling were already in place in the common ancestor of amphioxus and vertebrates although budding of somites from bands of presomitic mesoderm exhibiting waves of expression of Notch, Wnt, and Fgf target genes was likely a vertebrate novelty. Given the conservation of segmentation gene expression between amphioxus and vertebrate somites, we propose that the clock mechanism may have been established in the basal chordate, while the wavefront evolved later in the vertebrate lineage.
Collapse
Affiliation(s)
- Laura Beaster-Jones
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093-0202, USA
| | | | | | | | | | | |
Collapse
|
7
|
Koop D, Holland LZ. The basal chordate amphioxus as a simple model for elucidating developmental mechanisms in vertebrates. ACTA ACUST UNITED AC 2008; 84:175-87. [DOI: 10.1002/bdrc.20128] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
8
|
Zhang Y, Wang L, Shao M, Zhang H. Characterization and developmental expression of AmphiMef2 gene in amphioxus. ACTA ACUST UNITED AC 2008; 50:637-41. [PMID: 17879062 DOI: 10.1007/s11427-007-0082-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2007] [Accepted: 06/09/2007] [Indexed: 12/18/2022]
Abstract
Myocyte enhancer factor 2 proteins are members of MADS family of transcription factors, which can control the expression of muscle-specific genes in vertebrates. However, not all Mef2 genes are essential for muscle development in invertebrates. Here we have isolated a full-length cDNA from amphioxus, designated AmphiMef2. The predicted amino acid sequence has highly conserved MADS and MEF2 domains, showing higher identity with the corresponding regions of its homologues in vertebrates than those in invertebrates. Results from whole-mount in situ hybridization show that the expression of AmphiMef2 initially appears in the presomitic mesoderm at early neurula stage, then the transcripts are detected in both the somites and the unsegmented presomitic mesoderm. At 36 h larval stage, the expression is only detected in the posterior somites. By 48 h larval stage, the expression is shifted to the preoral pit (a homologous organ to the vertebrate adenohypophysis) and persists until at least 72 h larval stage. The results suggest that AmphiMef2 may be not only involved in the myogenesis but also the development or function of the preoral pit in amphioxus.
Collapse
Affiliation(s)
- Ying Zhang
- Institute of Developmental Biology, Life Science College, Key Lab of Experimental Teratology of Ministry of Education, Shandong University, Jinan 250100, China
| | | | | | | |
Collapse
|
9
|
Kondow A, Hitachi K, Okabayashi K, Hayashi N, Asashima M. Bowline mediates association of the transcriptional corepressor XGrg-4 with Tbx6 during somitogenesis in Xenopus. Biochem Biophys Res Commun 2007; 359:959-64. [PMID: 17577580 DOI: 10.1016/j.bbrc.2007.05.211] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2007] [Accepted: 05/30/2007] [Indexed: 12/17/2022]
Abstract
Prior to the somite segmentation, the cells in the anterior presomitic mesoderm (PSM) express a set of genes that is required for defining the segmental border and polarity of the prospective somite. However, little is known how the expression of these genes is repressed upon segmentation. Here we report that Bowline, an associate protein of the transcriptional corepressor XGrg-4, repressed Tbx6 dependent transcription of Thylacine1 by mediating interaction of Tbx6 with XGrg-4 in Xenopus laevis. In bowline-deficient embryos, segmental border formation was disturbed, and expression of Thylacine1, X-Delta-2, and bowline expanded anteriorly. Tbx6-dependent transcription of Thylacine1 was suppressed by Bowline, together with XGrg-4. We also found that Bowline mediated the interaction of Tbx6 and XGrg-4. Based on our findings, we conclude that a part of the transcriptional repression at the anterior end of the PSM is caused by Bowline mediated transcriptional repression of Tbx6-dependent gene expression in X. laevis.
Collapse
Affiliation(s)
- Akiko Kondow
- Department of Life Sciences (Biology), Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | | | | | | | | |
Collapse
|
10
|
Xing F, Tan X, Zhang PJ, Ma J, Zhang Y, Xu P, Xu Y. Characterization of amphioxus GDF8/11 gene, an archetype of vertebrate MSTN and GDF11. Dev Genes Evol 2007; 217:549-54. [PMID: 17551751 DOI: 10.1007/s00427-007-0162-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2007] [Accepted: 04/25/2007] [Indexed: 10/23/2022]
Abstract
MSTN, also known as growth and differentiation factor 8 (GDF8), and GDF11 are members of the transforming growth factor-beta (TGF-beta) subfamily. They have been thought to be derived from one ancestral gene. In the present study, we report the isolation and characterization of an invertebrate GDF8/11 homolog from the amphioxus (Branchiostoma belcheri tsingtauense). The amphioxus GDF8/11 gene consists of five exons flanked by four introns, which have two more exons and introns than that of other species. In intron III, a possible transposable element was identified. This suggested that this intron might be derived from transposon. The amphioxus GDF8/11 cDNA encodes a polypeptide of 419 amino acid residues. Phologenetic analysis shows that the GDF8/11 is at the base of vertebrate MSTNs and GDF11s. This result might prove that the GDF8/11 derived from one ancestral gene and the amphioxus GDF8/11 may be the common ancestral gene, and also the gene duplication event generating MSTN and GDF11 occurred before the divergence of vertebrates and after or at the divergence of amphioxus from vertebrates. Reverse transcriptase polymerase chain reaction results showed that the GDF8/11 gene was expressed in new fertilized cell, early gastrulation, and knife-shaped embryo, which was different from that in mammals. It suggested that the GDF8/11 gene might possess additional functions other than regulating muscle growth in amphioxus.
Collapse
Affiliation(s)
- Fuguo Xing
- Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, Shandong, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
11
|
Chen Z, Zhang H, Yang H, Huang X, Zhang X, Zhang P. The expression of AmphiTCTP, a TCTP orthologous gene in amphioxus related to the development of notochord and somites. Comp Biochem Physiol B Biochem Mol Biol 2007; 147:460-5. [PMID: 17400495 DOI: 10.1016/j.cbpb.2007.02.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2006] [Revised: 02/07/2007] [Accepted: 02/25/2007] [Indexed: 11/25/2022]
Abstract
The translationally controlled tumor protein (TCTP) is highly conserved and has been widely found in eukaryotic organisms. Here, we report the phylogenetic analysis and developmental expression of AmphiTCTP, a TCTP homologous gene in cephalochordate amphioxus. Phylogenetic analysis indicates that the putative protein of AmphiTCTP is close to its vertebrate orthologs. The mRNA of AmphiTCTP is found in fertilized eggs, early cleavage embryo and most of the early developmental stages by in situ hybridization and RT-PCR, but its expression is not detectable from late cleavage stage to mid-gastrula. The expression of AmphiTCTP in zygotes and early cleavage stages shows that AmphiTCTP may be a maternal gene. From the early neurula stage onward, AmphiTCTP transcript is localized in the presumptive notochord, presomitic mesoderm, and nascent somites. However, its expression is gradually down-regulated after the notochord and somites have been formed. The expression pattern of AmphiTCTP thus coincides with the differentiation of the notochord and somites, this suggests that AmphiTCTP may not be a housekeeping gene and may play an important role in mesoderm development.
Collapse
Affiliation(s)
- Zhongke Chen
- Life Science College, The Key Lab of Experimental Teratolog of Ministry of Education, Shandong University, Jinan, China
| | | | | | | | | | | |
Collapse
|