1
|
Keramidioti A, Schneid S, Busse C, Cramer von Laue C, Bertulat B, Salvenmoser W, Hess M, Alexandrova O, Glauber KM, Steele RE, Hobmayer B, Holstein TW, David CN. A new look at the architecture and dynamics of the Hydra nerve net. eLife 2024; 12:RP87330. [PMID: 38407174 PMCID: PMC10942621 DOI: 10.7554/elife.87330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024] Open
Abstract
The Hydra nervous system is the paradigm of a 'simple nerve net'. Nerve cells in Hydra, as in many cnidarian polyps, are organized in a nerve net extending throughout the body column. This nerve net is required for control of spontaneous behavior: elimination of nerve cells leads to polyps that do not move and are incapable of capturing and ingesting prey (Campbell, 1976). We have re-examined the structure of the Hydra nerve net by immunostaining fixed polyps with a novel antibody that stains all nerve cells in Hydra. Confocal imaging shows that there are two distinct nerve nets, one in the ectoderm and one in the endoderm, with the unexpected absence of nerve cells in the endoderm of the tentacles. The nerve nets in the ectoderm and endoderm do not contact each other. High-resolution TEM (transmission electron microscopy) and serial block face SEM (scanning electron microscopy) show that the nerve nets consist of bundles of parallel overlapping neurites. Results from transgenic lines show that neurite bundles include different neural circuits and hence that neurites in bundles require circuit-specific recognition. Nerve cell-specific innexins indicate that gap junctions can provide this specificity. The occurrence of bundles of neurites supports a model for continuous growth and differentiation of the nerve net by lateral addition of new nerve cells to the existing net. This model was confirmed by tracking newly differentiated nerve cells.
Collapse
Affiliation(s)
- Athina Keramidioti
- Department of Biology, Ludwig-Maximilians-University MunichMartinsriedGermany
| | - Sandra Schneid
- Department of Biology, Ludwig-Maximilians-University MunichMartinsriedGermany
| | - Christina Busse
- Department of Biology, Ludwig-Maximilians-University MunichMartinsriedGermany
| | | | - Bianca Bertulat
- Centre for Organismal Studies (COS) Heidelberg, Heidelberg UniversityHeidelbergGermany
| | - Willi Salvenmoser
- Department of Zoology and Center for Molecular Biosciences Innsbruck (CMBI), University of InnsbruckInnsbruckAustria
| | - Martin Hess
- Department of Biology, Ludwig-Maximilians-University MunichMartinsriedGermany
| | - Olga Alexandrova
- Department of Biology, Ludwig-Maximilians-University MunichMartinsriedGermany
| | - Kristine M Glauber
- Department of Biological Chemistry, University of CaliforniaIrvineUnited States
| | - Robert E Steele
- Department of Biological Chemistry, University of CaliforniaIrvineUnited States
| | - Bert Hobmayer
- Department of Zoology and Center for Molecular Biosciences Innsbruck (CMBI), University of InnsbruckInnsbruckAustria
| | - Thomas W Holstein
- Centre for Organismal Studies (COS) Heidelberg, Heidelberg UniversityHeidelbergGermany
| | - Charles N David
- Department of Biology, Ludwig-Maximilians-University MunichMartinsriedGermany
| |
Collapse
|
2
|
The Involvement of Cell-Type-Specific Glycans in Hydra Temporary Adhesion Revealed by a Lectin Screen. Biomimetics (Basel) 2022; 7:biomimetics7040166. [PMID: 36278723 PMCID: PMC9589958 DOI: 10.3390/biomimetics7040166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/07/2022] [Accepted: 10/13/2022] [Indexed: 11/17/2022] Open
Abstract
Hydra is a freshwater solitary polyp, capable of temporary adhesion to underwater surfaces. The reversible attachment is based on an adhesive material that is secreted from its basal disc cells and left behind on the substrate as a footprint. Despite Hydra constituting a standard model system in stem cell biology and tissue regeneration, few studies have addressed its bioadhesion. This project aimed to characterize the glycan composition of the Hydra adhesive, using a set of 23 commercially available lectins to label Hydra cells and footprints. The results indicated the presence of N-acetylglucosamine, N-acetylgalactosamine, fucose, and mannose in the adhesive material. The labeling revealed a meshwork-like substructure in the footprints, implying that the adhesive is mainly formed by fibers. Furthermore, lectins might serve as a marker for Hydra cells and structures, e.g., many labeled as glycan-rich nematocytes. Additionally, some unexpected patterns were uncovered, such as structures associated with radial muscle fibers and endodermal gland cells in the hypostome of developing buds.
Collapse
|
3
|
Furness JB. Comparative and Evolutionary Aspects of the Digestive System and Its Enteric Nervous System Control. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1383:165-177. [PMID: 36587156 DOI: 10.1007/978-3-031-05843-1_16] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
All life forms must gain nutrients from the environment and from single cell organisms to mammals a digestive system is present. Components of the digestive system that are recognized in mammals can be seen in the sea squirt that has had its current form for around 500my. Nevertheless, in mammals, the organ system that is most varied is the digestive system, its architecture being related to the dietary niche of each species. Forms include those of foregut or hindgut fermenters, single or multicompartment stomachs and short or capacious large intestines. Dietary niches include nectarivores, folivores, carnivores, etc. The human is exceptional in that, through food preparation (>80% of human consumption is prepared food in modern societies), humans can utilize a wider range of foods than other species. They are cucinivores, food preparers. In direct descendants of simple organisms, such as sponges, there is no ENS, but as the digestive tract becomes more complex, it requires integrated control of the movement and assimilation of its content. This is achieved by the nervous system, notably the enteric nervous system (ENS) and an array of gut hormones. An ENS is first observed in the phylum cnidaria, exemplified by hydra. But hydra has no collections of neurons that could in any way be regarded as a central nervous system. All animals more complex than hydra have an ENS, but not all have a CNS. In mammals, the ENS is extensive and is necessary for control of movement, enteric secretions and local blood flow, and regulation of the gut immune system. In animals with a CNS, the ENS and CNS have reciprocal connections. From hydra to human, an ENS is essential to life.
Collapse
Affiliation(s)
- John B Furness
- Digestive Physiology and Nutrition Laboratories, Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia.
- Department of Anatomy & Physiology, University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
4
|
Wang R, Goel T, Khazoyan K, Sabry Z, Quan HJ, Diamond PH, Collins EMS. Mouth Function Determines the Shape Oscillation Pattern in Regenerating Hydra Tissue Spheres. Biophys J 2019; 117:1145-1155. [PMID: 31443907 DOI: 10.1016/j.bpj.2019.07.051] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 06/25/2019] [Accepted: 07/30/2019] [Indexed: 12/12/2022] Open
Abstract
Hydra is a small freshwater polyp capable of regeneration from small tissue pieces and from aggregates of cells. During regeneration, a hollow bilayered sphere is formed that undergoes osmotically driven shape oscillations of inflation and rupture. These oscillations are necessary for successful regeneration. Eventually, the oscillating sphere breaks rotational symmetry along the future head-foot axis of the animal. Notably, the shape oscillations show an abrupt shift from large-amplitude, long-period oscillations to small-amplitude, short-period oscillations. It has been widely accepted that this shift in oscillation pattern is linked to symmetry breaking and axis formation, and current theoretical models of Hydra symmetry breaking use this assumption as a model constraint. However, a mechanistic explanation for the shift in oscillation pattern is lacking. Using in vivo manipulation and imaging, we quantified the shape oscillation dynamics and dissected the timing and triggers of the pattern shift. Our experiments demonstrate that the shift in the shape oscillation pattern in regenerating Hydra tissue pieces is caused by the formation of a functional mouth and not by shape symmetry breaking as previously assumed. Thus, model assumptions must be revised in light of these new experimental data, which can be used to constrain and validate improved theoretical models of pattern formation in Hydra.
Collapse
Affiliation(s)
- Rui Wang
- Department of Bioengineering, University of California San Diego, La Jolla, California; Biology Department, Swarthmore College, Swarthmore, Pennsylvania
| | - Tapan Goel
- Department of Physics, University of California San Diego, La Jolla, California; Biology Department, Swarthmore College, Swarthmore, Pennsylvania
| | - Kate Khazoyan
- Department of Bioengineering, University of California San Diego, La Jolla, California
| | - Ziad Sabry
- Biology Department, Swarthmore College, Swarthmore, Pennsylvania
| | - Heng J Quan
- Department of Physics, University of California San Diego, La Jolla, California; Department of Mathematics, University of California San Diego, La Jolla, California
| | - Patrick H Diamond
- Department of Physics, University of California San Diego, La Jolla, California
| | - Eva-Maria S Collins
- Department of Physics, University of California San Diego, La Jolla, California; Biology Department, Swarthmore College, Swarthmore, Pennsylvania.
| |
Collapse
|
5
|
Evolution of the bilaterian mouth and anus. Nat Ecol Evol 2018; 2:1358-1376. [PMID: 30135501 DOI: 10.1038/s41559-018-0641-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 06/26/2018] [Accepted: 07/11/2018] [Indexed: 12/17/2022]
Abstract
It is widely held that the bilaterian tubular gut with mouth and anus evolved from a simple gut with one major gastric opening. However, there is no consensus on how this happened. Did the single gastric opening evolve into a mouth, with the anus forming elsewhere in the body (protostomy), or did it evolve into an anus, with the mouth forming elsewhere (deuterostomy), or did it evolve into both mouth and anus (amphistomy)? These questions are addressed by the comparison of developmental fates of the blastopore, the opening of the embryonic gut, in diverse animals that live today. Here we review comparative data on the identity and fate of blastoporal tissue, investigate how the formation of the through-gut relates to the major body axes, and discuss to what extent evolutionary scenarios are consistent with these data. Available evidence indicates that stem bilaterians had a slit-like gastric opening that was partially closed in subsequent evolution, leaving open the anus and most likely also the mouth, which would favour amphistomy. We discuss remaining difficulties, and outline directions for future research.
Collapse
|
6
|
Amiel AR, Johnston HT, Nedoncelle K, Warner JF, Ferreira S, Röttinger E. Characterization of Morphological and Cellular Events Underlying Oral Regeneration in the Sea Anemone, Nematostella vectensis. Int J Mol Sci 2015; 16:28449-71. [PMID: 26633371 PMCID: PMC4691047 DOI: 10.3390/ijms161226100] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 10/30/2015] [Accepted: 11/06/2015] [Indexed: 01/05/2023] Open
Abstract
Cnidarians, the extant sister group to bilateria, are well known for their impressive regenerative capacity. The sea anemone Nematostella vectensis is a well-established system for the study of development and evolution that is receiving increased attention for its regenerative capacity. Nematostella is able to regrow missing body parts within five to six days after its bisection, yet studies describing the morphological, cellular, and molecular events underlying this process are sparse and very heterogeneous in their experimental approaches. In this study, we lay down the basic framework to study oral regeneration in Nematostella vectensis. Using various imaging and staining techniques we characterize in detail the morphological, cellular, and global molecular events that define specific landmarks of this process. Furthermore, we describe in vivo assays to evaluate wound healing success and the initiation of pharynx reformation. Using our described landmarks for regeneration and in vivo assays, we analyze the effects of perturbing either transcription or cellular proliferation on the regenerative process. Interestingly, neither one of these experimental perturbations has major effects on wound closure, although they slightly delay or partially block it. We further show that while the inhibition of transcription blocks regeneration in a very early step, inhibiting cellular proliferation only affects later events such as pharynx reformation and tentacle elongation.
Collapse
Affiliation(s)
- Aldine R Amiel
- Institute for Research on Cancer and Aging, Université de Nice Sophia-Antipolis UMR 7284, INSERM U1081, CNRS UMR 7284, Nice 06107 Cedex 02, France.
| | - Hereroa T Johnston
- Institute for Research on Cancer and Aging, Université de Nice Sophia-Antipolis UMR 7284, INSERM U1081, CNRS UMR 7284, Nice 06107 Cedex 02, France.
| | - Karine Nedoncelle
- Institute for Research on Cancer and Aging, Université de Nice Sophia-Antipolis UMR 7284, INSERM U1081, CNRS UMR 7284, Nice 06107 Cedex 02, France.
| | - Jacob F Warner
- Institute for Research on Cancer and Aging, Université de Nice Sophia-Antipolis UMR 7284, INSERM U1081, CNRS UMR 7284, Nice 06107 Cedex 02, France.
| | - Solène Ferreira
- Institute for Research on Cancer and Aging, Université de Nice Sophia-Antipolis UMR 7284, INSERM U1081, CNRS UMR 7284, Nice 06107 Cedex 02, France.
| | - Eric Röttinger
- Institute for Research on Cancer and Aging, Université de Nice Sophia-Antipolis UMR 7284, INSERM U1081, CNRS UMR 7284, Nice 06107 Cedex 02, France.
| |
Collapse
|